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Abstract. In this paper we investigate the problem of limit cycles for general
Higgins-Selkov systems with degree n+1. In particular, we first prove the unique-
ness of limit cycles for a general Liénard system which allows for discontinuity.
Then, by changing the Higgins-Selkov systems into Liénard systems, theorems and
some techniques for Liénard systems can be applied. After we prove the nonex-
istence of limit cycles if the bifurcation parameter is outside an open interval.
Finally we complete the analysis of limit cycles for the Higgins-Selkov systems
showing its uniqueness.

1. Introduction and main results

In the qualitative theory of planar polynomial differential systems it is well known
how difficult is to study the famous Hilbert’s 16th problem, see [8, 10, 16]. Up to
now there are seldom works having solved the problem of exact number of limit
cycles for polynomial differential systems.

The most important physiological function of carbohydrates is to provide energy
for organisms’ life activities. Glucose catabolism is the main way for organisms to
obtain energy. There are three main pathways for the oxidative decomposition of
glucose in organisms. Among them, the anaerobic oxidation of glucose is called
glycolysis. We consider the following polynomial differential system of arbitrary
degree

(1)
ẋ = 1− xyn,
ẏ = ay(−1 + xyn−1)

which was proposed first by Higgins [7] and modified further by Selkov [13] for
studying the biological nonlinear glycolytic oscillations, and was called the Higgins-
Selkov system. Here n is a positive integer and a is a real parameter. Artés, Llibre
and Valls in [1] characterized the global dynamics described in the Poincaré disc for
system (1) as n = 2 and a ∈ R\(1, 3). Moreover there are two conjectures stated
in [1] on the the number of limit cycles of systems (1) when a ∈ (1, 3). After Chen
and Tang in [5] proved these conjectures which complete the global phase portraits
of system (1) when n = 2.

Recently Brechmann and Rendall in [3] researched the uniqueness of limit cycles
for system (1) and additionally proved that no limit cycles exist when a ∈ (0, 1/(1−
n)). Llibre and Mousavi [11] classified the phase portraits of system (1) for n =
3, 4, 5, 6 in the Poincaré disc for all the values of the parameter a and determined in
function of the parameter a the regions of the phase space with biological meaning.

2010 Mathematics Subject Classification. Primary 34C07, 34C23, 49J52.
Key words and phrases. Higgins-Selkov system, Liénard system of arbitrary degree, uniqueness of
limit cycles, nonexistence of Limit cycles.

1



2 H. CHEN, J. LLIBRE AND Y. TANG

The aim of this paper is to give a clearer study and answer for the existence and
the exact number of limit cycles of system (1). We have the following main results.

Theorem 1. For every positive integer n ≥ 3 and some bounded constant a∗ < 1,
system (1) has no periodic orbits when a ∈ (−∞, 1/(n − 1)] ∪ [a∗,+∞) and has a
unique limit cycle when a ∈ (1/(n− 1), a∗), which is stable and hyperbolic.

An outline of this paper is as follows. A theorem on the uniqueness of limit cycles
for general Liénard systems are presented in section 2, which we need in our study
of the limit cycles of the Higgins-Selkov system. In section 3 we obtain the existence
and the exact number of limit cycles of the Higgins-Selkov system and then prove
our main theorem.

2. Preliminaries

In order to study the number of limit cycles for system (1), we need the following
preliminary results. We first recall the uniqueness theorem of Zhifen Zhang in [14]
or in [15] on the number of limit cycles of the following generalized Liénard systems

ẋ = −φ(y)− F̂ (x),
ẏ = ĝ(x).

(2)

Let

Ĝ(x) :=

∫ x

0

ĝ(s)ds.

Theorem 2. Consider the generalized Liénard system (2) for x ∈ (−∞,+∞), when

φ(y), F̂ (x) and ĝ(x) satisfy the following conditions:

(i): ĝ(x) is Lipschitz in any finite interval, xĝ(x) > 0 for all x 6= 0, and

Ĝ(−∞) = Ĝ(+∞) = +∞.

(ii): f̂(x) = F̂ ′(x) is C0, F̂ (0) = 0, f̂(x)/ĝ(x) is nondecreasing in (−∞, 0) ∪
(0,+∞) and f̂(x)/ĝ(x) is not a constant when |x| is small.

(iii): φ(y) is Lipschitz in any finite interval, yφ(y) > 0 for all y 6= 0, φ(y)
is nondecreasing, φ(−∞) = −∞, φ(+∞) = +∞, φ(y) has right-derivative

φ′+(0) and left-derivative φ′−(0) at y = 0, φ′−(0)φ′+(0) 6= 0 when f̂(0) = 0.

Then system (2) has at most one limit cycle. Moreover the limit cycle is stable when
it exists.

In fact we can find many differential systems of the form (2) but many of them
do not satisfy the conditions of Theorem 2. Thus we propose the following three
questions:

(a): When Ĝ(−∞) = Ĝ(+∞) 6= +∞ and the other conditions of Theorem 2
hold, does the conclusion of Theorem 2 still hold?

(b): When either f̂(x) or ĝ(x) has a discontinuity point x0 of the second kind
(i.e., limx→x0+ ĝ(x) or limx→x0− ĝ(x) does not exist) and the other conditions
of Theorem 2 hold, does the conclusion of Theorem 2 still hold?

(c): When ĝ(x) has a discontinuity point at x = 0 of the first kind (i.e.,
limx→0+ ĝ(x) 6= limx→0− ĝ(x)) and the other conditions of Theorem 2 hold,
does the conclusion of Theorem 2 still hold?
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For example we have that G(−∞) = G(+∞) 6= +∞ when ĝ(x) = x/(1 + x2)2.

Either f̂(x) or ĝ(x) has a discontinuity point at x = −1 of the second kind when

f̂(x) = 1/a− (n− 1)/(x+ 1)n or ĝ(x) = x/(x+ 1)n.

Here we will show why the condition G(−∞) = G(+∞) = +∞ is necessary in
the proof of Theorem 2 of [15]. Zhang in [15] only need to research the following
special Liénard system

(3)
u̇ = −φ(y)− F̂ (x(u)),
ẏ = u,

because system (2) can be changed into system (3) through the transformation u =√
2G(x)Sgn(x) and dt→

(√
2G(x)sgn(x)/ĝ(x)

)
dt. However, the transformation is

not an 1-1 transformation in (−∞,+∞) when G(−∞) = G(+∞) 6= +∞.

For these reasons we give the following theorem without the aforementioned con-
ditions.

Theorem 3. Consider system (2) in the interval (α, β), where α and β eventually

can be −∞ and +∞, respectively. Assume that φ(y), F̂ (x) and ĝ(x) satisfy the
following conditions:

(i): ĝ(x) := g0(x) + c sgn(x), xĝ(x) > 0 for all x 6= 0, where c ≥ 0 and g0(x)
is Lipschitz in any finite interval and g0(0) = 0.

(ii): f̂(x) = F̂ ′(x) is C0(α, β), F̂ (0) = 0, f̂(0) 6= 0, f̂(x)/ĝ(x) is nondecreasing

in (α, 0) ∪ (0, β) and f̂(x)/ĝ(x) is not a constant when |x| is small.
(iii): φ(y) is Lipschitz in any finite interval, yφ(y) > 0 for all y 6= 0, φ(y) is

increasing, φ(−∞) = −∞, φ(+∞) = +∞, φ(y) has right-derivative φ′+(0)

and left-derivative φ′−(0) at y = 0, φ′−(0)φ′+(0) 6= 0 when f̂(0) = 0.

Then system (2) has at most one limit cycle in (α, β). Moreover the limit cycle is
stable when it exists.

Proof. Since the vector field of system (2) is Lipschitz for c = 0, its solutions exist
and are unique except at x = 0. Since the vector field of system (2) is discontinuous
at the line Σ := {(x, y) : x = 0} for c > 0, we need to study the dynamics on Σ and
we will adapt the Filippov method, see [2, 9]. Let

δ := 〈(1, 0), (−φ(y),−c)〉〈(1, 0), (−φ(y), c)〉 = φ2(y),

where 〈·, ·〉 denotes the inner product. As defined in [2, 9], the crossing set is

Σc = {(x, y) ∈ Σ : δ > 0} = {(x, y) ∈ Σ : y 6= 0}.

The sliding set Σs is the complement to Σc, which is given by

Σs = {(x, y) ∈ Σ : δ ≤ 0} = {(x, y) ∈ Σ : y = 0}.

Therefore except at the origin, all orbits crossing any point are unique. In other
words all periodic orbits are crossing.

Assume that γ is a periodic orbit of system (2). Then we have that γ is hyperbolic

if
∮
γ

div(−φ(y)− F̂ (x), ĝ(x))dt 6= 0, see for instance Theorem 1.23 of [6]. Moreover
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γ is stable (resp. unstable) if∮
γ

div(−φ(y)− F̂ (x), ĝ(x))dt < 0 (resp. > 0).

In order to prove the uniqueness of limit cycles of system (2), assume that system
(2) has at least two limit cycles, where γ1, γ2 are the innermost limit cycles and γ1
lies in the bounded region surrounded by γ2.

Actually we must have f̂(0) < 0. Otherwise, if f̂(0) > 0 we can obtain f̂(x) > 0

since f̂(x)/ĝ(x) is non-decreasing and xĝ(x) > 0. For x > 0 near the origin, we can

get f̂(x) > 0 by the continuity of f̂(x) at x = 0 and then f̂(x)/ĝ(x) > 0, implying

f̂(x)/ĝ(x) > 0 for all x > 0 by the monotonicity of this function. Thus we have

f̂(x) > 0 for all x > 0. Similarly for all x < 0 we can also get f̂(x) > 0. Then, by
Green formula we have

0 =

∮
γi

(−φ(y)− F̂ (x))dy + ĝ(x)dx = −
∮
Di

f̂(x)dxdy,

which contradicts the fact that f̂(x) > 0, where Di is the bounded region surrounded
by γi for i = 1, 2. Here, note that the Dulac criterion cannot be applied because the
vector field of system (2) is not C1. Thus we get f̂(0) < 0 if a periodic orbit exists.

Moreover we claim that the equation f̂(x) = 0 has at most one positive root and
one negative root, where a connect set of roots is viewed as one root. Otherwise,
assume that f̂(x) has two positive zeros x1 and x2 such that 0 < x1 < x2. Then

there exists a real x0 ∈ (x1, x2) satisfying f̂(x0)/ĝ(x0) > 0 = f̂(x2)/ĝ(x2), which

contradicts the non-decreasing of f̂(x)/ĝ(x). Thus the claim is proved.

Applying Green formula again we have that system (2) has no periodic orbits

when f̂(x) ≤ 0 for all x ∈ (α, β). Therefore if system (2) exhibits periodic orbits,

there is an x3 ∈ (α, β) such that f̂(x3) > 0. In the following we divide the proof of
the uniqueness of limit cycles of system (2) in three cases.

Case (I). First we consider the case x3 > 0 if f̂(x3) > 0. Then there is a unique

value x4 ∈ (0, β) such that F̂ (x4) = 0. Moreover if there exist two different points

x41, x42 ∈ (0, β) such that F̂ (x41) = 0 and F̂ (x42) = 0, we can get an x̃4 ∈ (x41, x42)

satisfying f̂(x̃4) = 0, which contradicts the non-decreasing of f̂(x)/ĝ(x) for x > 0.

We claim that any periodic orbit must surround the point (x4, 0). So no periodic
orbits exist if x4 does not exist. Let

(4) E(x, y) =
y2

2
+

∫ x

0

ĝ(s)ds,

which implies that
dE(x, y)

dt
= −ĝ(x)F̂ (x).

It is to note that ĝ(x)F̂ (x) < 0 for all x ∈ (α, x4). Assume that system (2) exhibits
a periodic orbit γ, which lies in the strip x ∈ (α, x4). Then we can find that

0 =

∮
γ

dE =

∮
γ

−ĝ(x)F̂ (x)dt > 0.

Thus the claim is proved.
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Now we will prove that

(5)

∮
γ1

f̂(x)dt <

∮
γ2

f̂(x)dt.
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Figure 1. Limit cycles of system (2) in the Case (I).

Consider the two limit cycles γ1 = ̂A1B1C1D1H1I1A1 and γ2 = ̂A2B2C2D2H2I2A2

of Figure 1. Notice that the limit cycle γi intersects the graphic of the function
y = φ−1(−F̂ (x)) at the points Ci and Ii for i = 1, 2, respectively. Since∮

γ1

ĝ(x)dt =

∮
γ1

dy = 0 =

∮
γ2

dy =

∮
γ2

ĝ(x)dt,

we only need to prove

(6)

∮
γ1

f1(x)dt <

∮
γ2

f1(x)dt,

which is equivalent to (5), where

(7) f1(x) := f̂(x) + bĝ(x)

for any constant b ∈ R. It is clear that f1(x)/ĝ(x) is still non-decreasing if f(x)/ĝ(x)
is non-decreasing. Fixing

b = −f̂(xI1)/ĝ(xI1) < 0,

we have f1(xI1) = 0. Moreover we have f1(x)/ĝ(x) ≥ 0 for xI1 < x < 0 and
f1(x)/ĝ(x) ≤ 0 for x < xI1 , because f1(xI1)/ĝ(xI1) = 0 and f1(x)/ĝ(x) is non-
decreasing. Thus f1(x) ≤ 0 if xI1 < x < 0, and f1(x) ≥ 0 if x < xI1 , because
ĝ(x) < 0 for x < 0.

Denote by P = (xP , yP ) for an arbitrary point P . We can find a point J1(xJ1 , yJ1)

in the curve y = φ−1(−F̂ (x)) such that f1(xJ1) = 0 and xJ1 ∈ (0, xC1). Otherwise,
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f1(x) < 0 for all x ∈ (0, xC1), and if the point J1 does not exist then f1(x) ≤ 0 for
all x ∈ (xI1 , xC1). Thus we obtain

(8)

∮
γ1

f1(x)dt < 0.

However the origin is a source and the periodic orbit γ1 is internally stable because
f1(x) < 0 for small x, implying

∮
γ1
f1(x)dt ≥ 0. It induces a contradiction with the

inequality (8). Thus the point J1 exists. Moreover we have f1(x) ≥ 0 for x > xJ1 ,
and f1(x) ≤ 0 for all 0 < x < xJ1 , because ĝ(x) > 0 for x > 0 and f1(x)/ĝ(x) is
non-decreasing.

Assume that the line x = xJ1 intersects with the graphic of the function y =

φ−1(−F̂ (x)) at the points Bi and Di for i = 1, 2, respectively. Notice that

xB1 = xB2 = xD1 = xD2 = xJ1 .

Let y = y1(x) and y = y2(x) be the orbit segments Â1B1 and Â2B2, respectively.
Since y1 < y2 and the function φ(x) is increasing, we have φ(y1) < φ(y2). Then we
have
(9)∫

B̂1A1

f1(x)dt−
∫
B̂2A2

f1(x)dt =

∫ xB1

0

f1(x)

φ(y1) + F̂ (x)
dx−

∫ xB2

0

f1(x)

φ(y2) + F̂ (x)
dx

=

∫ xB1

0

f1(x)(φ(y2)− φ(y1))

(φ(y1) + F̂ (x))(φ(y2) + F̂ (x))
< 0.

It is similar to prove that

(10)

∫
Ĥ1D1

f1(x)dt−
∫
Ĥ2D2

f1(x)dt < 0,∫
Â1I1

f1(x)dt−
∫
Â2P2

f1(x)dt < 0,∫
Î1H1

f1(x)dt−
∫
Q̂2H2

f1(x)dt < 0,

where P2, Q2 ∈ γ2 and xP2 = xQ2 = xI1 .

Let x = x1(y) and x = x2(y) be the orbit segments D̂1C1B1 and D̂2C2B2, respec-
tively. Then we have

(11)

∫
̂D1C1B1

f1(x)dt−
∫

̂D2C2B2

f1(x)dt <

∫
̂D1C1B1

f̂(x)dt−
∫
M̂2N2

f̂(x)dt

=

∫ yN2

yM2

(
f̂(x1)

ĝ(x1)
− f̂(x2)

ĝ(x2)

)
dy < 0,

where M2, N2 ∈ γ2, yM2 = yD1 and yN2 = yB1 . Since f1(x) ≥ 0 for all x < xI1 , we
have ∫

̂P2I2Q2

f1(x)dt > 0.(12)

Therefore (6) holds from (9)-(12). Notice that the origin is a source and the

periodic orbit γ1 is internally stable. Thus
∮
γ1
f̂(x)dt ≥ 0. It follows from (5)
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that
∮
γ2
f̂(x)dt > 0. Consequently γ2 is stable and hyperbolic. By the Poincaré-

Bendixson Theorem (see for instance Corollary 1.30 of [6]), it is impossible the
existence of two consecutive stable limit cycles. Therefore system (2) has at most
two limit cycles. Moreover, γ1 is semi-stable and γ2 is stable if they exist.

In order to induce a contradiction for the case that γ1 is semi-stable, we construct
an auxiliary vector field (−φ(y)− F̃ (x), ĝ(x)), where F̃ (x) = F̂ (x) + εR(x) and

R(x) :=

{
0, if x ≤ x4,

F̂ (x), if x > x4,

for small |ε|. We can check that the vector field (−φ(y)− F̃ (x), ĝ(x)) is rotated with
respect to the parameter ε; see [16, Chapter 4.3] or [12]. Consider the following
system

(13)
ẋ = −φ(y)− F̃ (x),
ẏ = ĝ(x).

System (13) is exactly system (2) if ε = 0. Moreover, we can check that system
(13) still satisfies all assumptions of Theorem 3. In other words system (13) has at
most two limit cycles. Further, we can find that γ1 will split into at least two limit
cycle for ε < 0 by [16, Theorem 3.4 of Chapter 4]. Then system (13) can have three
limit cycles, a contradiction with the previous result. Therefore we have proven that
system (2) has at most one periodic orbit in the case x3 > 0 if f̂(x3) > 0.

a bx
-

x
+

Figure 2. Limit cycles of system (2) in the Case (III).

Case (II). Second, we consider the case that there must be x3 < 0 if f̂(x3) > 0.
Since the proof is similar to the Case (I), we omit it.

Case (III). We consider the case that x3 can be negative or positive if f̂(x3) > 0.

We claim that the equation F̂ (x) = 0 has either one non-zero root or two non-zero
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roots. Notice that the equation F̂ (x) = 0 can not have two positive roots or two
negative roots. Otherwise if there exist two different points x41, x42 ∈ (0, β) or

∈ (α, 0) such that F̂ (x41) = 0 and F̂ (x42) = 0, we can get a point x̃4 ∈ (x41, x42)

satisfying f̂(x̃4) = 0, which contradicts the non-decreasing of the function f̂(x)/ĝ(x).

On the other hand, if the equation F̂ (x) = 0 has not non-zero roots, we get dE/dt ≥
0 for x ∈ (α, β) from (4), implying that no periodic orbits exist. If the equation

F̂ (x) = 0 has a unique non-zero root, we consider that the non-zero root is x+ ∈
(0, β) for simpcility. If system (2) has a periodic orbit, it must surround (x+, 0).
Otherwise this is a contradiction with the fact that dE/dt ≥ 0. When equation

F̂ (x) = 0 has one positive root x+ ∈ (0, β) and a negative root x− ∈ (α, 0), if
system (2) has a periodic orbit, it must surround at least one of the points (x+, 0)
and (x−, 0). Otherwise again we have a contradiction with the fact that dE/dt ≥ 0.
Without loss of generality we can assume that any limit cycle surrounds (x+, 0).

Assume that system (2) has three limit cycles γ1, γ2, γ3 as the ones shown in Figure
2, where γ1 is the innermost one, γ3 surrounds γ1 and γ2, the points Ai, Bi, Ci, Di, Hi,
IiJi, Ki ∈ γi, the periodic orbit γi intersects the graphic of the function y =
φ−1(−F̂ (x)) at the points Ci and Ji for i = 1, 2, 3, respectively. Notice that

xBi
= xDi

, xAi
= xHi

= 0, xK2 = xK3 = xI2 = xI3 = xJ4 ,

f(xBi
) = 0, f(xJ4) = 0, α < xJ3 < xJ2 < xJ4 < xJ1 < 0,

for i = 1, 2, 3.

In a similar way to the proof of Case (I) we shall obtain that system (2) has at
most one periodic orbit in the strip x ∈ (xJ4 , β). Moreover the periodic orbit is
stable if it exists. Now we shall prove that

(14)

∮
γ1

f̂(x)dt <

∮
γ2

f̂(x)dt <

∮
γ3

f̂(x)dt.

Notice that the function y = φ(x) has the same properties as in Case (I) when x > 0,
as it is shown in Figures 1 and 2. Thus we can obtain that

(15)

∫
̂H1C1A1

f̂(x)dt <
∫

̂H2C2A2
f̂(x)dt,∫

̂H2C2A2
f̂(x)dt <

∫
̂H3C3A3

f̂(x)dt.

To prove the first inequality of (14) it suffices to prove the inequality (6). Using
the auxiliary function f1(x) in (7) for the Case (I) again, we can prove that

(16)

∫
̂A1J1H1

f1(x)dt <

∫
̂A2J2H2

f1(x)dt.

From (15) and (16) we get

(17)

∮
γ1

f̂(x)dt <

∮
γ2

f̂(x)dt.
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Moreover we can calculate that∫
Â2K2

f̂(x)dt−
∫
Â3K3

f̂(x)dt < 0,∫
K̂2J2I2

f̂(x)dt−
∫
K̂3J3I3

f̂(x)dt < 0,(18) ∫
Î2H2

f̂(x)dt−
∫
Î3H3

f̂(x)dt < 0

doing a similar calculation as in Case (I) for x > 0. Thus, from (15) and (18), we
get the second inequality of (14), i.e.

(19)

∮
γ2

f̂(x)dt <

∮
γ3

f̂(x)dt.

It follows from (17) and (19) that (14) holds. Since the origin is a source, we have∮
γ1

f̂(x)dt ≥ 0, implying

∮
γ2

f̂(x)dt > 0 and

∮
γ3

f̂(x)dt > 0,

from the inequality (14). However it is impossible to have two consecutive stable
limit cycles. Therefore system (2) cannot have three periodic limit cycles and there
are at most two limit cycles.

We divide the rest of the proof in two subcases. First, we consider the subcase
that γ1 only surrounds one of the points (x+, 0) and (x−, 0). In Case (I) we have
proved that for this kind of periodic orbits, as γ1, at most one can exist and it
is stable. Thus its consecutive periodic orbit γ2 is internally unstable and then∮
γ2
f̂(x)dt ≤ 0. Moreover the inequality (17) holds and γ2 is stable, indicating a

contradiction. Therefore the periodic orbit γ2 does not exist and system (2) has
exact one periodic orbit γ1 if such periodic orbit exists.

Now we consider the subcase that system (2) has no such kind of periodic orbits
like γ1. We assume that system (2) has two periodic orbits γ2 and γ3, which surround
both points (x+, 0) and (x−, 0). Since the origin is a source, we have∮

γ2

f̂(x)dt ≥ 0, implying

∮
γ3

f̂(x)dt > 0,

by the inequality (19). Therefore γ2 is semi-stable and γ3 is stable. Using the auxil-
iary vector field (13) again, we can get that system (13) still satisfies all conditions
of this theorem and has at most two limit cycles. However by the rotated properties
of system (13), the semi-stable γ2 will split into at least two limit cycles for ε 6= 0
by [16, Theorem 3.4 of Chapter 4]. Then system (13) can have three limit cycles, a
contradiction. Thus we have proven that system (2) has at most one periodic orbit
in the case (III) and the proof is completed. �

Remark 4. The conditions φ(−∞) = −∞, φ(+∞) = +∞ are needed only if (α, β)
is unbounded. If (α, β) is a bounded interval, these conditions can be deleted in
Theorem 3.

Notice that the vector field is Lipschitz if c = 0 in Theorem 3. Thus the results of
Theorem 3 also hold when system (2) is Lipschitz or further smooth.
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The modified Liénard system (21) of the Higgins-Selkov (1) is Lipschitz except at
the line x = 1, which is a discontinuity point of the second kind for the functions in
the system. So we need to apply Theorem 3 for showing the uniqueness of the limit
cycles.

3. Proof of Theorem 1

Notice that system (1) cannot have periodic orbits when a ≤ 0, because the unique
equilibrium (1, 1) is a saddle as a < 0 or ẏ ≡ 0 as a = 0. Thus in the following we
only consider the case a > 0. Moreover, the periodic orbits of system (1) must lie
in the region

{(x, y) ∈ R2 | x > 0, y > 0},
since the x-axis is invariant and ẋ|x=0 = 1.

In order to simplify the computations and the analysis we do the following change
of coordinates

(x, y, t)→
(
y1 − x1
a

, x1,
t1
a

)
,

changing system (1) into

(20) ẋ1 = −x1 +
xn1y1
a
− xn+1

1

a
,

ẏ1 = 1− x1.

Obviously the periodic orbit of system (20) only exists in the region x1 > 0, because
ẏ1 = 1 > 0 and ẋ1 = 0 on the line x1 = 0. Moreover system (20) can be changed
into the following Liénard system

(21)
ẋ = y − F (x),
ẏ = −g(x),

where

F (x) :=
1

(x+ 1)n−1
+
x

a
− 1 and g(x) :=

x

a(x+ 1)n
,

doing the transformation (x1, y1, t1) → (x+ 1, ay + (a+ 1), t/(x+ 1)n). Here we
only need to consider x > −1 for the problem of limit cycles of system (21), because
system (21) is equivalent to system (1) as a > 0 and x > −1.

From [3] system (21) has no periodic orbits when a ∈ (0, 1/(n − 1)). In the
following we prove that system (21) may have periodic orbits only if a > 1/(n− 1).
Here we cannot use the methods of [5], because it is difficult to decide when the
equations

g(z1)

f(z1)
=
g(z2)

f(z2)
and F (z1) = F (z2),

have solutions or not for an arbitrary integer n. We need use a new method and
technique.

Proposition 5. For a > 0, the amplitude of the stable or unstable limit cycle of sys-
tem (21) surrounding the origin varies monotonically with respect to the parameter
a.
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Proof. Notice that we can change system (21) into the following equivalent form

(22)
ẋ = y − F̌ (x),
ẏ = −ag(x)

by the transformation of coordinates (x, y, t)→
(
x, y/
√
a,
√
at
)

, where

F (x) :=
√
a
( 1

(x+ 1)n−1
− 1
)

+
x√
a
.

From the calculation in [11], we have the value of the following determinant∣∣∣∣∣∣∣∣∣
y −

(
√
a1

( 1

(x+ 1)n−1
− 1
)

+
x
√
a1

)
− x

(x+ 1)n

y −
(
√
a2

( 1

(x+ 1)n−1
− 1
)

+
x
√
a2

)
− x

(x+ 1)n

∣∣∣∣∣∣∣∣∣
= (
√
a1 −

√
a2)

x
(

1− (x+ 1)n−1
)

(x+ 1)2n−1
− 1
√
a1a2

x2

(x+ 1)n

 ≤ 0

for a2 < a1, a2, a1 ∈ (0,+∞) and x > −1.

Thus the vector field of system (22) is a generalized rotated vector field (see [16,
Chapter 4.3] or [12]) with respect to the parameter a if x > −1. Moreover from
[16, Theorem 3.5, Chapter 4], the amplitude of the stable or unstable limit cycle of
system (22) surrounding the origin varies monotonically with respect to the positive
parameter a. �

Proposition 6. System (21) has no periodic orbits when a ∈ (−∞, 1/(n− 1)].

Proof. By [1, 5], system (21) has no periodic orbits for a ≤ 1 when n = 2. In the
rest of this proof, we only consider n ≥ 3. We only need to consider system (21)
and its limit cycles in the region x > −1. Assume that

(23) F (x1) = F (x2), G(x1) = G(x2)

for n ≥ 3 and −1 < x1 < 0 < x2, where

G(x) :=

∫ x

0

g(s)ds =
1

a(n− 1)(n− 2)
− nx− x+ 1

a(x+ 1)n−1(n− 1)(n− 2)
.

It follows from (23) that

(24)
1

(x1 + 1)n−1
+
x1
a
− 1 =

1

(x2 + 1)n−1
+
x2
a
− 1,

(25)
1

(2− n)

1

(x1 + 1)n−2
+

1

(n− 1)

1

(x1 + 1)n−1
=

1

(2− n)

1

(x2 + 1)n−2
+

1

(n− 1)

1

(x2 + 1)n−1
.

From (24) we have

1

(x1 + 1)n−1
− 1

(x2 + 1)n−1
= −x1 − x2

a
(26)

⇔ 1

(x1 + 1)n−2
= −(x1 + 1)(x1 − x2)

a
+

x1 + 1

(x2 + 1)n−1
.(27)
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Furthermore it follows from (25) and (26) that

1

(2− n)

(
1

(x1 + 1)n−2
− 1

(x2 + 1)n−2

)
=

1

(n− 1)

(
1

(x2 + 1)n−1
− 1

(x1 + 1)n−1

)
=

x1 − x2
a(n− 1)

.(28)

Moreover we calculate from (27) and (28) that

(29)

1

(2− n)

(
−(x1 + 1)(x1 − x2)

a
+

x1 + 1

(x2 + 1)n−1
− 1

(x2 + 1)n−2

)
=

x1 − x2
a(n− 1)

,

1

(2− n)

(
−(x1 + 1)(x1 − x2)

a
+

1

(x2 + 1)n−1
(x1 − x2)

)
=

x1 − x2
a(n− 1)

,

1

(2− n)

(
−(x1 + 1)

a
+

1

(x2 + 1)n−1

)
=

1

a(n− 1)
,

x1 =
a

(x2 + 1)n−1
− 1

n− 1
.

Substituting (29) into (24) we have

(30)
1( a

(x2 + 1)n−1
+
n− 2

n− 1

)n−1 − 1

a(n− 1)
− x2

a
= 0.

Let

(31) H(x, a) :=
1( a

(x+ 1)n−1
+
n− 2

n− 1

)n−1 − x

a
− 1

a(n− 1)
.

Then we have that

(32)
dH

dx
(x, a) =

a(n− 1)2

Hn
1 (x, a)

− 1

a
,

where

H1(x, a) =
( a

(x+ 1)n−1
+
n− 2

n− 1

)
(x+ 1).

Now we consider the case a = 1/(n− 1). From (31) and (32) we get

H(x, 1/(n− 1)) =
1( 1

(n− 1)(x+ 1)n−1
+
n− 2

n− 1

)n−1 − (n− 1)x− 1

and
dH

dx
(x, 1/(n− 1)) =

n− 1

Hn
1 (x, 1/(n− 1))

− (n− 1),

where

H1(x, 1/(n− 1)) =
( 1

(n− 1)(x+ 1)n−1
+
n− 2

n− 1

)
(x+ 1).

Then we claim that
dH

dx
(x, 1/(n− 1)) < 0.
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Actually, we have

dH1

dx
(x, 1/(n− 1)) =

( 1

(n− 1)(x+ 1)n−2
+
n− 2

n− 1
(x+ 1)

)′
=

n− 2

n− 1

( −1

(x+ 1)n−1
+ 1
)
> 0,

for n ≥ 3 and x ≥ 0, implying min{H1(x, 1/(n − 1))}x≥0 = H1(0, 1/(n − 1)) = 1.
Thus we get H ′(x, 1/(n− 1)) ≤ 0 and then

max{H(x, 1/(n− 1))}x≥0 = H(0, 1/(n− 1)) = 0.

In other words equation (30) has no solutions for x2 > 0, and then equations (23)
have no solutions {x1, x2} such that −1 < x1 < 0 < x2 if n ≥ 3 and a = 1/(n− 1).
Thus from continuity we have F (x1) > F (x2), or F (x1) < F (x2) if G(x1) = G(x2).
Moreover we have that F (0) = 0 and xg(x) > 0. Therefore by Proposition 2.1 of
[4], system (21) has no periodic orbits for a = 1/(n− 1).

Now consider the case a < 1/(n− 1). When a ≤ 0, either the unique equilibrium
(1, 1) of system (1) is a saddle or the system has an invariant line through equilibrium
(1, 1), which implies non-existence of periodic orbits. The vector field of equivalent
system (22) of system (21) is a generalized rotated vector field with respect to a for
x > −1 and a > 0 by the proof of Proposition 5. Moreover the amplitude of the
stable or unstable limit cycle surrounding the origin of (21) varies monotonically with
respect to a. Assume that system (21) exhibits limit cycles for a = a0 ∈ (0, 1/(n−1)),
where γ is the innermost limit cycle. Since the origin of (21) is stable, then γ is
internally unstable. Note that the amplitude of an unstable limit cycle decreases
as a increases by [16, Theorem 3.5, Chapter 4]. When a increases from a = a0
to a = 1/(n − 1), the origin keeps stability. Therefore, γ does not disappear for
a = 1/(n− 1). This is a contradiction to our above analysis as a = 1/(n− 1), and
the proof is completed. �

When

a = an :=
2n − 1

2n − 2
,

we give the following lemma for the region where periodic orbits exist. Obviously,
an > 1 for n ≥ 3.

Lemma 7. When a = an for n ≥ 3, periodic orbits of system (21) only exist in the
strip x ∈ (−1, 1.6).

Proof. Note that any periodic orbit of system (1) must lie in the first quadrant and
the y-axis of system (1) is changed into the line y = x−1 of system (21). Therefore,
the periodic orbits of system (21) cannot intersect the line y = x− 1.

Assume that Γ is a periodic orbit of system (21) and Γ intersects with the curve
y = F (x) at the point (x∗, F (x∗)) in the right half-plane. Then x ≤ x∗ as (x, y) ∈ Γ.
If x∗ ≤ 1, we have that Γ lies in the strip x ∈ (−1, 1] and this lemma is proven. In
the following, we consider the case x∗ > 1.

Let y = ỹ(x) < F (x) denote the orbit segment of Γ as 0 ≤ x ≤ x∗. For x ≥ 1 and
a = an, we have that ỹ(x) > x− 1 and

dỹ(x)

dx
=

g(x)

F (x)− ỹ(x)
>

g(x)

F (x)− x+ 1
≥ x,(33)
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which implies

ỹ(x) <
1

2
(x2 − (x∗)2) + ỹ(x∗)(34)

for 1 ≤ x < x∗. Actually, the inequality g(x)/(F (x)−x+1) ≥ x in (33) is equivalent
to the inequality

a ≥ ϕ1(x)

ϕ2(x)
,(35)

where ϕ1(x) = x− 1
(x+1)n

and ϕ2(x) = x− 1
(x+1)n−1 . Notice that for x ≥ 1 we get the

maximum value of the positive function ϕ1(x)− ϕ2(x) at x = 1, implying that the
function ϕ1(x)/ϕ2(x) has its maximum value an also at x = 1 and the inequality
(33) is obtained.

We can find that the curve

Υ : y =
1

2
x2 − 1

2

is tangent to the line y = x − 1 at the point (1, 0). Moreover, the curves Υ and
y = F (x) have a unique intersection point at (x̃∗, ỹ∗) for x ≥ 1. Actually, from
F (x) = y = 1

2
x2 − 1

2
and a = an we get that

P (x) :=
1

(x+ 1)n−1
+

(2n − 2)x

2n − 1
− x2

2
− 1

2
= 0.

Applying

P ′(x) = (1− n)
1

(x+ 1)n
+

2n − 2

2n − 1
− x < 0

for x ≥ 1, P (1) = (2n−1 − 1)/(22n−1 − 2n−1) > 0 and P (1.6) = 2.61−n − 0.18 −
1.6/(2n − 1) < 0, we get a unique value x̃∗ such that P (x̃∗) = 0 and 1 < x̃∗ < 1.6.

In the following, we prove that x∗ < x̃∗. Otherwise, if x∗ ≥ x̃∗, we have −(x∗)2/2+
ỹ(x∗) ≤ −1/2, inducing

ỹ(x) <
1

2
(x2 − (x∗)2) + ỹ(x∗) ≤ 1

2
x2 − 1

2

for x = 1 by (34). Hence, we can obtain that the curve y = ỹ(x) has intersection
points with the line y = x − 1, indicating a contradiction. Therefore, x∗ < x̃∗. In
other words, the periodic orbits of system (21) must lie in the region x ∈ (−1, 1.6).
The lemma is proven. �

Proposition 8. System (21) has no periodic orbits when a ≥ an.

Proof. By [1, 5], there is a a∗ ∈ (1, 3) such that system (21) has no periodic orbits
for a > a∗ when n = 2. When n = 3 and a = an, we can calculate numerically that
the function H(x, a) in (31) has not zeros as x lies between x̃∗ and the positive zero
of F (x), where the curves Υ and y = F (x) intersect at (x̃∗, ỹ∗) for x ≥ 1, as shown
in the proof of Lemma 7. By Proposition 2.1 of [4] system (21) has no periodic
orbits when n = 3 and a = an. In the rest of this proof, we only need consider the
case n ≥ 4.
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From (32), we have that

dH

dx
(x, a) =

a(n− 1)2

Hn
1 (x, a)

− 1

a

and

dH1(x, a)

dx
= − a(n− 2)

(x+ 1)n−1
+
n− 2

n− 1

 < 0, 0 < x < x0,
= 0, x = x0,
> 0, x > x0,

where
x0 = n−1

√
a(n− 1)− 1 > 0

as a ≥ an > 1. Further, we obtain

min
x>−1
{H1(x, a)} = H1(x0, a),

implying

max
x>−1
{dH
dx

(x, a)} =
dH

dx
(x0, a) =

n− 1
n−1
√
a(n− 1)

− 1

a
> 0.

Moreover, we have

lim
x→+∞

dH

dx
(x, a) < 0

and
dH

dx
(0, a) =

a(n− 1)2(
a+

n− 2

n− 1

)n − 1

a
=

H2(a)

a
(
a+

n− 2

n− 1

)n < 0,

where

H2(a) = a2(n− 1)2 −
(
a+

n− 2

n− 1

)n
,

because

dH2(a)

da
= 2a(n− 1)2 − n

(
a+

n− 2

n− 1

)n−1
<
dH2(a)

da
|a=1 < 0,

d2H2(a)

da2
= 2(n− 1)2 − n(n− 1)

(
a+

n− 2

n− 1

)n−2
<
d2H2(a)

da2
|a=1 < 0,

d3H2(a)

da3
= −n(n− 1)(n− 2)

(
a+

n− 2

n− 1

)n−3
< 0.

Notice that

H(0, a) =
1(

a+
n− 2

n− 1

)n−1 − 1

a(n− 1)
< 0

from (31) and a similar discussion as dH(0, a)/dx < 0.

If the inequality H(x, a) < 0 always holds as a ≥ 1, we can get that system (21)
has no periodic orbits by Proposition 2.1 of [4] and a similar discussion as the proof
of Proposition 6. So, in the following, we consider the case that there exists a value
x∗ > x0 such that

max
x>−1
{H(x, a)} = H(x∗, a) > 0.

Without loss of generality we assume that

H(x0, a) = 1− x0
a
− 1

a(n− 1)
> 0.
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Figure 3. y = H(x, a)

When H(x0, a) ≤ 0, we can research by a similar way. Thus, there are values x1
and x2 such that x1 > x2 > 0 and H(x, a) > 0 (resp. < 0) for x ∈ (x2, x1) (resp.
x ∈ (0, x2) ∪ (x1,+∞)) when n ≥ 4, as shown in Figure 3.

The function F ′(x) has a unique zero at x = n
√
a(n− 1) − 1 > 0 and there

exists a unique positive x3 such that F (x3) = 0 and F (x) > 0 (resp. < 0) for

x ∈ (−1, 0) ∪ (x3,+∞) (resp. x ∈ (0, x3)). Letting z0 = n−1
√
a(n− 1) we can find

that z0 > 1 and

F (x0) =
1

a(n− 1)
+

n−1
√
a(n− 1)− 1

a
− 1

=
1

zn−10

− 1 +
z0 − 1

a

= (1− z0)
(

1 + z0 + · · ·+ zn−20

zn−10

− 1

a

)
= (1− z0)

(
1 + z0 + · · ·+ zn−20

zn−10

− n− 1

zn−10

)
< 0,

indicating x0 < x3.

Consider the case a = an > 1. Calculating the equation F (x3) = 0 from (21), we
can let

x3 =
(n− k(n))an

n− 1
,(36)

where k ∈ (1, 1.5) and k = k(n) is decreasing in n. Specially, x3 = 1 as n → +∞
and x3 ≈ 0.92 as n = 4. Further, by (36) we have that

H(x3, an) =
1

(1 + (k−1)an−1
n−1 )n−1

+
k − n− 1/an

n− 1

=
1−H3(n)

(1 + (k−1)an−1
n−1 )n−1

> 0,
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where

H3(n) = (1− k − 1− 1/an
n− 1

)(1 +
(k − 1)an − 1

n− 1
)n−1

=
(

1 + (1− 1

an
)
((k − 1)an − 1)

n− 1
− ((k − 1)an − 1)2

an(n− 1)2

)
(1 +

(k − 1)an − 1

n− 1
)n−2

< 1,

because an > 1 and (k−1)an−1 < 0. Thus, we can get x0 < x3 < x1. From Lemma
7, any limit cycle of system (21) must lie in the region {(x, y) ∈ R2|x < 1.6}. Hence,
we consider the solution of (23) satisfying x3 < x < 2 for x > 0. In order to prove
H(x, an) > 0 for x3 < x < 2, we only need to show H(2, an) > 0 by Figure 3. We
can compute that

∂(aH(2, a))

∂a
=

1− 1

1/(n− 1) + 3n−1(n− 2)/(a(n− 1)2)(
a31−n + (n− 2)/(n− 1)

)n−1 > 0

as n > 3 and a ∈ [1, an + ε] for small enough ε > 0. It implies that the function
aH(2, a) is increasing in a for a ∈ [1, an + ε]. Thus from H(2, 1) > 0 we can get
H(2, an) > 0. Moreover, we have

H(2, 1) =
1

(31−n +
n− 2

n− 1
)n−1

− 2− 1

n− 1
=

1− Ĥ(n)

(31−n +
n− 2

n− 1
)n−1

,

where

Ĥ(n) = (2 +
1

n− 1
)(31−n +

n− 2

n− 1
)n−1.

In the following, we prove that Ĥ(n) < 1 and then H(2, 1) > 0. First, we get

H4(n) = ln
n−1

√
Ĥ(n)

=
1

n− 1
ln(2 +

1

n− 1
) + ln(31−n + 1− 1

n− 1
)

= u ln(2 + u) + ln(3−
1
u + 1− u),

where u = 1
n−1 ∈ (0, 1

3
]. Noticing that

Ĥ(4) ≤ 0.814 < 1, Ĥ(5) ≤ 0.76 < 1, Ĥ(6) ≤ 0.74 < 1,

Ĥ(7) ≤ 0.738 < 1, Ĥ(8) ≤ 0.736 < 1

and Ĥ(n)→ 2
e

as n→ +∞. We can only consider the case n ≥ 9 and u ∈ (0, 1
8
] for

proving the inequality Ĥ(n) < 1. Moreover,

H ′4(n) = ln(2 + u) +
u

2 + u
+

3−
1
u ln 3
u2

− 1

3−
1
u + 1− u

= ξ1(u) + ξ2(u),
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where

ξ1(u) = ln(2 + u) +
u

2 + u
− 1,

ξ2(u) =
3−

1
u − u+ 3−

1
u ln 3
u2

3−
1
u + 1− u

=:
ξ3(u)

3−
1
u + 1− u

.

In addition, for u ∈ (0, 1
8
] we get

ξ′1(u) =
1

2 + u
+

2

(2 + u)2
> 0,

ξ′3(u) = −1 +
3−

1
u ln 3

u2
+

3−
1
u ln2 3

u4
− 2

3−
1
u ln 3

u3

= (−1 +
3−

1
u ln2 3

u4
) +

3−
1
u ln 3

u2
(1− 2

u
) < 0.

It follows that

ξ1(u) ≤ ξ1(
1

8
) = ln(17/8)− 16/17 < 0,

ξ3(u) ≤ lim
u→0+

ξ3(u) = 0,

indicating H ′4(n) < 0 and then Ĥ(n) < 1. Therefore, we get H(2, 1) > 0 and
then H(2, an) > 0, implying that H(x, an) > 0 for x ∈ [x3, 2]. In other words,
the equations (23) have no roots for a = an. By Proposition 2.1 of [4] system (21)
has no periodic orbits when n ≥ 3 and a = an. Since the amplitude of the stable
or unstable limit cycle of system (21) varies monotonically in a by Proposition 5,
system (21) has no periodic orbits when n ≥ 3 and a ≥ an. �

When a ∈ (1/(n−1), an) we will study the existence and uniqueness of limit cycle
in the following proposition.

Proposition 9. There exists a constant a∗ ∈ (1/(n− 1), an) such that system (21)
has a unique limit cycle when a ∈ (1/(n − 1), a∗) and no periodic orbits when a ∈
(a∗,+∞). Moreover the limit cycle is stable and hyperbolic, and the amplitude of
the limit cycle increases as a increases.

Proof. By [16, Theorem 3.5, Chapter 4] and Proposition 5 the amplitude of the
stable limit cycle surrounding the origin of (21) is monotonous with respect to a as
x > −1 and a > 0. From [11] the Hopf bifurcation occurs and a stable limit cycle
appears when a varies from 1/(n − 1) to 1/(n − 1) + ε, where ε > 0 is small. The
amplitude of the stable limit cycle is sufficiently small for small enough ε > 0. Thus
the amplitude of the stable limit cycle increases as a increases.

On the other hand, system (21) has no periodic orbits when a ∈ (−∞, 1/(n −
1)] ∪ [an,+∞) by Propositions 6 and 8, and has a unique finite equilibrium at the
origin. Therefore, there exists a∗ ∈ (1/(n − 1), an) such that the amplitude of the
stable limit cycle approaches infinity when a = a∗ − ε for sufficiently small ε > 0 by
the continuity of the vector field and the monotonous properties of amplitude of the
stable limit cycle in parameter a.
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In the following we will prove the uniqueness of periodic orbits when a ∈ (1/(n−
1), a∗). From system (21) we calculate

(37)
d
(
f(x)/g(x)

)
dx

= a
n− 1

x2
+

((n− 1)x− 1)(x+ 1)n−1

x2
=
Q(x)

x2
,

where Q(x) := a(n− 1) + ((n− 1)x− 1)(x+ 1)n−1, and

Q′(x) := n(n− 1)x(x+ 1)n−2.(38)

Notice that Q(0) = a(n− 1)− 1 > 0 since a > 1/(n− 1). Moreover, it is easy to see
that Q(x) > 0 when x ∈ [1/(n−1),+∞). When x ∈ [0, 1/(n−1)), we get Q′(x) ≥ 0
from (38). Thus

min{Q(x)}x∈[0,1/(n−1)) = Q(0) > 0,

inducing Q(x) > 0 in this case. When x ∈ (−1, 0] we get Q′(x) ≤ 0 from (38). Thus,

min{Q(x)}x∈(−1,0] = Q(0) > 0,

also inducing Q(x) > 0 in this case. Therefore we obtain Q(x) > 0 when x ∈
(−1,+∞) and then the function f(x)/g(x) is increasing from (37) when x ∈ (−1, 0)∪
(0,+∞).

Moreover we can verify that xg(x) > 0 for all x 6= 0, F (0) = 0, F ′(0) 6= 0 and
f(x)/g(x) is not a constant when |x| is small. Hence all conditions in Theorem 3
hold and we can get that system (21) has at most one limit cycle in (−1,+∞).
Moreover the limit cycle is stable if it exists. Notice that for our system (21), the
function φ(y) = y in the general system (2). The proposition is proven. �

From Propositions 5-9 we can obtain Theorem 1.
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