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PHASE PORTRAITS AND BIFURCATION DIAGRAM OF THE

GRAY-SCOTT MODEL

TING CHEN1,2, JAUME LLIBRE2,∗ AND SHIMIN LI3

Abstract. We give a complete classification of the phase portraits in the
Poincaré disk for the cubic polynomial systems

ẋ = 1− x− axy2, ẏ = −by + axy2,

in R2 according with the values of its two parameters a and b. These differ-
ential systems correspond to the Gray-Scott model. Moreover we provide the
bifurcation diagram in the parameter plane (a, b) of these systems.

The Gray-Scott model for studying the autocatalysis has been ana-

lyzed by several authors these recent years. The original partial differen-

tial equations can be simplified to ordinary differential equations, more

precisely to a family cubic polynomial differential systems depending on

two parameters a and b. Here we characterize the global dynamics of

these cubic systems, taking into account their behavior near the infinity

using the Poincaré compactification. Moreover we provide the bifurca-

tion diagram of the phase portraits in the parameter plane (a, b).

1. Introduction and statement of the main results

The Gray-Scott model [13, 18] is a cubic autocatalysis system that exhibits many
interesting patterns, see for instance the papers [3, 10, 13, 16, 18] and the refer-
ences quoted there. This model has been studied with slightly distinct differential
equations, here we consider the model given by the differential equations

(1)

∂U

∂t
= 1− U − aUV 2 +DU∆U,

∂V

∂t
= −bV + aUV 2 +DV ∆V,

where U = U(u, v, t) and V = V (u, v, t) are the concentrations of an inhibitor
and an activator, (u, v) ∈ R

2, a and b are positive constants, DU > DV are the
diffusivities, ∆ is the Laplace operator, and t is the time. For more details on the
Gray-Scott model see the previous mentioned references.
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In order to obtain information on the dynamics of the partial differential equa-
tions (1) some authors have studied the ordinary differential systems

(2)
ẋ =1− x− axy2,

ẏ =− by + axy2,

obtained from systems (1) taking DU = DV ≡ 0. If we put the keywords “Gray-
Scott model” in MathSciNet we obtain 161 references related with this model.
As far as we know any of these references studied the complete dynamics of the
differential systems (2).

The objective of this paper is to obtain all the phase portraits of the cubic
polynomial differential systems (2) for all the values of the parameters a, b ∈ R

in the Poincaré disk, i.e. including the dynamics of systems (2) at infinity and
consequently in its neighborhood. See Section 2 for a summary on the Poincaré
compactification.

These recent years many authors have studied the phase portraits of different
classes of planar polynomial differential systems, we only quote few of them [2, 4,
5, 12, 6, 7, 8, 9, 14, 15, 17]. From this point of view our paper contributes to study
a new class, the class defined by the cubic polynomial differential systems (2).

Assume that a is not zero, otherwise the differential systems (2) become linear.
Hence we study the phase portraits of systems (2) and provide their bifurcation
diagram in the parameter plane (a, b) ∈ R

2 \ {(0, b) : b ∈ R}. To do this we
will use the Poincaré compactification of the polynomial differential systems. Here
we say that two differential systems (2) in the Poincaré disk D

2 are topologically
equivalent if there exists a homeomorphism h : D2 → D

2 which sends orbits to
orbits preserving or reversing the direction of all orbits.

For the polynomial differential systems in the Poincaré disk it is known that the
separatrices are all the infinite orbits, all the finite singular points, the separatrices
of the hyperbolic sectors of the finite and infinite singular points, and the limit
cycles. If Σ denotes the set of all separatrices in the Poincaré disk D

2, Σ is a closed
set and the components of D2 \Σ are called the canonical regions, for more details
see [11]. We denote by s, r and LC the number of separatrices, canonical regions
and limit cycles, respectively. Our main result is the following theorem.

Theorem 1. The phase portraits of the planar cubic polynomial differential sys-
tems (2) are topologically equivalent to the following ones of Figures 1, 2 and 3:

1.1 if 0 < a < f1(b) and b < 0;
1.2 if a = f1(b) and b < 0;
1.3 if a > f1(b) and b < 0;
1.4 if b = 0 and a > 0;
1.5 if a > f1(b), a > f2(b) and a > f5(b), or a = f2(b) and b > b3;
1.6 if a = f5(b) and b1 < b ≤ b3;
1.7 if f1(b) < a < f5(b), a > f4(b) and a ≥ f2(b);
1.8 if a = f4(b) and 2 < b ≤ b2;
1.9 if a = f4(b) and b2 < b < b4;
1.10 if f2(b) < a < f4(b), or a = f2(b) and 4 < b < b2;
1.11 if f3(b) < a < f2(b), a < f4(b) and 4 < b < b2;
1.12 if a = f3(b) and 4 < b < b4;
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(1.10)  s=24, r=7, LC=1;

(1.1)  s=17, r=4; (1.2)  s=21, r=6; (1.3)  s=23, r=6;

(1.4)  s=17, r=4; (1.5)  s=23, r=6;

(1.8)  s=22, r=6;

(1.11)  s=25, r=8, LC=2;

(1.6)  s=22, r=5;

(1.7)  s=23, r=6;

(1.12)  s=24, r=7, LC=1.

(1.9)  s=23, r=7, LC=1;

Figure 1. Topological phase portraits of the cases 1.1-1.12 in The-
orem 1.
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(1.17)  s=23, r=6; (1.18)  s=21, r=6;

(1.19)  s=20, r=5; (1.20)  s=21, r=6; (1.21)  s=20, r=5;

(1.22)  s=21, r=6; (1.23)  s=17, r=4; (1.24)  s=25, r=8.

(1.14)  s=24, r=7, LC=1; (1.15)  s=23, r=6, LC=1;

(1.16)  s=24, r=7, LC=1;

  

(1.13)  s=22, r=6;

Figure 2. Topological phase portraits of the cases 1.13-1.24 in
Theorem 1.
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(1.28)  s=21, r=5; (1.29)  s=21, r=5;

(1.26)  s=21, r=4; (1.27)  s=22, r=5, LC=1;

(1.30)  s=23, r=6;

(1.31)  s=24, r=7, LC=1; (1.32)  s=22, r=6; (1.33)  s=23, r=6.

(1.25)  s=17, r=4;

Figure 3. Topological phase portraits of the cases 1.25-1.33 in
Theorem 1.

1.13 if a = f4(b) and b ≥ b4;
1.14 if f4(b) < a < f2(b) and a < f6(b);
1.15 if a = f6(b) and b > b3;
1.16 if f6(b) < a < f2(b) and b > b3;
1.17 if f1(b) < a < f2(b), a < f3(b), a < f4(b) and b > 2, or a = f2(b) and

2 < b ≤ 4;
1.18 if a = f1(b) and 0 < b < b1;
1.19 if a = f1(b) and b = b1;
1.20 if a = f1(b) and b1 < b < 2;
1.21 if a = 16 and b = 2;
1.22 if a = f1(b) and b > 2;
1.23 if 0 < a < f1(b) and b > 0;
1.24 if a < 0 and b > 0;
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1.25 if a < 0 and b = 0;
1.26 if a ≤ f2(b) and −1 ≤ b < 0;
1.27 if f2(b) < a < f7(b) and −1 ≤ b < 0;
1.28 if a = f7(b) and −1 ≤ b < 0;
1.29 if f7(b) < a < 0 and −1 ≤ b < 0;
1.30 if a ≤ f2(b) and b < −1;
1.31 if f2(b) < a < f7(b) and b < −1;
1.31 if a = f7(b) and b < −1;
1.33 if f7(b) < a < 0 and b < −1;

where f1(b) = 4b2, f2(b) = b4/(b − 1), fi(b) (i = 3, 4, · · · , 7) are convenient
functions, b1 ∈ (1.4202, 1.4204), b2 ∈ (4.4, 4.403), b3 ∈ (4.413, 4.414) and b4 ∈
(6.24, 6.25). Moreover the corresponding bifurcation diagrams are shown in Fig-
ures 4, 5 and 6 (see Section 4 for the explanation of the bifurcation diagrams).
In fact, the curve a = f1(b) corresponds to a saddle-node bifurcation, the curve
a = f2(b) corresponds to a Hopf bifurcation, the curve a = f3(b) corresponds to a
semi-stable limit cycle, the curve a = f4(b) corresponds to a homoclinic orbit, the
curves a = f5(b) and a = f6(b) correspond to connection of two separatrices, and
the curve a = f7(b) corresponds to heteroclinic connection.

1.4

1.3

1.1

1.2

a=f1(b)
a

b0

Figure 4. The bifurcation diagram of systems (2) when a > 0
and b ≤ 0, where f1(b) = 4b2.

In this paper we analyze different types of equilibria, hyperbolic, semi-hyperbolic,
nilpotent, degenerate and Hopf. For studying the local phase portraits of the semi-
hyperbolic equilibria we use Theorem 2.19 of [11], for the nilpotent equilibria we use
Theorem 3.5 of [11], while for the degenerate cases we apply blow-ups for studying
the local phase portrait at the equilibrium points, for more details on the changes of
variables called blow-ups see [1]. And for the Hopf bifurcation we need to compute
the Liapunov constants at the singularities. For more information on the Liapunov
constants see Chapter 4 of [11]. To complete a global phase portrait of a differential
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1.4 1.15
1.6

1.8

1.12

1.13
1.11

1.5

1.14

a=f1(b)

a

b2 4

1.16

0

1.7

a=f2(b)

a=f3(b)

a=f4(b)

a=f5(b)

a=f6(b)

1.9

1.10

6

1.17

1.21
1.23

b3b2b1

1.18

1.19

1.20

b4

1.22

Figure 5. The bifurcation diagram of systems (2) when a > 0
and b ≥ 0. f1(b) = 4b2, f2(b) = b4/(b − 1), fi(b) (i = 3, 4, · · · , 6)
are convenient functions, b1 ∈ (1.4202, 1.4204), b2 ∈ (4.4, 4.403),
b3 ∈ (4.413, 4.414) and b4 ∈ (6.24, 6.25).

1.28

1.26

1.27

1.25

b
a

a=f7(b)

0

a=f2(b)

-1

1.30

1.29

1.31

1.32

1.33

1.24

Figure 6. The bifurcation diagram of systems (2) when a < 0.
f2(b) = b4/(b− 1) and f7(b) is a convenient function.

system it is important the characterization of its separatrices, and the continuity
of phase portraits with respect to the parameters is also essential.
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2. Poincaré compactification

In this section we present the Poincaré compactification for describing the phase
portraits of the cubic polynomial differential systems (2). See more details in the
Chapter 5 of [11].

The sphere S
2 is the set of points (s1, s2, s3) ∈ R

3 with s21 + s22 + s23 = 1, here
called the Poincaré sphere. Consider a polynomial vector field

(3) X = (ẋ1, ẋ2) = (P (x1, x2), Q(x1, x2))

of degree d in R
2 identified with the plane x3 = 1 of R3. We can analyze the Poincaré

sphere by projecting each point x ∈ R
2 identified with the point (x1, x2, 1) ∈ R

3

into the Poincaré sphere using a straight line through x and the origin of R
3.

Then we obtain a vector field X ′ formed by two copies of X : one on the northern
hemisphere {(s1, s2, s3) ∈ S

2 : s3 > 0} and another on the southern hemisphere
{(s1, s2, s3) ∈ S

2 : s3 < 0}. Note that the equator S1 = {(s1, s2, s3) ∈ S
2 : s3 = 0}

corresponds to the infinity of R2. This vector field X ′ on S
2 \ S1 can be extended

to a vector field p(X), which is called the Poincaré compactification of the vector
field X on the whole sphere S

2 multiplying the vector field X ′ by xd3.

What we need for working with the vector field p(X) on the Poincaré sphere are
the local charts

(4) Ui = {s ∈ S
2 : si > 0}, Vi = {s ∈ S

2 : si < 0},
where s = (s1, s2, s3), with the corresponding local diffeomorphisms

(5) ϕi(s) : Ui → R
2, ψi(s) : Vi → R

2,

such the ϕi(s) = −ψi(s) = (sm/si, sn/si) for m < n and m,n 6= i, for i = 1, 2, 3.
In the local chart U1 the expression for the corresponding vector field on S

2 is

(6) u̇ = vd
[
− uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1P

(
1

v
,
u

v

)
,

the expression in the local chart U2 is

(7) u̇ = vd
[
− uP

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v̇ = −vd+1Q

(
u

v
,
1

v

)
,

and the expression in the local chart U3 is

(8) u̇ = P (u, v), v̇ = Q(u, v).

The expressions for the charts Ui multiplied by (−1)d−1, provide the expression for
the charts Vi, for i = 1, 2, 3.

To study the vector field X it is enough to study its Poincaré compactification
p(X) restricted to the northern hemisphere plus S1. To draw the phase portraits we
will consider the orthogonal projection π(s1, s2, s3) = (s1, s2) of the closed northern
hemisphere onto the closed unit disc centered at the origin of coordinates in the
plane x3 = 0. This closed disc D

2 is the Poincaré disk.

Using U3, finite singular points of X , which are the singular points of its com-
pactification in S

2 \ S1. Infinite singular points of X are the singular points of the
corresponding vector field in the Poincaré disk lying on S

1. If s ∈ S
1 is an infinite
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(a) Systems (11) (b) Systems (10)

u

v

(c) Systems (9)

Figure 7. Blow-up of the origin of U1 when a > 0.

singular point, then −s ∈ S
1 is another infinite singular point, and the local be-

havior of one is that of the other multiplied by (−1)d−1. Note that for studying
the infinite singular points it suffices to look the ones at U1|v=0 and at the origin
of U2. We note that the coordinates (u, v) means different things in every local
charts, but in the local charts Ui and Vi for i = 1, 2 the infinite points have always
the coordinate v = 0.

We note that the local phase portraits of a node and a focus are topological
equivalent.

3. Phase portraits of systems (2)

We remark that the straight line y = 0 of systems (2) is invariant by the flow
of these systems. That is, it is formed by orbits of systems (2). This simplifies the
study of the phase portraits of systems (2).

3.1. The infinite singular points. For the study of the infinite singular points of
systems (2) we use the Poincaré compactification, and we first restrict our attention
to the local chart U1. In this chart systems (2) become

(9)
u̇ =u(au+ au2 + v2 − bv2 − v3),

v̇ =v(au2 + v2 − v3).

On the infinity, i.e. on v = 0, there are two singular points on U1, namely A′ = (0, 0)
and B′ = (−1, 0). The linear part of systems (9) is

(
au(2 + 3u) 0

0 au2

)
.

Hence the singular point B′ is an attracting node or a repelling node when a < 0
or a > 0, respectively.

At the origin A′ of U1 the linear part is identically zero. We need to do blow-up’s
in order to determine its the local phase portrait. Doing the blow-up (u, v) 7→ (u,w)
with w = v/u we obtain the systems

(10)
u̇ =u2(a+ au+ uw2 − buw2 − u2w3),

ẇ =uw(−a+ buw2).
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(a) Systems (11)

�

�

(b) Systems (9)

Figure 8. Blow-up of the origin of U1 when a < 0.

Doing a rescaling of the time we eliminate the common factor u between u̇ and ẇ,
and we get the systems

(11)
u̇ =u(a+ au+ uw2 − buw2 − u2w3),

ẇ =w(−a+ buw2).

When u = 0 the unique singular point of systems (11) is the origin. The eigenvalues
of the linear part of systems (11) at the origin are ±a, hence the origin is a saddle.
Going back through the changes of variables until systems (9), we find that A′ is a
saddle-node point as it is shown in Figures 7 and 8, that is a singular point whose
neighborhood consists of one parabolic sector and two hyperbolic sectors.

Now we check if the origin of the local chart U2 is a singular point. In U2 we use
(7) to get

(12)
u̇ =− au− au2 + (b− 1)uv2 + v3 = −au+B(u, v),

v̇ =− v(au− bv2) = A(u, v).

The origin C′ of systems (12) is a singular point, and it is a semi-hyperbolic singular
point. Assume a < 0 then we get that

(13) u = f(v) =
v3

a
+O(v5)

is the solution of the equation −au+ B(u, v) = 0 in a neighborhood of the origin.
Substituting the variable u from (13) into A(u, v), we have

g(v) = A(f(v), v) = bv3 − v4 +O(v5).

From Theorem 2.19 of [11], we obtain that there always exists an invariant analytic
curve, called the strong unstable manifold, tangent at 0 to the u-axis, on which the
vector field is analytically conjugate to

u̇ = −au,

it represents repelling behavior if a < 0. Moreover, if b < 0 then C′ is a saddle,
see Figure 9(a). If b > 0 it is a repelling node, see Figure 9(b). If b = 0 it is a
saddle-node, see Figure 9(c).
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(a) b < 0

�

�

(b) b > 0

�

�

(c) b = 0

Figure 9. The origin of systems (12) when a < 0.

�

�

(a) b < 0 (b) b > 0

�

	

(c) b = 0

Figure 10. The origin of systems (12) when a > 0.

Similar to the case a < 0, if a > 0 by changing the sign of the time t 7→ −t,
systems (12) become

(14)
u̇ =au+ au2 + (1− b)uv2 − v3 = au+ B̃(u, v),

v̇ =v(au− bv2) = Ã(u, v).

Then we choose the solution u = f(v) = v3/a+O(v5) of the equation au+B̃(u, v) =

0 in a neighborhood of the origin. Substituting the variable u into Ã(u, v), we obtain

g(v) = Ã(f(v), v) = −bv3 + v4 +O(v5).

Due to the change t 7→ −t, we know that the trajectories of systems (12) are
traveled in the converse direction to the ones of systems (14). Hence we have that
C′ is an attracting node when b < 0 (see Figure 10(a)), a saddle when b > 0 (see
Figure 10(b)), and a saddle-node when b = 0 (see Figure 10(c)).

For systems (2) we have found six equilibria in the infinite region, two (A′ and
B′) are in U1, one (C′) is in U2 and their diametrically opposite (A′′, B′′ and C′′)
are in V1 and V2. Note that for systems (2) the degree is 3 so the flow in the charts
V1 and V2 have the same sense than in the charts U1 and in U2, respectively.

3.2. The finite singular points. Having determined the local phase portraits at
the infinite singular points of systems (2), we now compute the phase portraits
at their finite singular points. We separate the study of the finite singular points
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Figure 11. The number of separatrices and of canonical regions
of systems (2) when a > 0 and b = 0.

in three cases: (i) either a(a − 4b2) < 0 or b = 0, (ii) a = 4b2 6= 0, and (iii)
a(a− 4b2) > 0 and b 6= 0.

Case (i). If either a(a − 4b2) < 0 or b = 0, that is either 0 < a < 4b2, or b = 0.
Then systems (2) have the unique finite singular point (1, 0).

Subcase (i.a). Assuming b = 0 the linear part of systems (2) is

(15) M =

(
−1− ay2 −2axy
ay2 2axy

)
.

Thus (1, 0) is a semi-hyperbolic singular point of systems (2). We move it to the
origin doing the translation x 7→ x+ 1, and in order to apply Theorem 2.19 of [11]
we reverse the sign of the time t 7→ −t, and we get the systems

(16)
ẋ =x+ a(x+ 1)y2 = x+D(x, y),

ẏ =− a(x + 1)y2 = C(x, y).

Then

x = f(y) = −ay2 +O(y3)

is the solution of the equation x +D(x, y) = 0 in a neighborhood of the origin of
systems (16). Therefore we have

g(y) = C(f(y), y) = ay2 +O(y3).

From Theorem 2.19 of [11] we obtain that the singular point (1, 0) of systems (2)
(or the origin of systems (16)) is a saddle-node.

In this case taking into account the local phase portraits at the infinite and
finite singular points together with the fact that the straight line y = 0 is invariant
systems (2) have 17 separatrices and 4 canonical regions in their phase portraits
when a > 0, see Figure 11. Then we obtain the phase portraits 1.4 of Figure 1 and
1.25 of Figure 3 for a > 0 and a < 0, respectively.

Subcase (i.b). If 0 < a < 4b2 since the linear part of systems (2) is given in (15),
we get that (1, 0) is a saddle when b < 0. Therefore the phase portrait of systems
(2) is topologically equivalent to the phase portrait 1.1 of Figure 1. When b > 0
the singular point (1, 0) is an attracting node. Therefore the only possible phase
portrait in this case is the 1.23 of Figure 2.
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Case (ii). If a = 4b2 6= 0 systems (2) have two finite singular points (1, 0) and
(1/2, 1/(2b)). As in the subcase (i.b) we have that (1, 0) is an attracting node or a
saddle when b > 0 or b < 0, respectively. Now we study the local phase portrait of
the singular point (1/2, 1/(2b)). The eigenvalues of (15) at (1/2, 1/(2b)) are 0 and
−2 + b.

Subcase (ii.a) If b = 2 the singular point (1/2, 1/4) is a nilpotent singular point. We
translate this singular point to the origin doing the change of variables x 7→ x+1/2,
y 7→ y + 1/4, and we have the systems

(17)
ẋ =− 2(x+ 2y + 4xy + 4y2 + 8xy2) = H(x, y),

ẏ =(1 + 4y)(x+ 2y + 4xy) = x+G(x, y).

Therefore

x = f(y) = −2y +O(y2)

is the solution of the equation x + G(x, y) = 0 in a neighborhood of the origin of
systems (17). Then we obtain

H(y) = H(f(y), y) = −8y2 +O(y3)

and (
∂G

∂y
+
∂H

∂x

)
(f(y), y) = −8y +O(y2).

From Theorem 3.5 of [11] we obtain that the singular point (1/2, 1/4) of systems
(2) (or the origin of systems (17)) is a cusp. Hence in this subcase we have the
phase portrait 1.21 of Figure 2.

Subcase (ii.b) Assuming b 6= 2 the point (1/2, 1/(2b)) is a semi-hyperbolic singular
point. We move the point (1/2, 1/(2b)) to the origin doing the translation x 7→
x+1/2, y 7→ y+1/(2b), and in order to apply Theorem 2.19 of [11] we reverse the
sign of the time t 7→ −t, and we obtain the systems

(18)
ẋ =2(x+ by + 2bxy + b2y2 + 2b2xy2) = 2x+ F (x, y),

ẏ =− (1 + 2by)(x+ by + 2bxy) = E(x, y),

Then

x = f(y) = −by +O(y2)

is the solution of the equation 2x+ F (x, y) = 0 in a neighborhood of the origin of
systems (18). Hence we have

g(y) = E(f(y), y) = b2y2 +O(y3).

From Theorem 2.19 of [11] it follows that the singular point (1/2, 1/(2b)) of systems
(2) (or the origin of systems (18)) is a saddle-node. In summary we obtain the
phase portrait 1.2 of Figure 1 when b < 0, the phase portrait 1.18 of Figure 2 when
0 < b < b1, the phase portrait 1.20 of Figure 2 when b1 < b < 2, and the phase
portrait 1.22 of Figure 2 when b > 2. By the continuity of the phase portraits
moving the parameter b we obtain the phase portrait 1.19 when (a, b) = (4b21, b1),
in this phase portrait two separatrices have connected. It is difficult to get the
value of b1, but b1 belongs to the interval (1.4202,1.4204).
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Case: (iii). If a(a − 4b2) > 0, then either a > 4b2 or a < 0, additionally we can
assume b 6= 0. The finite singular points of systems (2) different from (1, 0) are

p1 = (x1, y1) =

(
1

2
+

√
a(a− 4b2)

2a
,
a−

√
a(a− 4b2)

2ab

)
,

p2 = (x2, y2) =

(
1

2
−
√
a(a− 4b2)

2a
,
a+

√
a(a− 4b2)

2ab

)
.

Similarly to the above case we get that (1, 0) is an attracting node or a saddle when
b > 0 or b < 0, respectively. Next we consider two subcases and some subsubcases
in order to study the local phase portraits of the singular points p1 and p2.

Subcase (iii.a). Assuming a > 4b2 we have that the determinant and the trace of
(15) at p1 are

(19) Det[M ]

∣∣∣∣
p1

=
a− 4b2 −

√
a(a− 4b2)

2b
, Tr[M ]

∣∣∣∣
p1

=
−a+ 2b3 +

√
a(a− 4b2)

2b2
.

Similarly we obtain

(20) Det[M ]

∣∣∣∣
p2

=
a− 4b2 +

√
a(a− 4b2)

2b
, Tr[M ]

∣∣∣∣
p2

=
−a+ 2b3 −

√
a(a− 4b2)

2b2
.

Now we shall study the local phase portraits at the singular points p1 and p2. For
this we need to know the sign of Tr[M ]|p1

or Tr[M ]|p2
. Hence we give the Remarks

2 and 3.

Remark 2. From Tr[M ]|p1
< 0 we have either b < 0 and b4/(b − 1) < a ≤ 0, or

b < 0 and a ≥ 4b2, or 0 < b ≤ 1 and a ≥ 4b2, or 1 < b < 2 and 4b2 ≤ a < b4/(b−1).
From Tr[M ]|p1

= 0 we have a = b4/(b − 1) and a ≥ 2b3. From Tr[M ]|p1
> 0 we

have either b ≤ 0 and a < b4/(b − 1), or b > 0 and a ≤ 0, or 1 < b ≤ 2 and
a > b4/(b− 1), or b > 2 and a ≥ 4b2.

Remark 3. From Tr[M ]|p2
< 0 we have either b < 0 and a ≤ 0, or b < 0 and

a ≥ 4b2, or 0 < b < 1 and a < b4/(b − 1), or 0 < b < 2 and a ≥ 4b2, or b ≥ 2
and a > b4/(b− 1). From Tr[M ]|p2

= 0 we have a = b4/(b− 1) and a ≤ 2b3. From
Tr[M ]|p2

> 0 we have either 0 < b < 1 and b4/(b− 1) < a ≤ 0, or 1 ≤ b and a ≤ 0,
or b > 2 and 4b2 ≤ a < b4/(b− 1).

Subsubcase (iii.a.1). If b > 0 we have 1 > x1 > x2 > 0 and y2 > y1 > 0. On the
other hand, we get Det[M ]|p1

< 0, because

(a− 4b2)2 − a(a− 4b2) = 4b2(4b2 − a) < 0.

Hence the singular point p1 is a saddle. From (20) we obtain that Det[M ]|p2
is

positive. Then we need to compute the discriminant

(21) ∆1 =

[
(Tr[M ])2 − 4Det[M ]

]∣∣∣∣
p2

=
N1

2b4

where

(22) N1 = a2 − 2ab2 − 6ab3 + 16b5 + 2b6 + (a− 6b3)
√
a(a− 4b2).
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a=a1 a=a2a

b2 40

a=f1(b)

a=f2(b)

Figure 12. The roots a1,2 of N1 when a > 0. f1(b) = 4b2, f2(b) =
b4/(b− 1).

When 0 < b < 1 it is easy to check that N1 > 0, because it has no real roots. In
addition we have Tr[M ]|p2

< 0, hence the singular point p2 is an attracting node,
and we get the phase portrait 1.5 of Figure 1.

If b ≥ 1 the equation N1 = 0 has two roots

(23) a1,2 =
b3(8 + 7b+ 3b2)± 2

√
2(−1 + b)b7(2 + b)2

1 + 2b+ b2
.

The graphics of a1,2, which help us to analyze the singular points p1,2, see Figure
12. Since

b6(8 + 7b+ 3b2)2 − 8(−1 + b)b7(2 + b)2 = b6(1 + b)2(8 + b)2 > 0,

it is easy to get that 0 < 4b2 ≤ a2 ≤ a1. Then we have N1 ≥ 0 when 4b2 < a ≤ a2
or a ≥ a1.

We have Tr[M ]|p2
< 0 when a ≥ a1, or 1 ≤ b < 2 and 4b2 < a ≤ a2. Hence the

singular point p2 is an attracting node. In this subsubcase the phase portraits are
topologically equivalent to 1.5-1.7 of Figure 1. From the phase portraits 1.5 and 1.7
it follows by the continuity of the phase portraits with respect to the parameters the
existence of the phase portrait 1.6. Hence we obtain the bifurcation curve a = f5(b)
on which we have the phase portrait 1.6. Note that the intersection of the curves
a = f5(b) and a = f1(b) is the point (4b21, b1).

We have Tr[M ]|p2
> 0 when b > 2 and 4b2 < a ≤ a2. Hence the singular point p2

is a repelling node. In this case the phase portraits of systems (2) are topologically
equivalent to 1.17 of Figure 2.

On the other hand, we have N1 < 0 when a2 < a < a1. Thus the singular
point p2 is a stable focus when Tr[M ]|p2

< 0, that is 1 < b < 2, a2 < a < a1
and a 6= b4/(b − 1), or b > 2 and b4/(b − 1) < a < a1. The phase portraits are
topologically equivalent to 1.5-1.7 of Figure 1. The singular point p2 is an unstable
focus when Tr[M ]|p2

> 0, that is 2 < b and a2 < a < b4/(b−1). The phase portrait
is topologically equivalent to 1.17 of Figure 2.

When a = b4/(b − 1) and b 6= 2 we have either Tr[M ]|p1
= 0, or Tr[M ]|p2

= 0.
Indeed, if from Remarks 2 and 3 we have Tr[M ]|p1

= Tr[M ]|p2
= 0 if and only if
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(a, b) = (0, 0) or (a, b) = (16, 2), which is in contradiction with a > 4b2. Simplifying

a2 < b4/(b− 1) < a1, we have −1 +
√
5 < b < 2 or 2 < b.

Assume that a = b4/(b − 1) and 2 < b, we have the singular points p′1 =
((b − 1)/b, 1/b2) and p′2 = (1/b, (b − 1)/b2) where 1 > (b − 1)/b > 1/b > 0 and
(b − 1)/b2 > 1/b2. From Tr[M ]|p′

2
= 0 and ∆1 = −4(b − 2)b < 0, we get that

p′2 must be a center or a focus. We move p′2 to the origin doing the translation
x 7→ x+ 1/b, y 7→ y + (b − 1)/b2, and we get the systems

(24)
ẋ =− bx− 2by − 2b2xy − b3

b− 1
y2 − b4

b− 1
xy2,

ẏ =(b − 1)x+ by + 2b2xy +
b3

b− 1
y2 +

b4

b− 1
xy2.

Doing the change of variable (x, y, t) 7→ (ξ, η, τ) where

ξ =
b−

√
(b− 2)bi

4b
x+

b+
√
(b − 2)bi

4b
y,

η =

√
(b− 2)b− 3bi

4b
x−

√
(b− 2)b+ 3bi

4b
y,

τ =
√
(b− 2)bt, i =

√
−1,

systems (24) become

(25)

dξ

dτ
=− η − (3b− 4)

√
(b− 2)b

2(b− 2)(b− 1)
ξ2 − (b− 2)b

b− 1
ξη +

b
√
(b− 2)b

2(b− 1)
η2

+
b3
√
(b − 2)b

(b− 2)(b− 1)
ξ3 +

2b3

b− 1
ξ2η +

b2
√
(b − 2)b

b− 1
ξη2,

dη

dτ
=ξ − b2(3b− 4)

2(b− 2)(b− 1)
ξ2 − b

√
(b − 2)b

b− 1
ξη +

b2

2(b− 1)
η2

b4

(b − 2)(b− 1)
ξ3 +

2b3
√
(b− 2)b

(b − 2)(b− 1)
ξ2η +

b3

b− 1
ξη2.

We present some basic formulas for computing the Liapunov constants of the general
differential systems

(26)

ẋ =δx− βy +

n∑

k=2

Pk(x, y),

ẏ =βx + δy +

n∑

k=2

Qk(x, y),

where Pk(x, y), Qk(x, y) are homogeneous polynomials of degree k in x and y.
Introducing the polar coordinate transformation, x = ρ cos θ and y = ρ sin θ, system
(26) can be written as the differential equation

(27)
dρ

dθ
=

δρ+
∑n

k=2 Υk(θ)ρ
k

β +
∑n

k=2 Θk(θ)ρk−1
,

where
Υk(θ) = cos θPk(cos θ, sin θ) + sin θQk(cos θ, sin θ),

Θk(θ) = cos θQk(cos θ, sin θ)− sin θPk(cos θ, sin θ),
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in which Pk and Qk are polynomials in sin θ and cos θ. The general solution of (27)
in a neighborhood of the origin can be expressed as

(28) Π(ρ, θ) =
∑

k≥1

vk(θ)ρ
k, |ρ| ≪ 1,

and we define the displacement function

(29) d(ρ) = Π(ρ, 2π)− ρ = (v1 − 1)ρ+
∑

k≥1

v2k+1ρ
2k+1,

where vk (v2k ≡ 0) is called the kth-order Liapunov constant at the origin of
systems (26). The number of fixed points of d(ρ) (or zeros of d(ρ)) corresponds
to the number of limit cycles of systems (29). If the displacement function (29)
satisfies v1 = 1, v3 = · · · = v2k−1 = 0 and v2k+1 6= 0, any perturbation of (26) have
at most k limit cycles bifurcating at the origin.

Then we compute the first and the third Liapunov constants of systems (25) at
the origin and we obtain v1 = 1 and

(30) v3 =
(4 − b)b2

√
(b− 2)bπ

2(b− 2)2
.

If v3 = 0, namely b = 4, the fifth Liapunov constant is

v5 =
b4
√
(b − 2)b(192− 1228b+ 1417b2 − 567b3 + 72b4)π

12(b− 2)4(b− 1)
=

256
√
2π

3
> 0.

So the origin of systems (25) is an unstable weak focus of second order. The phase
portrait is topologically equivalent to 1.16 of Figure 2. From [19, Theorem 2] and
since the derivative

∂v3
∂b

∣∣∣∣
b=4

= 4
√
2π 6= 0,

then there exist exactly two small amplitude limit cycles bifurcating from the singu-
lar point p′2 of systems (2) (or from the origin of systems (24)) by small perturbation
of b = 4, see Figure 13. We obtain the phase portrait 1.11 of Figure 1. In order
to obtain two small amplitude limit cycles, it requires to find a set of explicit per-
turbation value b, which is not an easy task. We give the convenient function f3(b)
to describe the region, whose existence is given by continuity for proving from the
phase portrait 1.11 to 1.17. When a = f3(b), systems (2) have only one semi-stable
(externally unstable and internally stable) limit cycle. Hence, the phase portrait is
topologically equivalent to 1.12 of Figure 1.

If 2 < b < 4 the third Liapunov constant v3 > 0 from (30), we have that the
singular point p′2 is an unstable weak focus. Furthermore we obtain a phase portrait
which is topologically equivalent to the phase portrait 1.17 of Figure 2. There exists
exactly one small amplitude limit cycle bifurcating from the singular point p′2 of
systems (2) by small perturbation of b. In fact, in the neighborhood of the curve
a = b4/(b − 1) the singularity p′2 is an unstable focus when a < b4/(b − 1) and a
stable focus when b4/(b − 1) < a. The stability of the focus reverses, and a Hopf
bifurcation occurs, there must bifurcate one limit cycle from this singular point.
Hence we obtain the phase portrait 1.10 of Figure 1. There exists a convenient
function f4(b), its existence is given by continuity between the phase portraits
1.7 to 1.10, i.e. at the curve a = f4(b) systems (2) have a homoclinic loop, and
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Figure 13. Two small amplitude limit cycles bifurcated from the
singular point p′2 of systems (2).

topologically their phase portrait is the 1.8 of Figure 1. We get that the coordinate
of the point corresponding to the intersection point of the curves a = f2(b) and
a = f4(b) is (b

4
2/(b2 − 1), b2), and b2 belongs to (4.4, 4.403).

Similarly, if b > 4 the singular point p′2 is a stable weak focus. The phase portraits
are topologically equivalent to 1.5-1.7 of Figure 1. And there exists exactly one
small amplitude limit cycle bifurcating from the singular point p′2 of systems (2).
Hence we obtain the phase portraits 1.10 of Figure 1 and 1.14-1.16 of Figure 2.
From the phase portraits 1.14 and 1.16, we obtain the bifurcation curve a = f6(b)
which corresponds to the phase portrait 1.15. In addition, it is difficult to obtain
the coordinates of the intersection point (a, b3) between the curves a = f5(b) and
a = f6(b). But we can get that b3 ∈ (4.413, 4.414).

Now we assume a = b4/(b−1) and
√
5−1 < b < 2, and we have that the singular

points p′1 = (1/b, (b−1)/b2) and p′2 = ((b−1)/b, 1/b2) where 1 > 1/b > (b−1)/b > 0
and 1/b2 > (b− 1)/b2. The trace of M at p′2 is Tr[M ]|p′

2
= (b− 2)b/(b− 1) < 0 and

the discriminant is b(8− 8b+ b3) < 0. Hence the singular point p′2 is a stable focus.
Then the phase portraits are topologically equivalent to 1.5-1.7 of Figure 1.

By the continuity of the phase portraits with respect to parameters from the
phase portrait 1.11 to 1.14, we obtain the bifurcation curve a = f4(b) with b2 < b <
b4 which describes the phase portrait 1.9, i.e. systems (2) have a homoclinic loop
with a limit cycle inside the loop. The intersection point of the curves a = f3(b)
and a = f4(b) is (f4(b4), b4), and b4 belongs to the interval (6.24, 6.25). On the
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other hand, from the phase portrait 1.14 to 1.17 we obtain the phase portrait 1.13,
i.e. systems (2) have a homoclinic loop in the bifurcation curve a = f4(b) with
b ≥ b4.

Subsubcase (iii.a.2). If b < 0 we have 1 > x1 > x2 > 0 and y2 < y1 < 0. From
(20) we have Det[M ]|p2

< 0. Therefore the singular point p2 is a saddle. Since
Det[M ]|p1

> 0 from (19) we obtain that the discriminant at p1 is

∆2 =

[
(Tr[M ])2 − 4Det[M ]

]∣∣∣∣
p1

=
N2

2b4
,

where

(31) N2 = a2 − 2ab2 − 6ab3 + 16b5 + 2b6 + (6b3 − a)
√
a(a− 4b2).

When b = −1 we obtain

N2 = a2 + 4a− 14−
√
a3(a− 4)− 6

√
a(a− 4) > 0.

If b 6= −1 solving N2 = 0 for a we obtain the same solutions a1,2 given in (23), see
Figure 14. We have

lim
b→−1

a1 = −49

8
and lim

b→−1
a2 = −∞.

It is easy to check that a2 ≤ a1 ≤ 0 when b < 0. Hence we have N2 ≥ 0 and

-2-4-6-8

a=a1

a=a2

b
a
0

a=f2(b)

Figure 14. The roots a1,2 of N2 = 0 when a < 0. f2(b) = b4/(b− 1).

Tr[M ]|p1
< 0, because a > 4b2. Furthermore we get that the singular point p1 is

an attracting node. The only possible phase portrait in this case is 1.3 of Figure 1.

Subcase (iii.b). Assume a < 0.

Subsubcase (iii.b.1). If b > 0 we have x1 < 0, x2 > 1, y1 > 1/b and y2 < 0.
Consequently Det[M ]|p1

< 0 and Det[M ]|p2
< 0, because

(32) (a− 4b2)2 − a(a− 4b2) = 4b2(4b2 − a) > 0.

Hence the singular points p1,2 are saddles, and we obtain the phase portrait 1.24
of Figure 2.

Subsubcase (iii.b.2). If b < 0 we have x1 < 0, x2 > 1, y1 < 1/b and y2 > 0. From
(32) it is easy to check that Det[M ]|p1

> 0 and Det[M ]|p2
> 0. And we have

Tr[M ]|p2
< 0 from Remark 3. Hence the singular point p2 must be stable. From
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(22) and (31) we need to determine the signs of Ni for i = 1, 2 for characterizing
the local phase portraits at the singular points p1 and p2.

Assume b = −1.

We obtain that N1 = 0 has no solution, and N2 has one solution a = −49/8.

1) If a = −1/2 we have N1 < 0 and N2 < 0. So the singular point p′2 = (2, 1) is a
stable focus. On the other hand, we have Tr[M ]|p′

1
= 0. Then the singular point

p′1 = (−1,−2) is a center or a focus. From (30) we have that the third Liapunov
constant of p′1 is

v3 =
5
√
3π

18
> 0.

Thus the singular point p′1 is an unstable weak focus. Then the phase portrait is
1.26 of Figure 3. Furthermore the Liapunov constant is independent of b, hence
there exists exactly one small amplitude limit cycle bifurcating from p′1 of systems
(2) under small perturbations. The phase portrait is topologically equivalent to
1.27 of Figure 3.

2) If 0 > a > −49/8 and a 6= −1/2, we get N1 < 0 and N2 < 0. Hence the
singular point p2 is a stable focus. By Remark 2 the trace of M at p′1 is positive
or negative when −49/8 < a < −1/2 or −1/2 < a < 0, respectively. Then p1 is an
unstable focus or a stable focus. Hence we obtain the phase portraits 1.26 of Figure
3 or 1.29 of Figure 3. By the continuity of the phase portraits, we give the point
(f7(−1),−1) to describe one case, whose existence is given by continuity going from
the phase portraits 1.27 to 1.29, systems (2) have a heteroclinic orbit. Then the
phase portrait in this case turn out to be topologically equivalent to 1.28 of Figure
3.

3) If a ≤ −49/8 we obtain N1 < 0 and N2 > 0. We have Tr[M ]|p1
> 0 from

Remark 2. So the singular points p1 and p2 are a repelling node and a stable focus,
respectively. The node has the same topology with the focus. Therefore the phase
portrait is topologically equivalent to 1.26 of Figure 3.

Assume b 6= −1.

For determining the signs of Ni for i = 1, 2, we solve Ni = 0 for a, and we obtain
the same solutions a2 ≤ a1, see (23). On the other hand, from N1 = 0 we have

(33) a2 − 2ab2 − 6ab3 + 16b5 + 2b6 = (6b3 − a)
√
a(a− 4b2).

Thus we obtain

(34) ∆′ = (a2 − 2ab2 − 6ab3 + 16b5 + 2b6)(6b3 − a) ≥ 0,

when N1 = 0. Taking a = a1 into the above inequality, we get −8 ≤ b ≤ −2. If
b = −8 we have a = a1 = 0, which is not possible because a < 0. If a = a2 then,
from inequality (34) we get −2 ≤ b < −1 or −1 < b < 0.

Similarly, we have ∆′ ≤ 0 when N2 = 0. Taking a = a1 into this inequality
∆′ ≤ 0, we have b < −8 or −2 ≤ b < −1. If a = a2 we obtain b ≤ −2 from ∆′ ≤ 0.
Hence we have Table 1. Now we analyze the local phase portraits of the singular
points p1 and p2 by the sign of N2 and N1, respectively.

Assume −1 < b < 0.
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Table 1. The solutions of N1 = 0 and N2 = 0 when b < 0.

The value of b The solutions of N1 = 0 The solutions of N2 = 0
b ∈ (−1, 0) a = a2 a = a1

b = −1 no solution a = − 49
8

b ∈ (−2,−1) a = a2 a = a1

b = −2 a = −48 a = −48

b ∈ (−8,−2) a = a1 a = a2

b = −8 a = 0 a = 0 or a = − 147456
49

b ∈ (−∞,−8) no solution a = a1,2

We get that N1 = 0 has one solution a = a2, and N2 = 0 has one solution a = a1
from Table 1.

1) If a1 < a < 0 and a = b4/(b−1), we get N1 < 0 and N2 < 0. Hence we have that
p′2 = ((b − 1)/b, 1/b2) is a stable focus. The trace of M at p′1 = (1/b, (b− 1)/b2) is
Tr[M ]|p′

1
= 0. From (30) we have the third Liapunov constant 0 < v3 at p′1. Hence

the singular point p′1 is an unstable weak focus. Therefore we obtain that the phase
portrait is topologically equivalent to 1.26 of Figure 3. Furthermore the Liapunov
constant is independent of b, hence there exists exactly one small amplitude limit
cycle bifurcating from p′1 of systems (2) under small perturbations. The phase
portrait is topologically equivalent to 1.27 of Figure 3.

2) If a1 < a < 0 and a 6= b4/(b − 1), we have N1 < 0 and N2 < 0. Hence the
singular point p2 is a stable focus. From Remark 2 we get that Tr[M ]|p1

> 0 when
a1 < a < b4/(b− 1), and Tr[M ]|p1

< 0 when b4/(b− 1) < a < 0. Hence the singular
point p1 is an unstable focus or a stable focus. The phase portrait is topologically
equivalent to 1.26 of Figure 3 or 1.29 of Figure 3. By continuity from the phase
portraits 1.27 to 1.28, we obtain the curve a = f7(b) where systems (2) have a
heteroclinic loop. Then the phase portrait in this case turn out to be topologically
equivalent to 1.28 of Figure 3.

3) If a2 < a ≤ a1 we have N1 < 0 and N2 ≥ 0. So p2 is a stable focus. From
Remark 2 we have Tr[M ]|p1

> 0. Hence the singular points p1 is a repelling node.
The phase portrait is topologically equivalent to 1.26 of Figure 3.

4) If a ≤ a2 we have N1 ≥ 0 and N2 > 0. So we obtain that p2 is an attracting
node. We have Tr[M ]|p1

> 0 from Remark 2. Hence the singular points p1 is a
repelling node. Consequently the phase portrait is topologically equivalent to 1.26
of Figure 3.

Assume −8 < b < −1.

From Table 1, we get that N1 = 0 and N2 = 0 has one solution, respectively.

1) If a1 < a < 0 and a = b4/(b−1), we have N1 < 0 and N2 < 0. Hence the singular
point p′2 = ((b−1)/b, 1/b2) is a stable focus. The trace ofM at p′1 = (1/b, (b−1)/b2)
is Tr[M ]|p′

1
= 0. Furthermore from (30) we get that the singular points p′1 is an

unstable weak focus. The phase portrait is topologically equivalent to 1.30 of Figure
3. Furthermore the Liapunov constant is independent of b, hence systems (2) have
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exactly one small amplitude limit cycle bifurcating from p′1 under small pertubation.
In this case the only possible phase portrait is topologically equivalent to 1.31 of
Figure 3.

2) If a1 < a < 0 and a 6= b4/(b − 1), we have N1 < 0 and N2 < 0. Then the
singular point p2 is a stable focus. And from Remark 2 we have Tr[M ]|p1

> 0 or
Tr[M ]|p1

< 0 when a1 < a < b4/(b − 1) or b4/(b − 1) < a < 0, respectively. So
the singular point p1 is an unstable focus or a stable focus. Therefore the phase
portraits are equivalent to 1.30 or 1.33 of Figure 3. When a = f7(b) systems (2)
have a heteroclinic loop. In this case the phase portrait is topologically equivalent
to 1.32 of Figure 3.

3) If a2 < a ≤ a1 and a = b4/(b−1), we obtain N1 ≥ 0 and N2 < 0. From Remark 2
we get that Tr[M ]|p′

1
= 0. It is easy check that p′1 is an unstable weak focus and p′2

is an attracting node. Consequently we obtain the phase portrait 1.30 of Figure 3.
Furthermore the Liapunov constant is independent of b, hence there exists exactly
one small amplitude limit cycle bifurcating from p′1 of systems (2). We obtain that
the phase portrait is topologically equivalent to 1.31 of Figure 3.

4) If −2 ≤ b < −1 and a2 < a ≤ a1, we have N1 < 0 and N2 ≥ 0. So p2 is a
stable focus. From Remark 2 we have Tr[M ]|p1

> 0. Hence the singular point p1
is a repelling node. If b < −2, a2 < a < b4/(b − 1) and a < a1, we have N1 > 0
and N2 < 0. We have Tr[M ]|p1

> 0 from Remark 2. Therefore p1 is an unstable
focus and p2 is an attracting node. Then we easily get that the phase portraits are
topologically equivalent to 1.30 of Figure 3.

5) If b4/(b − 1) < a < a1 we get that N1 > 0 and N2 < 0. It is easy to check that
Tr[M ]|p1

< 0. So p1 is a stable focus and p2 is an attracting node. Therefore the
phase portrait is topologically equivalent to 1.32 or 1.33 shown in Figure 3.

6) If a ≤ a2 we get N1 > 0 and N2 ≥ 0. From Remark 2, we obtain Tr[M ]|p1
> 0.

Hence p1 and p2 are a repelling node and an attracting node. The phase portrait
is topologically equivalent to 1.30 of Figure 3.

Remark 4. Assume b < 0. If a1 ≤ b4/(b − 1) then −1 −
√
5 ≤ b < −1 or

−1 < b < 0. If a2 < b4/(b − 1) < a1 then b < −1 −
√
5. On the other hand, there

is no parameter b satisfying b4/(b− 1) ≤ a2.

Assume that b ≤ −8.

If b < −8 we obtain that N1 = 0 has no solution, and N2 = 0 has two solutions
a = a1,2. If b = −8, N1 = 0 has no solution, and N2 = 0 has one solution.

1) If a1 ≤ a < 0 we have N1 > 0 and N2 ≥ 0. On the other hand, from Remark 4
we have b4/(b− 1) < a < 0. Then we have Tr[M ]|p1

< 0 from Remark 2. Hence p1
and p2 are two attracting nodes. The phase portrait is topologically equivalent to
1.33 of Figure 3.

2) If a2 < a < a1 and a = b4/(b−1) (let a1 = 0 and a2 = −147456/49 when b = −8),
we get that N1 ≥ 0 and N2 < 0. Hence p′2 = ((b− 1)/b, 1/b2) is an attracting node.
The trace ofM at p′1 = (1/b, (b−1)/b2) is Tr[M ]|p′

1
= 0. Furthermore from (30) we

obtain that p′1 is an unstable weak focus. It is easy to see that the phase portrait
is topologically equivalent to the phase portrait 1.30 of Figure 3. Furthermore
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the Liapunov constant is independent of b, hence there exists exactly one small
amplitude limit cycle bifurcating from p′1 of systems (2). We obtain that the phase
portrait is topologically equivalent to 1.31 of Figure 3.

3) If a2 < a < b4/(b − 1) we obtain N1 > 0 and N2 < 0. It is easy to get that
Tr[M ]|p1

> 0. Then p1 is an unstable focus and p2 is an attracting node. The phase
portrait is topologically equivalent to 1.30 of Figure 3.

4) If b4/(b− 1) < a < a1 we get that N1 > 0 and N2 < 0. From Remark 2 we have
Tr[M ]|p1

< 0. Thus p1 is a stable focus and p2 is an attracting node. The phase
portrait is topologically equivalent to the phase portrait 1.33 of Figure 3. When
a = f7(b) systems (2) have a heteroclinic loop. The phase portrait is topologically
equivalent to 1.32 of Figure 3.

5) If a ≤ a2 we get N1 > 0 and N2 ≥ 0. Then p2 is an attracting node. On the
other hand, we have Tr[M ]|p1

> 0 from Remark 2. Hence p1 is a repelling node.
Thus the phase portraits in this case turn out to be topologically equivalent to 1.30
of Figure 3.

This completes the classification of the phase portraits of systems (2) in the
parameter plane (a, b) ∈ R

2 \ {(0, b) : b ∈ R}. From systems (2), if a = 0 we obtain
linear systems

(35) ẋ = 1− x, ẏ = −by.
If b 6= 0 systems (35) have one finite singular point (1, 0). It is an unstable node
when b > 0, or a saddle when b < 0. If b = 0 systems (35) have the straight line
x = 1 filled of singular points. Then we give the bifurcation diagram of the finite
singular points, see Figure 15. Here, we denote by S, N , SN and AS the saddle,
the node, the saddle-node and the anti-saddle, i.e. a node or focus.
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Figure 15. The bifurcation diagram of finite singular points of
systems (2) where f1(b) = 4b2, f2(b) = b4/(b− 1).
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Figure 16. Some separatrices of the phase portraits. (a) phase
portrait 1.1, (b) phase portrait 1.2, (c) phase portrait 1.3, (d) phase
portrait 1.4.

4. Bifurcation diagrams

Now we explain the bifurcation diagrams of the phase portraits of systems (2)
in the parameter plane (a, b) ∈ R

2 \ {(0, b) : b ∈ R}. We note that the bifurcation
lines for the phase portraits are b = 0 and a = fi(b) (i = 1, · · · , 7). The bifurcation
diagrams are described in Figures 4, 5 and 6. From the following analysis it would
be at most 20 different separatrices, which are not at infinity, connecting with the
infinite, finite equilibrium points or with the limit cycle and the homoclinic loop,
see Table 2.

Table 2. The separatrices, which are not at infinity, connecting
the infinite, the finite equilibrium points, or with the limit cycle
and the homoclinic loop.

Equilibria Type of the equilibria Separatrices
(1, 0) saddle or saddle-node S1, S2, S3,S4

p1 saddle, saddle-node, cusp or focus S13, S14, S15, S16, L3

p2 saddle, saddle-node or focus S7, S8, S9, S10, H1, L1, L2

A′ saddle-node S5

A′′ saddle-node S6

C′ saddle or saddle-node S12

C′′ saddle or saddle-node S11

When the parameter (a, b) in Figure 4 provides the phase portrait 1.1, see Figure
16(a), systems (2) have six infinite equilibria, A′ and B′ in U1, C

′ in U2 and their
diametrically opposite, i.e. A′′, B′′ and C′′, in V1 and V2. A

′ and A′′ are saddle-
nodes, B′ and B′′ are repelling nodes, C′ and C′′ are attracting nodes. And systems
(2) have only one finite equilibrium (1, 0), which is a saddle. The saddle has four
separatrices Si (i = 1, 2, 3, 4), S1 connects (1, 0) and the infinite equilibrium A′′, S2

connects (1, 0) and the infinite equilibrium A′, S3 connects (1, 0) and the infinite
equilibrium C′, and S4 connects (1, 0) and the infinite equilibrium C′′. The saddle-
node A′ has the separatrix S5 = S2, and A′′ has the separatrix S6 = S1, these
separatrices are not at infinity.
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Figure 17. Some separatrices of the phase portraits. (a) phase
portrait 1.5, (b) phase portrait 1.6, (c) phase portrait 1.7, (d) phase
portrait 1.14.

On the bifurcation curve a = f1(b) with b < 0, we get the phase portrait 1.2, see
Figure 16(b). This phase portrait has the finite equilibrium (1/2, 1/(2b)), which is
a saddle-node. The saddle-node has three separatrices Si (i = 7, 8, 9), S7 connects
(1/2, 1/(2b)) and the infinite equilibrium C′′, S8 connects (1/2, 1/(2b)) and the
infinite equilibrium A′′, and S9 connects (1/2, 1/(2b)) and the infinite equilibrium
B′. The infinite equilibria keep their type.

When the parameter (a, b) in Figure 4 provides the phase portrait 1.3, see Figure
16(c), the saddle-node (1/2, 1/(2b)) of the phase portrait 1.2 splits into the attract-

ing node p1 = (1/2 +
√
a(a− 4b2)/(2a), (a −

√
a(a− 4b2))/(2ab)) and the saddle

p2 = (1/2 −
√
a(a− 4b2)/(2a), (a +

√
a(a− 4b2))/(2ab)). Then it generates the

separatrix S10, which connects p1 and p2.

On the bifurcation straight line b = 0 with 0 < a we have the phase portrait
1.4, see Figure 16(d). The node p1 of the phase portrait 1.3 moves to (1, 0), p2
moves to the infinite equilibrium C′′ in the local chart V2, and the separatrices Si

(i = 4, 7, 8, 9) disappear. C′ and C′′ become saddle-nodes. The saddle-node C′

has one separatrix S11, they are not at infinite. Hence systems (2) have only one
finite equilibrium (1, 0). This completes the description of the bifurcation diagram
of Figure 4.

We start the analysis of the bifurcation diagram described in Figure 5. The
phase portrait 1.4 has six infinite equilibria A′, A′′, B′, B′′, C′ and C′′. A′, A′′,
C′ and C′′ are saddle-nodes, and B′ and B′′ are repelling nodes. There is only one
finite equilibrium (1, 0), which is a saddle-node. The saddle-node (1, 0) has three
separatrices Si (i = 1, 2, 3). A′ has one separatrix S5 = S2, A

′′ has one separatrix
S6 = S1, and C

′′ has one separatrix S11, these separatrices are not at infinity.

When (a, b) in Figure 5 provides the phase portrait 1.5, see Figure 17(a), the
finite saddle-node of the phase portrait 1.4 splits into two finite equilibria the same
(1, 0) (an attracting node) and the saddle p1. The saddle-node C

′ splits into a saddle
at C′ and an attracting node or focus at p2, which are connected by the separatrix
S12. The saddle p1 has four separatrices Si (i = 13, 14, 15, 16), S13 connects p1 and
(1, 0), S14 connects p1 and the infinite equilibrium A′, S15 connects p1 and p2, S16

connects p1 and the infinite equilibrium B′′. The saddle-node A′ has one separatrix
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Figure 18. Some separatrices of the phase portraits. (a) phase
portrait 1.15, (b) phase portrait 1.16, (c) phase portrait 1.13, (d)
phase portrait 1.17.

S5, A
′′ has one separatrix S6, and the saddle C′′ has one separatrix S11, they are

not at infinity.

As (a, b) reaches the bifurcation curve a = f5(b) we obtain the phase portrait
1.6, see Figure 17(b). The separatrix S16 of phase portrait 1.5, which connects the
infinite equilibrium B′′ with p1, now it connects with the separatrix S12.

When (a, b) in Figure 5 provides the phase portrait 1.7, see Figure 17(c), the
separatrix S12 of phase portrait 1.6 goes to (1, 0), and the separatrix S16 comes
from A′.

When (a, b) provides the phase portrait 1.14, see Figure 17(d), the stability of
the focus p2 of the phase portrait 1.7 reverses, a Hopf bifurcation occurs, and a
stable limit cycle L1 bifurcates from p2. Similarly we obtain the phase portraits
1.15 and 1.16 (see Figure 18(a) and 18(b)) from the phase portraits 1.6 and 1.5 ,
respectively.

When (a, b) is in the bifurcation curve a = f4(b) with b ≥ b4, we obtain the
phase portrait 1.13, see Figure 18(c) (i.e. from the phase portrait 1.14 to the phase
portrait 1.17). The limit cycle of the phase portrait 1.14 ends in the loop H1 formed
by the connection of the separatrices S15 and S16.

When (a, b) provides the phase portrait 1.17, see Figure 18(d), the homoclinic
loop H1 of phase portrait 1.13 breaks up, and the separatrix S16 connects p1 and
p2, and the separatrix S15 connects p1 and (1, 0).

When (a, b) is located in the bifurcation curve a = f1(b) with b > 2 , see Figure
19(b), we obtain the phase portrait 1.22. The finite equilibria p1 and p2 of the
phase portraits 1.17 collide providing a saddle-node, the separatrix S16 of the phase
portrait of 1.17 disappears.

When (a, b) is the bifurcation point (16, 2) we get the phase portrait 1.21, see
Figure 19(a). The separatrix S15 of the phase portrait 1.22 connects with the
separatrix S13. Then the saddle-node p1 becomes the cusp (1/2, 1/4).

When (a, b) provides the phase portrait 1.23, see Figure 19(c), the finite singular
point p1 of the phase portrait 1.22 collides with (1, 0), the separatrices S13,14,15 dis-
appear. Hence systems (2) have only one finite singular point which is an attracting
node.
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Figure 19. Some separatrices of the phase portraits. (a) phase
portrait 1.21, (b) phase portrait 1.22, (c) phase portrait 1.23, (d)
phase portrait 1.10.

When (a, b) provides the phase portrait 1.17 of Figure 5, systems (2) have six
infinite equilibria A′, A′′, B′, B′′, C′ and C′′. A′ and A′′ are saddle-nodes, B′ and
B′′ are repelling nodes, C′ and C′′ are saddles. A′ has one separatrix S5, A

′′ has one
separatrix S6, and C

′′ has one separatrix S11, these separatrices are not at infinity.
There are three finite equilibria (1, 0) and p1,2. (1, 0) is an attracting node, p1 is
a saddle and p2 is an unstable node or focus. p1 has four separatrices S13,14,15,16,
and the separatrix S16 connects p1 and p2. When (a, b) is in the bifurcation curve
a = f2(b) and 2 < b ≤ 4, the point p2 becomes p′2 = (1/b, (b− 1)/b2), and it is an
unstable weak focus.

When (a, b) provides the phase portrait 1.10, see Figure 19(d), the stability of
the focus p2 of the phase portrait of 1.16 reverses, and an unstable limit cycle L2

bifurcates from p′2.

As (a, b) is in the bifurcation curve a = f4(b) with 2 < b < b2, we obtain the
phase portrait 1.8, see Figure 20(a), the limit cycle of the phase portrait 1.9 ends
in the homoclinic loop H1 formed by the connection of sepeartrices S15 and S16.

From the phase portrait 1.8 to 1.7, see Figure 17(c), the homoclinic loop H1 of
the phase portrait 1.8 breaks up, and the separatrix S15 connects the point p1 and
p2, and the separatrix S16 connects the point p1 and A′.

Now we consider the phase portraits 1.10 and 1.11. The stability of the focus p2
of the phase portrait 1.10 reverses again, a Hopf bifurcation occurs, and a stable
limit cycle L1 bifurcates from this singular point. Hence there exist exactly two
limit cycles in the phase portrait 1.11, one is stable and one is unstable, see Figure
20(c). Conversely the limit cycle L1 of the phase portrait 1.11 becomes smaller and
finally disappears .

When (a, b) is in the bifurcation curve a = f4(b) with b2 < b < b4, see Figure
20(b), we have the phase portrait 1.9. The bigger limit cycle L2 of the phase portrait
1.11 ends in the homoclinic loop H1 formed by the connection of separatrices S15,16.

From the phase portrait 1.9 to 1.13, the limit cycle L1 of the phase portrait 1.9
ends in the homoclinic loop H1. From the phase portrait 1.8 to 1.9, the stability of
the focus p2 of the phase portrait 1.8 reverses, a Hopf bifurcation occurs, a stable
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Figure 20. Some separatrices of the phase portraits. (a) phase
portrait 1.8, (b) phase portrait 1.9, (c) phase portrait 1.11, (d)
phase portrait 1.12, (e) phase portrait 1.18, (f) phase portrait 1.19,
(g) phase portrait 1.20.

limit cycle L1 bifurcates from p2. Conversely the limit cycle L1 of the phase portrait
1.9 becomes smaller and disappears.

When (a, b) is the bifurcation point (f4(b2), b2), see Figure 20(a), we obtain the
phase portrait 1.8. The limit cycle L1 of the phase portrait 1.10 becomes smaller
and disappears in a Hopf bifurcation, and the limit cycle L2 ends in the homoclinic
loop H1.

When (a, b) is in the bifurcation curve a = f3(b) with 4 < b < b4, the two limit
cycles of the phase portrait 1.11 collide producing a semi-stable limit cycle in the
phase portrait 1.12 (externally unstable and internally stable), see Figure 20(d).
When the parameter (a, b) is the bifurcation point (f4(b4), b4) we obtain the phase
portrait 1.13, see Figure 18(c). The semi-stable limit cycle of the phase portrait
1.12 ends the homoclinic loop H1. When the parameter (a, b) produces the phase
portrait 1.17, see Figure 18(d), the semi-stable limit cycle of the phase portrait 1.12
disappears.

On the other hand, when (a, b) provides the phase portrait 1.5, see Figure 17(a),
systems (2) have six infinite equilibria A′, A′′, B′, B′′, C′ and C′′. A′ and A′′

are saddle-nodes, B′ and B′′ are repelling nodes, and C′ and C′′ are saddles. The
saddle-node A′ has one separatrix S5, A

′′ has one separatrix S6, the saddle C′

has one separatrix S12 and C′′ has one separatrix S11, these separatrices are not
at infinity. Systems (2) have three finite equilibria (1, 0) and p1,2. (1, 0) is an
attracting node, p1 is a saddle and p2 is an attracting node or focus. The saddle
p1 has four separatrices Si (i = 13, 14, 15, 16).
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Figure 21. Some separatrices of the phase portraits. (a) phase
portrait 1.24, (b) phase portrait 1.25, (c) phase portrait 1.26, (d)
phase portrait 1.27, (e) phase portrait 1.28, (f) phase portrait 1.29.

When (a, b) is in the bifurcation curve a = f1(b) with 0 < b < b1, we get the
phase portrait 1.18, see Figure 20(e). The finite equilibria p1 and p2 of the phase
portraits 1.5 collide, and the separatrix S15 connecting them disappears.

When (a, b) = (f1(b1), b1), we have the phase portrait 1.19, see Figure 20(f).
The separatrix S16 of the phase portrait 1.18 connects with the separatrix S12.

When (a, b) is in the bifurcation curve a = f1(b) with b1 < b < 2, we obtain the
phase portrait 1.20, see Figure 20(g). The separatrix S16 of the phase portrait 1.19
connects with the infinite equilibrium A′, and the separatrix S12 goes to (1, 0).

When (a, b) reaches the bifurcation point (16, 2) we get the phase portrait 1.21,
see Figure 19(a). The separatrix S16 of the phase portrait 1.20 connects with the
separatrix S14. The saddle-node p1 becomes now the cusp (1/2, 1/4).

From the phase portrait 1.6 to the phase portrait 1.19, the finite singular point
p2 of the phase portrait 1.6 collides with p1, and the separatrix S15 disappears.
Then p1 becomes a saddle-node. Similarly we obtain the phase portrait 1.20 from
the phase portrait 1.7.

From the phase portrait 1.8 to the phase portrait 1.21, the finite singular point
p2 of the phase portrait 1.8 collides with p1, and the homoclinic loop H1 disappears.
Then p1 becomes a cusp.

Hence, we finish the analysis of the bifurcation diagram of Figure 5.

Next we summarize the change of the phase portraits from Figure 6. When the
parameter (a, b) produces the phase portrait 1.24 , see Figure 21(a), systems (2)
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Figure 22. Some separatrices of the phase portraits. (a) phase
portrait 1.30, (b) phase portrait 1.31, (c) phase portrait 1.32, (d)
phase portrait 1.33.

have six infinite equilibria A′, A′′, B′, B′′, and C′ and C′′. A′ and A′′ are saddle-
nodes, B′ and B′′ are attracting nodes, and C′ and C′′ are repelling nodes. The
saddle-nodes A′ and A′′ have one separatrix S5 and S6 respectively, which are not at
infinity. There are three finite singular points (1, 0) and p1,2. (1, 0) is an attracting
node and p1,2 are saddles. p1 and p2 have four separatrices Si (i = 13, · · · , 16) and
four separatrices Sj (j = 7, · · · , 10), respectively.

On the bifurcation straight line b = 0 and a < 0, we obtain the phase portraits
1.25, see Figure 21(b). The point p1 of the phase portrait 1.24 moves to the infinite
point C′ in U2, p2 moves to (1, 0), and the separatrices Si (i = 13, 14, 15, 17, 18, 19)
disappear. The finite equilibrium (1, 0), the infinite equilibria C′ and C′′ become
saddle-nodes. The saddle-node (1, 0) has three separatrices S1,2,4, where S1 = S6

and S2 = S5. C
′ has one separatrix S12 which is not at infinity.

When the parameter (a, b) produces the phase portrait 1.26, see Figure 21(c).
The saddle-node (1, 0) of the phase portrait 1.25 splits into an attracting node or a
stable focus p2 and a saddle (1, 0). The saddle (1, 0) has four separatrices S1,2,3,4.
The infinite saddle-node C′′ splits into the same C′′ (a saddle) and a repelling node
or an unstable focus p1. The saddle C′′ has one separatrix S11 which is not at
infinity. When (a, b) is in the bifurcation curve a = f2(b) and −1 ≤ b < 0, p1
becomes an unstable weak focus p′1 = (1/b, (b− 1)/b2).

When the parameter (a, b) produces the phase portrait 1.27, see Figure 21(d), the
stability of the focus p′1 of the phase portrait 1.26 reverses, and a Hopf bifurcation
occurs, and an unstable limit cycle L3 bifurcates from p1.

On the bifurcation curve a = f7(b) and −1 ≤ b < 0, we have the phase portrait
1.28, see Figure 21(e). The limit cycle L3 and the separatrix S6,11 of the phase
portrait 1.27 collide, and connect with the infinity A′′ producing a heteroclinic
loop.

When the parameter (a, b) produces the phase portrait 1.29, see Figure 21(f),
the orbit of the phase portrait 1.28 at p1 connects with the infinite singular point
A′′.

When the parameter (a, b) produces the phase portrait 1.30, see Figure 22(a).
The saddle (1, 0) has four separatrices S1,2,3,4. The separatrix S5 of the phase
portrait 1.26 at the saddle-node A′ moves to connect p2, the separatrix S6 at A′′
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moves to connect B′. Similarly we obtain the phase portrait 1.31 from the phase
portrait 1.27, see Figure 22(b).

When the parameter (a, b) is in the bifurcation curve a = f7(b) and b < −1,
we have the phase portrait 1.32, see Figure 22(c). The limit cycle L3 and the
separatrices S6,11 of the phase portrait 1.31 collide, and it produces a heteroclinic
loop.

When the parameter (a, b) produces the phase portrait 1.33, see Figure 22(d),
the separatrix S6 of the phase portrait 1.32 at the saddle-node A′′ moves to connect
with p1. This completes the analysis of the bifurcation diagrams.

5. Conclusion

In this paper the phase portraits in the Poincaré disk for the cubic polynomial
systems corresponding to the Gray-Scott model are studied in the Poincaré com-
pactification. The phase portraits and the corresponding bifurcation diagrams show
the richness and the complicated dynamics of such systems.
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