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Abstract. In this paper we study the global dynamics for a class of continuous piecewise
Z2-equivariant cubic Hamiltonian vector fields with nilpotent bi-centers at (±1, 0). We
consider these polynomial vector fields with a challenging case where the bi-centers (±1, 0)

come from the combination of two nilpotent cusps separated by y = 0. We call it a cusp-cusp
type. We use the Poincaré compactification, the blow-up theory, the index theory and the
theory of discriminant sequence for determining the number of distinct or negative real roots
of a polynomial, to classify the global phase portraits of these vector fields in the Poincaré

disc.

1. Introduction and statement of the main results

From the works of Poincaré [34] and Dulac [17] the center-focus problem, i.e. the problem
of distinguishing between a focus and a center, has been one of the important problems in the
qualitative theory of planar differential vector fields. To overcome this classical problem, many
methods have been developed, such as Poincaré-Liapunov method, Melnikov function method,
Poincaré compactification method, and so on, see [3, 4, 5, 7, 18, 23, 33]. Thus, for instance, in
the articles [14, 15, 25, 38, 39, 40] these methods have been used for studying the center-focus
problem of the quadratic and cubic polynomial differential vector fields.

In recent years in order to model better some natural phenomena many authors started to
analyze the non-smooth vector fields see for instance [1, 2, 6, 19, 32]. In this paper we deal
with the following family of piecewise smooth vector fields

(1) (ẋ, ẏ) =


(−y, x)
(0, x)

(0, 0)

+
(
F±(x, y), G±(x, y)

)
=

(
P±(x, y), Q±(x, y)

)
for ± Γ(x, y) ≥ 0,

where Γ : R2 → R is a C∞ function, F±(x, y) and G±(x, y) are real polynomials without
constant and linear terms. In fact, the vector field of (1) has two different regions Γ+ =
{(x, y) ∈ R2 : Γ(x, y) > 0} and Γ− = {(x, y) ∈ R2 : Γ(x, y) < 0} separated by the line
S = Γ−1(0). We say that an equilibrium point q of the piecewise smooth vector field (1) is a
center if there is a neighborhood U of this equilibrium point, such that U \ {q} is filled with
periodic orbits. When the origin of the piecewise smooth vector field (1) is a center, it is called
a linear type center, a nilpotent center, or a degenerate center if in (1) we have (−y, x), (0, x), or
(0, 0), respectively. It is well known that the center-focus problem of a piecewise smooth vector
field (1) becomes much more difficult than for smooth vector fields. The classical methods
have been developed for studying the center-focus problem of a differential vector field (1) with
the linear type, see [8, 16, 21, 22, 36]. But this problem for the piecewise smooth quadratic
polynomial differential vector fields still remains open.

As far as we know the center-focus problem for a non-elementary equilibrium point of a
polynomial vector field is much more challenging compared with the study for an elementary
equilibrium point. In order to overcome this type problem the authors of [20, 30, 31, 35] devel-
oped some computationally efficient methods for planar smooth vector fields with a nilpotent
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equilibrium point. However, there are not many papers for studying piecewise smooth poly-
nomial vector fields with a nilpotent center. The possible local phase portraits of nilpotent
equilibrium points are more rich than the ones of elementary equilibrium points. So it is natu-
ral to ask how a nilpotent equilibrium point of piecewise smooth vector fields can be a center
or a focus? Recently Chen el at. [9, 13] developed the Poincaré-Lyapunov and Poincaré com-
pactification methods for studying piecewise smooth vector fields with a nilpotent equilibrium
point.

Planar Zn-equivariant smooth vector fields are important systems for studying the famous
Hilbert’s 16th problem. The phase portraits of these vector fields are unchanged by a rotation of
2π/n (n ∈ Z+) radians around one point, see [10, 11, 24, 26, 27, 28, 29]. Although this symmetry
helps in order to find more limit cycles, the study of piecewise smooth vector fields with many
parameters is very difficult. The main goal of this paper is to study the global dynamics of
some piecewise Zn-equivariant polynomial vector fields, in particular with nilpotent centers,
for which there are almost no results in the qualitative theory of differential vector fields.

The general piecewise smooth vector field (1) is Z2-equivariant if and only if it satisfies

(P+(−x,−y), Q+(−x,−y)) = (−P−(x, y),−Q−(x, y)),

where also Γ(−x,−y) = −Γ(x, y). Without loss of generality a piecewise Z2-equivariant cubic
polynomial vector field separated by the straight line y = 0 can be written as

(2)

(
ẋ
ẏ

)
=




a00 + a10x+ a01y + a20x

2 + a11xy + a02y
2 + a30x

3

+ a21x
2y + a12xy

2 + a03y
3,

b00 + b10x+ b01y + b20x
2 + b11xy + b02y

2 + b30x
3

+ b21x
2y + b12xy

2 + b03y
3,

 for y ≥ 0,


− a00 + a10x+ a01y − a20x

2 − a11xy − a02y
2 + a30x

3

+ a21x
2y + a12xy

2 + a03y
3,

− b00 + b10x+ b01y − b20x
2 − b11xy − b02y

2 + b30x
3

+ b21x
2y + b12xy

2 + b03y
3,

 for y ≤ 0,

where aij and bij are real parameters. Assume that system (2) is Hamiltonian with two isolated
nilpotent equilibrium points at (±1, 0), this implies that

(3)
a01 = −a21, a12 = −3b03, b10 = −b30, b12 = −a21,
a00 = a10 = a20 = a11 = a30 = b00 = b01 = b20 = b11 = b02 = b21 = 0.

The Jacobian matrices at (±1, 0) are (
0 0

2b30 0

)
.

After doing convenient rescalings in the time and the parameters in system (2) it transforms
the above Jacobian matrix into the canonical one given in (1), i.e. b30 = 1

2 .

With conditions (3) and b30 = 1
2 the vector field (2) becomes the following continuous

Hamiltonian vector field

(4)

(
ẋ
ẏ

)
=



 − a21y + a02y
2 + a21x

2y − 3b03xy
2 + a03y

3,

− 1

2
x+

1

2
x3 − a21xy

2 + b03y
3,

 for y ≥ 0,

 − a21y − a02y
2 + a21x

2y − 3b03xy
2 + a03y

3,

− 1

2
x+

1

2
x3 − a21xy

2 + b03y
3,

 for y ≤ 0,

because

(P+(x, 0), Q+(x, 0)) = (P−(x, 0), Q−(x, 0)).
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The Hamiltonian functions for system (4) are

H+(x, y) =
1

4
x2 − 1

8
x4 − 1

2
a21y

2 +
1

3
a02y

3 +
1

2
a21x

2y2 − b03xy
3 +

1

4
a03y

4,

for the Hamiltonian vector field in y ≥ 0, and

H−(x, y) =
1

4
x2 − 1

8
x4 − 1

2
a21y

2 − 1

3
a02y

3 +
1

2
a21x

2y2 − b03xy
3 +

1

4
a03y

4,

for the Hamiltonian vector field in y ≤ 0.

Now we consider the case when the nilpotent equilibrium points (±1, 0) of the vector field
(4) are bi-centers. By the transformation x→ x+ 1 the vector field (4) becomes
(5)

(
ẋ
ẏ

)
=



 2a21xy + a21x
2y + (a02 − 3b03)y

2 − 3b03xy
2 + a03y

3 = P+(x, y),

x+
3x2

2
+
x3

2
− a21y

2 − a21xy
2 + b03y

3 = x+G+(x, y),

 for y ≥ 0,

 2a21xy + a21x
2y − (a02 + 3b03)y

2 − 3b03xy
2 + a03y

3 = P−(x, y),

x+
3x2

2
+
x3

2
− a21y

2 − a21xy
2 + b03y

3 = x+G−(x, y),

 for y ≤ 0,

and so the equilibrium point (1, 0) of the vector field (4) is moved to the origin of the vector
field (5). We assume that

x = f±(y) =
∞∑
k=2

f±k y
k

are the unique solutions of x+G±(x, y) = 0 in a neighborhood of the origin, respectively. For
studying the local phase portrait at the origin we write

P±(f±(y), y) =
∞∑
k=2

λ±k y
k,

[
∂P±

∂x
+
∂G±

∂y

]
(f±(y),y)

=

∞∑
k=1

µ±
k y

k,

where
λ±2 = ±a02 − 3b03, λ±3 = a03 + 2a221.

Let m be the smallest k for which µk ̸= 0, and let n be the smallest k for which λk ̸= 0. It
follows from Theorem 3.5 of [18] that if all the µk are zero and λn ̸= 0 this nilpotent equilibrium
point is a 

center or focus if n = 2l + 1 and λn < 0,

saddle if n = 2l + 1 and λn > 0,

cusp if n = 2l.

If µm ̸= 0, λn ̸= 0, κ = µ2
m + 4(m+ 1)λn this nilpotent equilibrium point is a

cusp if n = 2l, l ≤ m,

saddle-node if n = 2l, l > m,

saddle if n = 2l + 1, λn > 0,

center or focus if n = 2l + 1, λn < 0, l < m, or l = m and κ < 0 ,

E-H point if m is odd, n = 2l + 1, λn < 0, l > m, or l = m and κ ≥ 0 ,

node if m is even, n = 2l + 1, λn < 0, l > m, or l = m and κ ≥ 0,

where the local phase portrait of an E-H equilibrium point is formed by one elliptic sector and
one hyperbolic sector.

Since the smallest subindex of a nilpotent monodromic equilibrium point (i.e. a center or a
focus) of a smooth differential vector field is an odd positive integer greater than one, in [12]
we study one class of vector fields (4) when the equilibrium point (1, 0) of the first vector field
of (4) is a monodromic equilibrium point with subindex 3, that is λ+2 = 0 and λ+3 < 0.
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In this paper we study the case λ+2 ̸= 0, i.e. a02 ̸= 3b03 then the equilibrium point (1, 0) in
the first smooth vector field of (4) is a cusp. If λ−2 = 0 and λ−3 ̸= 0, this case is included in [12].
Hence we assume that λ−2 ̸= 0, then the equilibrium point (1, 0) in the second smooth vector
field of (4) is also a cusp. Recall that the equilibrium points (±1,0) cannot be monodromic
equilibrium points when λ+2 > 0 or λ−2 < 0, so we only study the class of continuous piecewise
Z2-equivariant cubic Hamiltonian vector fields (4) with λ+2 = a02 − 3b03 < 0 and λ−2 = −a02 −
3b03 > 0, i.e.

a02 < min{−3b03, 3b03}.
By the symmetry both nilpotent equilibrium points (±1, 0) come from the combination of two
cusps. From Proposition 2.1 of [8] we have that the Hamiltonians of the first and second vector
fields of (4) satisfy H+(x, 0) ≡ H−(x, 0). Hence these two equilibrium points (±1, 0) of the
vector field (4) are bi-centers.

We remark that the vector field (4) depends on four real parameters a02, a21, a03 and b03,
therefore it is very hard to study the global dynamics of these piecewise smooth vector fields.
Thus the explicit expressions of the finite equilibrium points and infinite equilibrium points are
in general complicated, and it is not easy to obtain their existence and local phase portraits.
The tools used to overcome these difficulties also can be used to analyze more complicated
piecewise smooth differential vector fields. It should be noted that the vector field (4) is
invariant under the transformation

(x, y, t, a02, a21, a03, b03) → (−x, y,−t, a02, a21, a03,−b03),
hence the global dynamics of the vector field (4) with b03 < 0 and b03 > 0 are topologically
equivalent. But we will show all results with b03 < 0 and b03 > 0.

Theorem 1.1. Assume that a02 < min{−3b03, 3b03}. In the Poincaré disc the global phase
portraits of the piecewise Z2-equivariant cubic Hamiltonian vector field (4) with cusp-cusp type
and bi-centers at (±1, 0) are topologically equivalent to one of the following 52 phase portraits
of Figures 1 and 2.

In section 2 we study the infinite equilibrium points of the piecewise smooth vector field (4).
In section 3 we analyze the finite equilibrium points and characterize the global phase portraits
of the vector field (4) in the Poincaré disc, that is we prove Theorem 1.1.

2. Infinite equilibrium points of the vector field (4)

In this section first we summarize the results on the Poincaré compactification that we need
for presenting the phase portraits of the vector field (4) in the Poincaré disc, for more details
see Chapter 5 of [18]. In order to study the infinity of the piecewise polynomial differential
vector fields we present the Poincaré compactification of the piecewise differential vector fields.
This tool identifies the plane R2 in R3 defined with the point x = (s1, s2, s3) = (x1, x2, 1). The
plane R2 is identified with the interior of the closed unit disc D2 centered at the origin of the
plane, and extends analytically the piecewise differential vector fields to the boundary of D2,
which is called the circle S1 of the infinity for piecewise polynomial differential vector fields.
The sphere S2 = {x ∈ R3 : s21 + s22 + s23 = 1} is called the Pointcaré sphere. The closed disc
D2 is called the Poincaré disc. The equilibrium points in the interior of the disc D2 are called
finite equilibrium points, and the ones on the boundary of D2 are called infinite equilibrium
points. The dash line “−−− ” in the phase portrait of the Poincaré disc is the separated line
of piecewise differential vector fields.

In the plane R2 we consider the piecewise polynomial differential vector field separated by
x2 = 0, described by

(6) (ẋ1, ẋ2) = (P±(x1, x2), Q
±(x1, x2)), for ± x2 ≥ 0,

where the degree of the real vector fields (P±(x1, x2), Q
±(x1, x2)) are d

±, respectively.

For studying the neighborhood of the infinity of the piecewise polynomial differential vector
field (6) in R2, we use four local charts Ui = {(x1, x2) ∈ D2 : xi > 0} and Vi = {(x1, x2) ∈
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Figure 1. The 1st to 28th topological phase portraits of the vector field (4)
in the Poincaré disc.
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Figure 2. The 29th to 52th topological phase portraits of the vector field (4)
in the Poincaré disc.

D2 : xi < 0}, for i = 1, 2 to do the calculations. The corresponding diffeomorphisms of these
charts are

(7) Φi : Ui → R2, Ψi : Vi → R2,

defined by Φ1(x1, x2) = Ψ1(x1, x2) = (x2

x1
, 1
x1
) = (u, v) and Φ2(x1, x2) = Ψ2(x1, x2) = ( 1

x2
, x1

x2
) =

(u, v), so the coordinates (u, v) will play distinct roles in the different local charts.
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The expressions of the piecewise polynomial differential vector field (6) in the local chart U1

with u ≥ 0 and u ≤ 0 are

(u̇, v̇) =
(
vd

±
(Q±

1 − uP±
1 ),−vd

±+1P±
1

)
, for ± u ≥ 0,

where P±
1 = P±( 1v ,

u
v ) and Q

±
1 = Q±( 1v ,

u
v ). The expressions in V1 are equal to the correspond-

ing expressions in U1 multiplied by (−1)d
±−1. The expressions in U2 and V2 are

(u̇, v̇) =
(
vd

+

(P+
2 − uQ+

2 ),−vd
++1Q+

2

)
and

(u̇, v̇) =
(
(−1)d

−
vd

−
(uQ−

2 − P−
2 ), (−1)d

−
vd

−+1Q−
2

)
,

respectively, where P±
2 = P±(uv ,

1
v ) and Q

±
2 = Q±(uv ,

1
v ).

We denote by Ai, Bi, (i = 1, 2, · · · ), O1 and O2 the infinite equilibrium points in U1, V1, U2

and V2, respectively. Note that in the local charts U2 and V2 we only study if the origins O1

and O2 of these charts are infinite equilibrium points, because all the other infinite equilibrium
points already have been studied in the local charts U1 and V1. Since the phase portraits of
the piecewise Z2-equivariant cubic polynomial Hamiltonian vector field (4) is symmetry with
respect to the origin, we just need to analyze the infinite equilibrium points in U1|v=0 and at
the origin of U2.

Now we recall two important theorems on the topological indices of the equilibrium points of
the differential vector fields, which are extremely useful tools for studying the phase portraits
of the equilibrium points, for more details about the following theorems see Chapter 6 of [18].

Theorem 2.1. We denote by q an isolated equilibrium point with the finite sectorial decom-
position property. Let h, e and p be the number of hyperbolic, elliptic and parabolic sectors in
a small neighborhood of the equilibrium point q, respectively. Then the topological index of q
equals 1 + (e− h)/2, which is called Poincaré Index Formula.

Corollary 2.2. The topological indices of a center, a node, a saddle and a cusp equal 1, 1, −1
and 0, respectively.

We can obtain a 2-dimensional Poincaré sphere S2 when we identify points to points the
boundary S1 of the Poincaré disc D2. Then the flow defined by the Poincaré compactification
on D2 can be extended to the 2-dimensional Poincaré sphere S2, which has a copy of the initial
flow of the polynomial differential vector field in each one of the two components of S2 \ S1.

Theorem 2.3. Let ψ be the extended flow of a Poincaré compactification on the Poincaré
sphere S2 having finitely many equilibrium points, then the sum of the topological indices of all
equilibrium points is 2.

2.1. Chart U1. Let x = 1
v , y = u

v , v > 0, the first vector field of (4) becomes

(8)
u̇ =

1

2
(1− 4a21u

2 − v2 + 8b03u
3 − 2a03u

4 − 2a02u
3v + 2a21u

2v2),

v̇ =uv(−a21 + 3b03u− a03u
2 − a02uv + a21v

2).

We compute the linear part of system (8) on v = 0 and obtain

(9)

(
−4uM1 −a02u3

0 −uM1

)
,

where M1 = a21 − 3b03u+ a03u
2. The equilibrium points (u, 0) of system (8) must satisfy

(10) g(u) = 2u̇|v=0 = 1− 4a21u
2 + 8b03u

3 − 2a03u
4 = 0.

We consider the following two cases a03 = 0 and a03 ̸= 0.

Remark 2.4. Although the infinite equilibrium points of the first vector field of (4) in U1 with
u < 0 are virtual points, due to the symmetry of the vector field (4) there are the corresponding
infinite equilibrium points in V1 with u > 0. Hence we study all real solutions of g(u) = 0, i.e.
we study the infinite equilibrium points in U1.
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Case 1: a03 = 0. We define ∆1 = 4a321 − 27b203.

Proposition 2.5. For system (8) with a03 = 0 the following statements hold.

(i) If b03 = 0 and a21 ≤ 0 system (8) has no infinite equilibrium points.

(ii) If b03 = 0 and a21 > 0 system (8) has two infinite equilibrium points A1,2 = (±
√
a21

2a21
, 0),

which are an attracting and repelling node, respectively.
(iii) If b03 ̸= 0 and ∆1 < 0 system (8) has one infinite equilibrium point A1 = (u1, 0), which

is a node.
(iv) If b03 ̸= 0 and ∆1 = 0 system (8) has two infinite equilibrium points A1 = (− 9b203

8a2
21
, 0)

and A2 = ( a21

3b03
, 0), which are a node and an E-H equilibrium point, respectively.

(v) If b03 ̸= 0 and ∆1 > 0 system (8) has three infinite equilibrium points A1,2,3 =
(ũ1,2,3, 0), which are three nodes.

Here

u1 =
4a21 − 3

√
Y1 − 3

√
Y2

24b03
, Y1,2 = −64a321 + 12b03(72b03 ± 8

√
3∆1),

ũ1 =
a21 − 2a21 cos

θ
3

6b03
, ũ2,3 =

a21 + a21(cos
θ
3 ±

√
3 sin θ

3 )

6b03
,

θ = arccos
27b203 − 2a321

2a321
.

Proof. Since statements (i) and (ii) are easy to prove we only analyze the case b03 ̸= 0.

If b03 ̸= 0, by the discriminant of cubic polynomial equation, the equation 1 − 4a21u
2 +

8b03u
3 = 0 has one, two and three real roots when ∆1 < 0, ∆1 = 0 and ∆1 > 0, respectively.

Then we obtain the corresponding infinite equilibrium points of system (8).

Now we consider the local phase portraits of the equilibrium points of system (8). By

computing the Gröbner basis of the two polynomials 1−4a21u
2+8b03u

3 and M̃1 = a21−3b03u
we obtain the four polynomials

−64b03∆1, −a21 + 3b03u, −9b03 + 4a221u, −3 + 4a21u
2.

Hence system (8) has one nilpotent equilibrium point when ∆1 = 0. From (9) we obtain that
the other elementary infinite equilibrium points are nodes.

Assume that ∆1 = 0 (i.e. b203 = 4
27a

3
21 ̸= 0), then system (8) has two equilibrium points

A1 = (− 9b203
8a2

21
, 0) and A2 = ( a21

3b03
, 0) , where A1 is a node and A2 is a nilpotent equilibrium point

when M̃1 = 0. We do the change u→ U + a21

3b03
, t = − 4a21b03

a02
τ , then system (8) becomes

(11)

U ′ =v − 8a21b03
a02

U2 +
9b03
a21

Uv − b03
a02

v2 − 64a321
27a02

U3 + 4a21U
2v

− 8a221
3a02

Uv2 − 4b03U
3v − 4a21b03

a02
U2v2,

v′ =− b03
a02a321

v(a21 + 3b03U)(4a321U − 3a02a21v − 9a02b03Uv + 9a21b03v
2),

where {′} := d/dτ . Since we obtain µ1 = −20a21b03
a02

̸= 0, λ3 = − 32a2
21b

2
03

a2
02

< 0 and κ = µ2
1+8λ3 =

144a2
21b

2
03

a2
02

> 0, we can deduce that the origin of system (11) is an E-H equilibrium point. Hence

the nilpotent equilibrium point A2 is an E-H equilibrium point. �

Case 2: a03 ̸= 0. We analyze the nilpotent equilibrium points of U1. By computing the
Gröbner basis for the polynomials g(u) and M1 we obtain ten polynomials, the following four
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polynomials

(12)

M2 = a03(a03 + 2a221)
2 − 36a03a21b

2
03 − 8a321b

2
03 + 54b403,

M3 = −a03(a03 + 2a221) + 6a21b
2
03 + 2b03(4a03a21 − 9b203)u,

M4 = −a21(a03 + 2a221) + 9b203 − b03(3a03 − 2a221)u,

M5 = a21 − 3b03u+ a03u
2,

are enough for our analyzing. Since the above four polynomials must be zero we obtain that
system (8) has at most two nilpotent equilibrium points. Then we consider the following two
subcases b03 = 0 and b03 ̸= 0.

Assume that b03 = 0 we have a03 = −2a221 ̸= 0 from M2,3,4 = 0. Since M5 = a21 + a03u
2 =

0 system (8) has no nilpotent equilibrium points when a21 < 0, and it has two nilpotent

equilibrium points (±
√
2a21

2a21
, 0) when a21 > 0. Now we analyze the local phase portraits of

these nilpotent equilibrium points. By doing the change u → U +
√
2a21

2a21
, t = −2

√
2a21a21

a02
τ

system (8) becomes

(13)

U ′ =v − 8
√
2a21a

2
21

a02
U2 + 3

√
2a21Uv −

16a321
a02

U3 + 6a21U
2v − 4a221

a02
Uv2

− 4
√
2a21a

3
21

a02
U4 + 2

√
2a21a21U

3v − 2
√
2a21a

2
21

a02
U2v2,

v′ =− 4
√
2a21a

2
21

a02
Uv +

√
2a21v

2 − 12a321
a02

U2v + 4a21Uv
2 − 2a221

a02
v3

− 4
√
2a21a

3
21

a02
U3v + 2

√
2a21a21U

2v2 − 2
√
2a21a

2
21

a02
Uv3,

and the equilibrium point (
√
2a21

2a21
, 0) move to the origin of system (13). From

µ1 = −20
√
2a21a

2
21

a02
, λ3 = −64a521

a202
< 0, µ2

1 + 8λ3 =
288a521
a202

> 0,

we have that the origin of system (13) is an E-H equilibrium point. Due to the symmetry, these

two nilpotent equilibrium points (±
√
2a21

2a21
, 0) are both E-H equilibrium points.

Assume that b03 ̸= 0. If the coefficient 4a03a21 − 9b203 of first order term of M3 is zero,
then we have −8a321 + 27b203 = 0 and a03 = 2

3a
2
21 from M3 = 0. So we obtain M4 = 0

and M5 = (2a21−3b03u)
2

4a21
. Hence system (8) has only one nilpotent equilibrium point (2a21

3b03
, 0).

Furthermore we have

µ2 = −3b403
a202

, λ5 =
15b203
2a02

< 0, µ2
2 + 12λ5 =

81b403
4a202

> 0,

so this nilpotent equilibrium point is a node.

If 4a03a21 − 9b203 ̸= 0 and M2 = 0 system (8) has the nilpotent equilibrium point

(u∗, 0) =

(
a203 + 2a03a

2
21 − 6a21b

2
03

2b03(4a03a21 − 9b203)
, 0

)
.
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We do the change u→ U + u∗, t = − 1
a02u3

∗
τ and system (8) becomes

(14)

U ′ =v − 8b303(4a03a21 − 9b203)M6

a02(a203 + 2a03a221 − 6a21b203)
3
U2 +

6b03(4a03a21 − 9b203)

a203 + 2a03a221 − 6a21b203
Uv

+
4b303(4a03a21 − 9b203)

2(a03a21 + 2a321 − 9b203)

a02(a203 + 2a03a221 − 6a21b203)
3

v2

+
16b203(4a03a21 − 9b203)

2(a303 + 2a203a
2
21 − 4a03a21b

2
03 + 18b403)

a02(a203 + 2a03a221 − 6a21b203)
3

U3

+
12b203(4a03a21 − 9b203)

2

(a203 + 2a03a221 − 6a21b203)
2
U2v − 8a21b

2
03(4a03a21 − 9b203)

2

a02(a203 + 2a03a221 − 6a21b203)
2
Uv2

+
8a03b

3
03(4a03a21 − 9b203)

3

a02(a203 + 2a03a221 − 6a21b203)
3
U4 +

8b303(4a03a21 − 9b203)
3

(a203 + 2a03a221 − 6a21b203)
3
U3v

− 8a21b
3
03(4a03a21 − 9b203)

3

a02(a203 + 2a03a221 − 6a21b203)
3
U2v2,

v′ =− 4b303(4a03a21 − 9b203)M6

a02(a203 + 2a03a221 − 6a21b203)
3
Uv +

2b03(4a03a21 − 9b203)

a203 + 2a03a221 − 6a21b203
v2

+
12b203(4a03a21 − 9b203)

2(a303 + 2a203a
2
21 − 14a03a21b

2
03 + 18b403)

a02(a203 + 2a03a221 − 6a21b203)
3

U2v

+
8b203(4a03a21 − 9b203)

2

(a203 + 2a03a221 − 6a21b203)
2
Uv2 − 4a21b

2
03(4a03a21 − 9b203)

2

a02(a203 + 2a03a221 − 6a21b203)
2
v3

+
8a03b

3
03(4a03a21 − 9b203)

3

a02(a203 + 2a03a221 − 6a21b203)
3
U3v +

8b303(4a03a21 − 9b203)
3

(a203 + 2a03a221 − 6a21b203)
3
U2v2

− 8a21b
3
03(4a03a21 − 9b203)

3

a02(a203 + 2a03a221 − 6a21b203)
3
Uv3,

where

M6 = 88a203a
3
21 + 48a03a

5
21 + 27a203b

2
03 − 594a03a

2
21b

2
03 − 96a421b

2
03 + 810a21b

4
03.

By computing the resultant ofM2 andM6 with respect to a03 we have −4b403(8a
3
21−27b203)

5 ̸= 0,
hence M6 ̸= 0. Then we obtain

µ1 = − 20b303(−4a03a21 + 9b203)M6

a02(−a203 − 2a03a221 + 6a21b203)
3
̸= 0,

λ3 = − 32b603(−4a03a21 + 9b203)
2M2

6

a202(−a203 − 2a03a221 + 6a21b203)
6
< 0,

µ2
1 + 8λ3 =

144b603(−4a03a21 + 9b203)
2M2

6

a202(−a203 − 2a03a221 + 6a21b203)
6
> 0.

Further we obtain that this infinite nilpotent equilibrium point is an E-H equilibrium point.

Now we shall determine the phase portrait of the elementary infinite equilibrium points of
the chart U1 with a03 ̸= 0. But it is not an easy work to calculate explicitly the coordinates
of these infinite equilibrium points, which are complicated in terms of the parameters a21, a03
and b03. From (9) we see these infinite equilibrium points of system (8) must be nodes. Thus
we just need to find the number of distinct real solutions of g(u) = 0, where the polynomial
g(u) is not identically zero. Now in order to study the number of the distinct real roots of
the polynomial f(z) with symbolic coefficients we shall use the method of the discriminant
sequence associated to f(z), for more details see [37].

We associate to the polynomial

(15) f(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0
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the following (2n+ 1)× (2n+ 1) matrix in terms of its symbolic coefficients

D(f) =



an an−1 an−2 · · · a0
nan (n− 1)an−1 · · · a1
an an−1 · · · an−1 a0

nan · · · 2a2 a1
· · · · · ·
· · · · · ·

an an−1 · · · a0
nan · · · a1
an · · · a1 a0


.

This matrix is called the discriminant matrix of f(z). We denote by di the determinant of the
submatrix of D(f) constructed with the first i columns and rows of D(f) for i = 1, . . . , 2n+1.
Thus we have the principal minor sequence of f(z),

(16) {d1, d2, . . . , d2n+1},
which is an important tool in our study.

Consider the called sign list

(17) [sign(d1), sign(d2), · · · , sign(d2n+1)],

of the principal minor sequence (16), where as usual the sign function is

(18) sign(z) =


−1 if z < 0,

0 if z = 0,

1 if z > 0.

For any sign list [ξ1, ξ2, · · · , ξn] we define the associated revised sign list [ε1, ε2, · · · , εn] as
follows:

1. If ξk ̸= 0 we let εk = ξk.
2. If section [ξi, ξi+1, · · · , ξi+j ] of the given list satisfies with ξiεi+j ̸= 0 and ξi+1 = ξi+2 =

· · · = ξi+j−1 = 0, we replace its subsection [ξi+1, ξi+2, · · · , ξi+j−1] with

[−ξi,−ξi, ξi, ξi,−ξi,−ξi, ξi, ξi,−ξi, · · · ]
keeping its number of terms.

Then the revised sign list [ε1, ε2, · · · , εn] has no zeros between two nonzero elements. We denote
by RSL the revised sign list of a given sign list.

From Theorem 2.1 of [37] we obtain the following theorem.

Theorem 2.6. Consider the polynomial (15). If the number of nonzero elements of the RSL
[d2, d4, . . . , d2n] is equal to ℓ, and the number of the sign changes of this RSL is equal to m,
then the number of the distinct real roots of (15) is ℓ− 2m.

Now we compute the sequence {d2, d4, d6, d8} of g(u) from (10) to analyze the number of
distinct real roots of g(u) = 0, and we have

(19)

d2 = 16a203,
d4 = −256a203(a03a21 − 3b203),
d6 = −2048a203M7,
d8 = −8192a203M2,

where
M7 = a203a21 + 2a03a

3
21 − 3a03b

2
03 − 4a221b

2
03.

From Theorem 2.6 we obtain that the polynomial g(u) has four distinct real roots if and
only if the RSL of (10) is [1, 1, 1, 1] or [−1,−1,−1,−1], but the latter is impossible because we
have d2 > 0. We denote by R[f(z), i] the i-th real root of the polynomial f(z), and these roots
are ordered as follows R[f(z), i] < R[f(z), j] with i < j. Then we obtain the corresponding
condition of the RSL [1, 1, 1, 1] as shown in Table 1. Here we denote by N a node. Therefore
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the polynomial g(u) has at most four distinct real roots. Since M2 ̸= 0 the corresponding four
infinite equilibrium points A1,2,3,4 are nodes of U1.

Table 1. The conditions of the RSL in order that (10) has four or three
distinct real roots when a03 ̸= 0.

RSL infinite equilibria Conditions

[1, 1, 1, 1] 4 N I:a21 > 0, −
2
√

6a3
21

9 < b03 <
2
√

6a3
21

9 , R[M2, 2] < a03 < R[M2, 3];

[1, 1, 1, 0] 2 N, 1 E-H II: a21 > 0, −
2
√

6a3
21

9 < b03 <
2
√

6a3
21

9 , b03 ̸= 0, a03 = R[M2, 2]
or a03 = R[M2, 3].

As it is described in Table 1 the RSL of the associated discriminant sequence is [1, 1, 1, 0]
when g(u) has three distinct real roots, correspondly, there are three infinite equilibrium points
in U1. We compute the resultant of M2 and the coefficient 4a03a21 − 9b203 of the first order
term of M3 with respect to a03 and we obtain b203(8a

3
21 − 27b203)

2 ̸= 0. From the previous
analysis we have that these three infinite equilibrium points are two nodes A1,3 and an E-H
point A2 = (u∗, 0).

Furthermore we obtain the possible RSL of the associated discriminant sequences as we
show in Table 2, when g(u) of (10) has two distinct real roots, one real root and no real roots,
respectively. Then system (8) has two, one and no equilibrium points in U1.

Table 2. The conditions of the possible RSL in order that (10) has distinct
real roots when a03 ̸= 0.

RSL infinite equilibria Conditions

[1, 1, 1,−1] 2 N III(a): a21 > 0, b03 ≥
2
√

6a3
21

9 or b03 ≤ −
2
√

6a3
21

9 ,
R[M7, 1] < a03 < R[M7, 2];

III(b): a21 > 0, −
2
√

6a3
21

9 < b03 <
2
√

6a3
21

9 , b03 ̸= 0,
R[M7, 1] < a03 < R[M2, 2] or R[M2, 3] < a03 < R[M7, 2];
IV: a21 = 0, b03 ̸= 0, a03 > 0;
V: a21 < 0, R[M7, 2] < a03;

[1, 1,−1,−1] 2 N VI: a21 > 0, b03 ̸= 0, R[M2, 1] < a03 ≤ R[M7, 1]

or R[M7, 2] ≤ a03 <
3b203
a21

;

VII: a21 = 0, b03 ̸= 0, R[M2, 1] < a03 < 0;
VIII: a21 < 0, b03 ̸= 0, R[M2, 1] < a03 ≤ R[M7, 2];

[1,−1,−1,−1] 2 N IX: a21 > 0, a03 ≥ 3b203
a21

;

X: a21 = 0, b03 = 0, a03 > 0;

[1, 1, 0, 0] 2 N XI: a21 > 0, b03 = ±
2
√

6a3
21

9 , a03 = 2
3a

2
21;

2 E-H XII: a21 > 0, b03 = 0, a03 = −2a2
21;

[1, 1,−1, 0] 1 E-H XIII: a21 ∈ R, b03 ̸= 0, a03 = R[M2, 1];

[1, 1,−1, 1] 0 XIV: a21 > 0, a03 < R[M2, 1];
XV: a21 = 0, b03 ̸= 0, a03 < R[M2, 1];

XVI: a21 < 0, b03 ̸= 0,
3b203
a21

< a03 < R[M2, 1];

[1,−1, 1, 1] 0 XVII: a21 < 0, b03 ̸= 0, a03 ≤ R[M7, 1];
or b03 = 0, a03 < −2a2

21;

[1,−1,−1, 1] 0 XVIII: a21 = 0, b03 = 0, a03 < 0;

XIX: a21 < 0, R[M7, 1] < a03 ≤ 3b203
a21

;

[1,−1, 0, 0] 0 XX: a21 < 0, b03 = 0, a03 = −2a2
21.

In summary we have the following result.

Proposition 2.7. For system (8) with a03 ̸= 0 the following statements hold.

(i) If condition I holds system (8) has four infinite equilibrium points A1,2,3,4, which are
four nodes.

(ii) If condition II holds system (8) has three infinite equilibrium points A1,2,3, where A1,3

are two nodes and A2 = (u∗, 0) is an E-H equilibrium point.
(iii) If one of the conditions III-XI holds system (8) has two infinite equilibrium points A1,2,

which are two nodes.
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(iv) If condition XII holds system (8) has two infinite equilibrium points A1,2 = (±
√
2a21

2a21
, 0),

which are two E-H equilibrium points.
(v) If condition XIII holds system (8) has one infinite equilibrium point A1 = (u∗, 0), which

is an E-H point.
(vi) If one of the conditions XIV-XX holds system (8) has no infinite equilibrium points.

2.2. Chart U2. Let x = 1
v , y = u

v , v < 0 then the first vector field of (4) becomes

(20)
u̇ =

1

2
(2a03 − 8b03u+ 2a02v + 4a21u

2 − 2a21v
2 − u4 + u2v2),

v̇ =− 1

2
v(2b03 − 2a21u+ u3 − uv2).

We only need to study when the origin O1 of system (20) is an equilibrium point and we
have the following result.

Proposition 2.8. For system (20) the following statements hold.

(i) If a03 ̸= 0 the origin O1 is not an infinite equilibrium point.
(ii) If a03 = 0 and b03 > 0 the origin O1 is an infinite equilibrium point, which is an

attracting node.
(iii) If a03 = 0 and b03 = 0 the origin O1 is an infinite equilibrium point, which is an E-H

equilibrium point.
(iv) If a03 = 0 and b03 < 0 the origin O1 is an infinite equilibrium point, which is a repelling

node.

3. Finite equilibrium points and global phase portraits of the vector field (4)

Now we consider the finite equilibrium points of the vector field (4). The equilibrium points
q1,2 = (±1, 0) are the bi-centers. And the origin q3 is also an equilibrium point, whose Jacobian
matrix is

(21)

(
0 −a21
− 1

2 0

)
.

From (21) we have that q3 is a saddle when a21 ≥ 0 (a nilpotent saddle when a21 = 0), or a
center when a21 < 0. Now we need to study the remaining equilibrium points different from
these three equilibrium points.

Since the phase portrait of the vector field (4) is symmetric with respect to the origin, and it
has no equilibrium points different from q1,2,3 on the straight line y = 0, we just need to study
the extra equilibrium points of the first vector field of (4) for y > 0. The Jacobian matrix of
the first vector field of (4) at a finite equilibrium point (x, y) is

(22)

(
y(2a21x− 3b03y) M8

1
2 (−1 + 3x2 − 2a21y

2) −y(2a21x− 3b03y)

)
,

where
M8 = −a21 + 2a02y + a21x

2 − 6b03xy + 3a03y
2.

As in the above section, we consider two cases a03 = 0 and a03 ̸= 0 in the study the non-
elementary and elementary equilibrium points.

3.1. Case a03 = 0. We analyze the non-elementary equilibrium points, which are different
from the known equilibrium points. We compute the Gröbner basis for the polynomials ẋ, ẏ,
−1 + 3x2 − 2a21y

2 and 2a21x− 3b03y and we obtain the following polynomials

b03, a
2
02 + 2a321, −a21 + a02y, a02 + 2a221y, 1 + 2a21y

2, x.

It means that the first vector field of (4) has one possible nilpotent equilibrium point (0, a21

a02
)

when the above polynomials are zero and a21 < 0. Applying Theorem 3.5 of [18] this nilpotent
equilibrium point is a saddle.
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q1q2 q3

q4

q5

q1q2 q3

q4

q5

q6q7

q8 q9

(a) (b)

Figure 3. (a) A tri-heteroclinic loop; (b) A quadruple-heteroclinic loop.

Now we calculate the Gröbner basis of the four polynomials ẋ, ẏ, 2a21x−3b03y and M8, and
we obtain twenty-nine polynomials. We can find that one polynomial a521 must be zero when
the first vector field of (4) has a nilpotent equilibrium point. We assume a21 = 0 and again
compute the Gröbner for the above four polynomials and obtain

b03y, a
2
02y, (−1 + x)x(1 + x).

It means that there is no nilpotent equilibrium points different from q1,2,3 when a21 = 0.

Now we consider the elementary finite equilibrium points and the global phase portraits of
vector field (4). We separate the study in two subcases b03 = 0 and b03 ̸= 0.

(i) Assume b03 = 0 then the vector field (4) is also symmetry respect to the x-axis and the
y-axis.

(i.1) From Propositions 2.5 and 2.8 we obtain that if a21 ≤ 0 the vector field (4) has only
two infinite equilibrium points O1,2, which are two E-H equilibrium points. And we have
u̇|u=0,v=0 = 1

2 > 0 in the chart U1, showing that the flow at the neighborhood of the origin of
U1 is increasing in the direction u.

(i.1.1) If a21 = 0 the vector field (4) has no other finite equilibrium points different from
q1,2,3, where q3 is a saddle. Since the finite equilibrium points of the Hamiltonian vector field
(4) are either centers or saddles, there must be at least one saddle on the boundary of the
period annulus of each center. Hence the saddle q3 must be on the boundary of the region
formed by the period annulus surrounding center q1. Taking into account the symmetries, q3
is on the boundary of period annulus of q2, creating an eight-figure loop.

From the previous analysis such infinite equilibrium points O1,2 of (4) are both formed by
an elliptic sector and a hyperbolic sector, where the hyperbolic sector has its two separatrices
contained in the straight line of the infinity. The elliptic sector must be outside the Poincaré
disc, then the infinite and finite equilibrium points have total index 2 on Poincaré sphere.
Further we obtain that the global phase portrait of the vector field (4) in the Poincaré disc is
topologically equivalent to the phase portrait 1.1 of Figure 1.

(i.1.2) If a21 < 0 and a202+2a321 ≥ 0, by the symmetry the vector field (4) has two equilibrium
points q4,5 = (0,±a21

a02
) different from q1,2,3, where q3 is a center and q4,5 are two saddles. Since

there are only two symmetric saddles, they must be on the boundary of the period annulus of
the centers q1,2,3, creating a tri-heteroclinic loop, see Figure 3 (a). The global phase portrait
of the vector field (4) in this subcase is topologically equivalent to the phase portrait 1.2 of
Figure 1.

(i.1.3) If a202 + 2a321 < 0 the vector field (4) has six equilibrium points q4,5 = (0,±a21

a02
),

q6,7 =

(
±

√
a202 + 2a321

2a321
,− a02

2a221

)
= (±x∗, y∗)

and q8,9 = (∓x∗,−y∗) different from q1,2,3, where q3,4,5 are three centers and q6,7,8,9 are four

saddles. Since H+(x, y)|q6,7 = H−(x, y)|q8,9 = −a4
02−12a6

21

96a6
21

, these four saddles are in the same

energy level. So one saddle at least be on the boundary of the period annulus of two centers.
We assume that the saddle q6 is on the boundary of the period annulus centers q1,4, by the
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A1

A2B1

B2

O2
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q1q2 q3

q4q5

q6 q7

Figure 4. The local phase portraits at all finite and infinite equilibrium points
of the vector field (4) when a03 = b03 = 0 and a21 > 0.

symmetry with respect to x-axis and the y-axis, and due to the existence of the center q3 we
obtain a quadruple-heteroclinic loop, see Figure 3 (b). The global phase portrait is topologically
equivalent to the phase portrait 1.3 of Figure 1.

(i.2) If a21 > 0 the vector field (4) has six infinite equilibrium points A1,2, B1,2 and O1,2,
where A1,2, B1,2 are four nodes and O1,2 are two E-H equilibrium points. The vector field
(4) has four equilibrium points q4,5,6,7 = (±x∗,±y∗) different from q1,2,3, where q3,4,5,6,7 are
five saddles. The sum of the total indices of the infinite and finite equilibrium points except
for O1,2 is −2, so the elliptic sectors of the infinity equilibrium points O1,2 must be inside the
Poincaré disc and the hyperbolic ones are outside the Poincaré disc. By the symmetries we
obtain the local phase portraits of all equilibrium points, see Figure 4.

(i.2.1) Assume that the saddle q3 is on the boundary of the period annulus of the center q1,
by the symmetry it is also on the boundary of the period annulus of q2, creating one eight-figure
loop. Since H+(x, y)|q4,5 = H−(x, y)|q6,7 , the four saddles q4,5,6,7 are in the same energy level.
And since there are no other finite equilibrium points, these four saddles must connect to each
other one by one. The phase portrait is topologically equivalent to the phase portrait 1.4 of
Figure 1.

(i.2.2) Assume that the attracting and repelling separatrices of the saddle q3 connect the
infinite equilibrium points O1,2. Then the saddles q4,7 are on the boundary of the period
annulus of q1, creating one heteroclinic loop. By the symmetry the saddles q5,6 are on the
boundary of the period annulus of q2. In this subcase the phase portrait is topologically
equivalent to the phase portrait 1.6 of Figure 1.

(i.2.3) From the phase portrait 1.4 realized when a02 = −1 and a21 = 0.5 to the phase portrait
1.6 realized when a02 = −1 and a21 = 1, it follows by the continuity of the phase portraits
with respect to the parameters the existence of the phase portrait 1.5 of Figure 1. In general
it is not an easy work to obtain the explicit values a02 and a21 for this phase portrait. But in
our case the Hamiltonians at these five saddles q3,4,5,6,7 are H+(x, y)|q3,4,5 = H−(x, y)|q6,7 = 0,

i.e. a402 − 12a621 = 0, so they are in the same energy level. Hence some of the separatrices of
q4,5,6,7 connect with the ones of the saddle q3.

(ii) Assume that b03 ̸= 0, from the first vector field of (4) we compute the Gröbner basis for
ẋ and ẏ and we obtain sixteen polynomials, where the following two polynomials

y2
[
x(a02a21 + 2a321y − 9b203y)− b03(3a21 − 3a02y + 2a221y

2)

]
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and

(23)

− y2
[
− a21(a

2
02 − 9b203) + a02(a

2
02 − 4a321 − 9b203)y

+ 2a221(2a
2
02 − 2a321 + 15b203)y

2 + 4a02a21(a
3
21 − 9b203)y

3 − 2b203∆1y
4

]
= −y2f(y)

are enough for our analysis.

(ii.1) The coefficient of the quartic term of f(y) in (23) is zero, i.e. ∆1 = 4a321−27b203 = 0. We
compute the resultant of a21(a

3
21−9b203) and ∆1 with respect to a21 and obtain −34012224b1003 ̸=

0. Thus the coefficient of y3 in f(y) is nonzero when ∆1 = 0. Further we have the constant
term a21(a

2
02 − 9b203) ̸= 0.

We assume that a321 = 27
4 b

2
03 > 0 and f(y) reduces to

f(y) = −a21(a202 − 9b203) + a02(a
2
02 − 36b203)y + a221(4a

2
02 + 3b203)y

2 − 9a02a21b
2
03y

3.

Since a02 < min{3b03,−3b03} we have

M9 = 4a602 + 108a402b
2
03 − 1026a202b

4
03 − 243b603 < 0,

then the discriminant of the cubic equation f(y) = 0 is

−27

4
a21b

2
03(4a

2
02 + 9b203)

2M9 > 0.

Hence f(y) = 0 has three distinct real roots. Since the coefficients of the cubic and quadratic
terms of f(y) are positive and the constant one is negative, we obtain that f(y) = 0 has only
one positive real root. By the symmetry the vector field (4) has two equilibrium points q4,5
different from q1,2,3 when ∆1 = 0. From Propositions 2.5 and 2.8 the vector field (4) has four
nodes A1, B1, O1,2 and two E-H points A2, B2, the known infinite and finite equilibrium points
except q4,5 have total index 6. Hence the total index of the elementary equilibrium points q4,5
must be −4, by the symmetry they are two saddles.

If the saddle q4 is on the boundary of the period annulus of the center q1, then it creates
a center-loop. And by the symmetry the saddle q5 is on the boundary of the period annulus
of the center q2. Then the separatrices of the saddle q3 connect with the nodes O1,2, A1 and
B1, we obtain the global phase portrait is topologically equivalent to the phase portrait 1.7 of
Figure 1.

If the saddle q3 is on the boundary of the period annulus of the center q1, by the symmetry
it is also on the boundary of the period annulus of q2, creating one eight-figure loop. Then the
saddles q4,5 are on the boundary of the period annulus of this eight-figure loop. In this subcase
the phase portrait is topologically equivalent to the phase portrait 1.9 of Figure 1.

From the phase portraits 1.7 to 1.9 it follows by the continuity of the phase portraits with
respect to the parameters that there must exist the phase portrait 1.8 of Figure 1 that the
saddles q3,4 are on the boundary of the period annulus of the center q1, and the saddles q3,5
are on the boundary of the period annulus of the center q2.

(ii.2) The coefficient of the quartic term of f(y) in (23) is nonzero, i.e. ∆1 ̸= 0. The explicit
expressions of the finite equilibrium points different from qk for k = 1, 2, 3, and their eigenvalues
in terms of parameters a02, a21 and b03 are complicated. Since on the straight line y = 0 there
are no equilibrium points different from q1,2,3 we just need to study the equilibrium points of
the first vector field of (23) for y > 0. So we can determine the number of positive real roots of
f(y), and use the index theory to analyze the phase portrait of the remaining finite equilibrium
points, which also is not an easy work.

We know that finding the number of the positive roots of f(z) is equivalent to find the
number of the negative roots of −f(−z). Now we present one discriminant sequence to obtain
the number of the negative roots of the polynomial f(z) using the following theorem, for more
detail see [37].
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Theorem 3.1. For the polynomial (15) with f(0) ̸= 0, if the number of nonzero elements of
the RSL [d1d2, d2d3, · · · , d2kd2k+1] is equal to l, and the number of the sign changes of this
RSL is equal to m, then the number of the negative roots of f(z) is l/2−m.

(ii.2.1) If a21 = 0, i.e. the constant term of f(y) is zero, we obtain f(y) = a02(a
2
02 − 9b203)y+

54b403y
4, which has only one positive real root y = − 3

√
a02(a2

02−9b203)

54b403
. Then the vector field (4)

has two equilibrium points q4,5 different from q1,2,3. From Propositions 2.5 and 2.8 the vector
field (4) has four infinite nodes A1, B1 and O1,2, where O1,2 are repelling. Then the known
infinite and finite equilibrium points have total index 6, the total index of remaining finite
equilibrium points q4,5 must be −4, i.e. they are two saddles. In a similar way to the phase
portraits 1.7–1.9 we obtain the phase portraits 1.10–1.12 of Figure 1.

(ii.2.2) If a21 ̸= 0 we consider the discriminant sequence

(24) {d̂1d̂2, d̂2d̂3, d̂3d̂4, d̂4d̂5, d̂5d̂6, d̂6d̂7, d̂7d̂8, d̂8d̂9}
associated to −f(−y) of (23). And we have

(25)

d̂1 = 2b203∆1, d̂2 = 16b403∆
2
1, d̂3 = 16a02a21b

4
03∆

2
1(a

3
21 − 9b203),

d̂4 = 64a221b
4
03∆

2
1M10, d̂5 = −32a21b

4
03∆

2
1M11, d̂6 = 64b403∆

2
1M12,

d̂7 = 16a02b
4
03∆

2
1M13, d̂8 = 16b603∆

2
1M14, d̂9 = 15a21(a

2
02 − 9b203)b

6
03∆

2
1M14,

where

M10 =3a202a
6
21 − 38a202a

3
21b

2
03 − 16a621b

2
03 + 135a202b

4
03 + 228a321b

4
03 − 810b603,

M11 =8a402a
9
21 − 8a202a

12
21 − 92a402a

6
21b

2
03 + 124a202a

9
21b

2
03 + 64a1221b

2
03 + 405a402a

3
21b

4
03

− 552a202a
6
21b

4
03 − 1392a921b

4
03 − 729a402b

6
03 − 405a202a

3
21b

6
03 + 10080a621b

6
03

+ 6561a202b
8
03 − 24300a321b

8
03,

M12 =8a602a
12
21 + 32a402a

15
21 + 32a202a

18
21 + 104a602a

9
21b

2
03 − 488a402a

12
21b

2
03 − 1184a202a

15
21b

2
03

− 256a1821b
2
03 − 1584a602a

6
21b

4
03 + 328a402a

9
21b

4
03 + 14216a202a

12
21b

4
03 + 7488a1521b

4
03

+ 5832a602a
3
21b

6
03 + 19764a402a

6
21b

6
03 − 70512a202a

9
21b

6
03 − 86688a1221b

6
03 − 6561a602b

8
03

− 90396a402a
3
21b

8
03 + 113076a202a

6
21b

8
03 + 496368a921b

8
03 + 118098a402b

10
03

+ 166212a202a
3
21b

10
03 − 1405512a621b

10
03 − 531441a202b

12
03 + 1574640a321b

12
03,

− 19683a802b
8
03 − 51018336a321b

14
03,

M13 =− 64a602a
15
21 − 256a402a

18
21 − 256a202a

21
21 + 512a802a

9
21b

2
03 − 352a602a

12
21b

2
03

+ 1952a402a
15
21b

2
03 + 7168a202a

18
21b

2
03 + 2048a2121b

2
03 − 5184a802a

6
21b

4
03 − 4008a602a

9
21b

4
03

+ 27728a402a
12
21b

4
03 − 36768a202a

15
21b

4
03 − 41472a1821b

4
03 + 17496a802a

3
21b

6
03

+ 95256a602a
6
21b

6
03 − 240624a402a

9
21b

6
03 − 328752a202a

12
21b

6
03 + 207360a1521b

6
03

− 411156a602a
3
21b

8
03 + 128304a402a

6
21b

8
03 + 3592728a202a

9
21b

8
03 + 1007424a1221b

8
03

+ 531441a602b
10
03 + 2519424a402a

3
21b

10
03 − 10118520a202a

6
21b

10
03 − 13328064a921b

10
03

− 4782969a402b
12
03 + 3542940a202a

3
21b

12
03 + 45244656a621b

12
03 + 14348907a202b

14
03,

M14 =8a802a
3
21 + 48a602a

6
21 + 96a402a

9
21 + 64a202a

12
21 − 27a802b

2
03 − 288a602a

3
21b

2
03

− 1424a402a
6
21b

2
03 − 1952a202a

9
21b

2
03 − 512a1221b

2
03 + 486a602b

4
03 + 4536a402a

3
21b

4
03

+ 15728a202a
6
21b

4
03 + 9600a921b

4
03 − 2187a402b

6
03 − 37152a202a

3
21b

6
03 − 59904a621b

6
03

+ 124416a321b
8
03.

(ii.2.2.1) If ∆1 < 0 and a21 > 0 we have d̂1d̂2 < 0, d̂2d̂3 > 0 and d̂8d̂9 < 0, then the number
of the sign changes of this RSL is at least two. By the symmetry the vector field (4) has at
most four elementary equilibrium points different from q1,2,3. On the other hand the vector
field (4) has four infinite nodes A1, B1 and O1,2. The known infinite and finite equilibrium
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A1
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q4q5

q6 q7
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q10

q11

O2
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Figure 5. The local phase portraits of the vector field (4) with the five centers
q1,2,3,10,11 and the six saddles q4,5,6,7,8,9 when ∆1 < 0 and a21 < 0.

Figure 6. An eight-figure loop is inside a center-loop.

points have total index 6. Then total index of the remaining finite equilibrium points must be
−4, i.e. the remaining finite equilibrium points are two saddles q4,5. Similar to subcase (ii.2.1)
the phase portraits are topologically equivalent to the phase portraits 1.10–1.12 of Figure 1.

(ii.2.2.2) If ∆1 < 0 and a21 < 0 we have d̂1d̂2 < 0, d̂2d̂3 < 0 and d̂8d̂9 < 0, the number of the
sign changes of this RSL is at least zero, then the vector field (4) has at most eight elementary
equilibrium points different from q1,2,3. From Propositions 2.5 and 2.8 the known equilibrium
points of the vector field (4) have total index 10. Hence the total index of the remaining finite
equilibrium points must be −8, i.e. they may be either six saddles and two centers, or four
saddles.

Assume that the vector field (4) has eight extra equilibrium points, which are six saddles
q4,5,6,7,8,9 and two centers q10,11. The local phase portraits of the all equilibrium points in the
Poincaré disc can see Figure 5. The corresponding RSL of −f(−y) must be

[−1,−1,−1,−1,−1,−1,−1,−1],

i.e. M10,12,13,14 > 0 and M11 < 0. With a computer algebra system such as Mathematica, by
solving these inequalities we obtain the condition a21 < Root[M14, 1].

If the saddle q4 is on the boundary of the period annulus of the centers q1,10, creating an
eight-figure loop, then the saddle q8 is on the boundary of the period annulus of this eight-
figure loop, see Figure 6. By the symmetry the saddle q6 is on the boundary of the period
annulus of the centers q2,11, creating an eight-figure loop, the saddle q9 is on the boundary of
the period annulus of this eight-figure loop. Then the saddles q5,7 must be on the boundary
of the period annulus of the center q3, creating a heteroclinic loop. The global phase portrait
is topologically equivalent to the phase portrait 1.13 of Figure 1, which can be realized when
a21 = −1, b03 = −0.68 and a02 = −2.1.

Or these two eight-figure loops are inside the tri-heteroclinic loop, which is created by the
saddles q5,7 and the center q3. Then one attracting and one repelling separatrices of the saddle
q8 connect the ones of the saddle q9. The global phase portrait is topologically equivalent to
the phase portrait 1.15 of Figure 1, which can be realized when a21 = −1, b03 = −0.67 and
a02 = −2.1.
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From the phase portraits 1.13 to 1.15 it follows by the continuity of the phase portraits with
respect to the parameters that there must exist the phase portrait 1.14 of Figure 1, which can
be realized when a21 = −1, b03 ≈ −0.6765 and a02 = −2.1. That is the saddles q5,7,8 are on
the boundary of the period annulus of one eight-figure loop, and the saddles q5,7,9 are on the
boundary of the period annulus of an other eight-figure loop.

Assume that the vector field (4) has four extra saddles q4,5,6,7, from the above subcase we
obtain the condition a21 ≥ Root[M14, 1]. In this subcase the phase portraits are topologically
equivalent to the phase portraits 1.16–1.18 of Figure 1.

(ii.2.2.3) If ∆1 > 0 the known infinite and finite equilibrium points have total index 10.
Hence the total index of the remaining finite equilibrium points must be −8, i.e. they are
either four saddles, or six saddles and two centers.

If the vector field (4) has eight extra equilibrium points, then −f(−y) need to have four nega-

tive roots. Since ∆1 > 0 we have d̂1d̂2 > 0 and the corresponding RSL must be [1, 1, 1, 1, 1, 1, 1, 1],
which cannot be obtained varying the parameters a02, a21 and b03 by solving the inequalities
with a321 − 9b203 < 0, M10,12,14 > 0 and M11,13 < 0. Thus this subcase is impossible.

If the vector field (4) has four extra saddles q4,5,6,7, similar to the above analysis of the phase
portraits 1.10–1.12 we can obtain the phase portraits 1.19–1.21 of Figure 1. On the other hand,
if the separatrices of the saddle q3 connect with the nodes O1,2, A3 and B3. Then the saddle q4
is on the boundary of the period annulus of the center q1, and they create a center-loop. The
separatrices of the saddle q7 connect with the infinite equilibrium points A1,2,3 and O1. By the
symmetry the global phase portrait in the Poincaé disc is topologically equivalent to the phase
portrait 1.22 of Figure 1, which can be realized a02 = −0.5, a21 = 0.8 and b03 = −0.1.

In summary we have the following result.

Theorem 3.2. When a03 = 0 the phase portraits of the continuous piecewise Z2-equivariant
cubic Hamiltonian vector field (4) are topologically equivalent to one of the 22 phase portraits
showed in Figure 1. The corresponding conditions realizing these phase portraits are given in
Table 3.

Table 3. The conditions for the phase portraits of the vector field (4) with
a03 = 0.

Conditions Phase portraits

b03 = 0

a21 = 0 1.1

a21 < 0
a202 + 2a321 ≥ 0 1.2

a202 + 2a321 < 0 1.3

a21 > 0
a402 − 12a621 ̸= 0 1.4,1.6

a402 − 12a621 = 0 1.5

b03 ̸= 0

∆1 = 0 1.7–1.9

∆1 < 0
a21 ≥ 0 1.10–1.12

a21 < Root[M14, 1] 1.13–1.15

Root[M14, 1] ≤ a21 < 0 1.16–1.18

∆1 > 0 1.19–1.22

3.2. Case a03 ̸= 0. We compute the Gröbner basis for the polynomials ẋ, ẏ, −1+3x2−2a21y
2

and 2a21x− 3b03y to analyze the non-elementary points, and obtain the following polynomials

b03, a
2
03 + 2a202a21 + 4a03a

2
21 + 4a421, −a03 − 2a221 + 2a02a21y, 1 + 2a21y

2, x,

a202 + a03a21 + 2a321 + a02a03y, a02 + a03y + 2a221y, −a21 + a02y + a03y
2.

It means that the first vector field of (4) has one possible nilpotent equilibrium point (0,−
√
−2a21

2a21
)

when the above polynomials are zero and a21 < 0. We obtain that this possible nilpotent e-
quilibrium point is a saddle.
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Figure 7. The local phase portraits at the origin of systems (26) and (27).

Then we calculate the Gröbner basis for the four polynomials ẋ, ẏ, 2a21x−3b03y andM8, and
obtain twenty-nine polynomials. We can find that one polynomial a221(a

2
02 + 4a03a21 − 9b203)

must be zero when the first vector field of (4) has a nilpotent equilibrium point. We take
a21 = 0 and again compute the Gröbner basic for the above four polynomials and obtain

b03y, a202y, y(2a02 + 3a03y), a02y
2, (−1 + x)x(1 + x).

It means that there is no nilpotent equilibrium points different from q1,2,3 when a21 = 0.

Otherwise we take a03 = −a2
02−9b203
4a21

̸= 0 and compute the Gröbner basic for the above four
polynomials, then we obtain the four polynomials

b03(3a
2
02 + 8a321 − 27b203), −b03(6a02a21 + 8a321y − 27b203y), −2a21 + a02y,

2a21x− 3b03y

a21
.

Hence it has one nilpotent equilibrium point (3b03a02
, 2a21

a02
) different from q1,2,3 when b03(3a

2
02 +

8a321 − 27b203) = 0 and a21 < 0, which is a cusp.

Next we analyze the degenerate equilibrium points of the first vector field of (4). We calculate
the Gröbner basis for five polynomials ẋ, ẏ, −1 + 3x2 − 2a21y

2, y(2a21x− 3b03y) and M8, and
we obtain the nine polynomials

b03, a
4
02 − 8a303, a

2
02 + 4a03a21, 2a

2
03 + a202a21,

− a03 + 2a221, a02 + 2a03y, −2a21 + a02y, 1 + 2a21y
2, x.

It means that it has one degenerate equilibrium point (0,− a02

2a03
) when the above polynomials

are zero and a21 < 0. For analyzing the local phase portrait of this degenerate equilibrium
point we need to do blow-ups. We do the change y → Y − a02

2a03
and a03 → 2a221 and the vector

field (4) becomes

(26)

ẋ =− a02
4a21

x2 − a02
2
Y 2 + a21x

2Y + 2a221Y
3,

Ẏ =
x3

2
+

a02
2a21

xY − a21xY
2.

Applying the directional blow-up (x, Y ) → (x,w) with w = Y
x and eliminating the common

factor x we have

(27)

ẋ =− a02
4a21

x− 1

2
a02xw

2 + a21x
2w + 2a221x

2w3,

ẇ =
x

2
+

3a02
4a21

w − 2a21xw
2 +

a02
2
w3 − 2a221xw

4.

For x = 0 system (27) has three saddles (0, 0) and (0,±
√
−6a21

2a21
), see Figure 7 (a). Going back

through the change of variables to system (26) we obtain that the local phase portrait at the
origin has six hyperbolic sectors, as it is shown in Figure 7 (b).

Now we consider the elementary finite equilibrium points of the vector field (4). Similar to
the previous case we divide the study with two subcases b03 = 0 and b03 ̸= 0.
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q4q5
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Figure 8. The local phase portraits at all equilibrium points of the vector
field (4) with −2a221 < a03 < 0, b03 = 0 and a21 > 0.

(i) Assume that b03 = 0 we have M2 = a03(a03 + 2a221)
2. Then the vector field (4) is also

symmetry respect to the x-axis and the y-axis.

(i.1) If a03 = −2a221 ̸= 0, then M2 = 0. When a21 > 0 the vector field (4) has no finite
equilibrium points different from q1,2,3, the saddle q3 must be on the boundary of the period
annulus of the centers q1,2, creating an eight-figure loop. From Proposition 2.7 we obtain that
only condition XII of Table 2 satisfies this subcase. And the vector field (4) has four E-H
equilibrium points Ai and Bi (i = 1, 2), whose elliptic sectors are outside the Poincaré disc.
Then the infinite and finite equilibrium points have total index 2. By the symmetries in this
subcase the phase portrait is topologically equivalent to the phase portrait 1.23 of Figure 1.

When a21 < 0 we obtain that only condition XX of Proposition 2.7 satisfies this subcase.
Then the vector field (4) has no infinite equilibrium points and five finite equilibrium points,

where q1,2,3 are three centers and q4,5 = (0,±a02+
√

a2
02−8a3

21

4a2
21

) are two saddles, and these five

equilibrium points create a tri-heteroclinic loop. In this subcase the only possible phase portrait
is topologically equivalent to the phase portrait 1.24 of Figure 1.

(i.2) If a03 + 2a221 ̸= 0, then M2 ̸= 0.

(i.2.1) We consider condition I, i.e. a21 > 0, −2a221 < a03 < 0, and the vector field (4) has
eight infinite equilibrium points Ai and Bi (i = 1, 2, 3, 4), which are nodes. From the previous
analysis the known infinite and finite equilibrium points have total index 10. Hence the total
index of the remaining finite equilibrium points must be −8. Then we obtain that the vector
field (4) has four saddles

q4,5 =

(
±

√
a203 + 2a202a21 + 4a03a221 + 4a421

a03 + 2a221
,− a02

a03 + 2a221

)
,

q6,7 =

(
∓

√
a203 + 2a202a21 + 4a03a221 + 4a421

a03 + 2a221
,

a02
a03 + 2a221

)
,

different from q1,2,3. The local phase portraits at all equilibrium points in the Poincaré disc
are drawn in Figure 8.

Similar to the analysis of the phase portraits 1.4–1.6, we obtain the phase portraits 1.25–1.27
of Figure 1. In fact we can obtain the condition of the corresponding phase portrait 1.26. Since
the five saddles q3,4,5,6,7 are in the same energy level, we have the Hamiltonian

(28)

H+|q4,5 = H−|q6,7 =− 2a402 − 3a303 − 18a203a
2
21 − 36a03a

4
21 − 24a621

24(a03 + 2a221)
3

=− M15

24(a03 + 2a221)
3
= 0,

i.e. a02 = − 4

√
3(a03+2a2

21)
3

2 .
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Figure 9. The possible local phase portraits at all equilibrium points of the

vector field (4) with a21 < 0, b03 = 0 and 0 < a03 < − a2
02

4a21
.

(i.2.2) Since M2 ̸= 0 we consider the subcase when the vector field (4) has four infinite nodes
Ai and Bi (i = 1, 2), where one of the conditions V, IX and X satisfies this subcase.

(i.2.2.1) Assume that condition V (i.e. a21 < 0 and a03 > 0) holds. From the previous
analysis, the known equilibrium points have total index 10. Hence the total index of the
remaining finite equilibrium points must be −8.

If a03 > − a2
02

4a21
the extra finite equilibrium points are four saddles q4,5,6,7, which are in the

same energy level. Since there are no other finite equilibrium points, these four saddles q4,5,6,7
must connect to each other one by one. The only possible global phase portrait in the Poincaé
disc is topologically equivalent to the phase portrait 1.28 of Figure 1.

If a03 = − a2
02

4a21
and a402 +8a321 ̸= 0 the extra finite equilibrium points are four saddles q4,5,6,7

and two cusps q̃8,9 = (0,±2a21

a02
). Similar to the above subcase we obtain that the phase portrait

is topologically equivalent to the phase portrait 1.29 of Figure 2.

If a03 = − a2
02

4a21
and a402 + 8a321 = 0 then the vector field (4) has two extra degenerate

equilibrium points q̃4,5 = (0,± 2a21

a02
), whose phase portrait has six hyperbolic sectors. Then

these two equilibrium point must be on the boundary of the period annulus of the centers
q1,2,3. In this subcase the global phase portrait is topologically equivalent to the phase portrait
1.30 of Figure 2.

If 0 < a03 < − a2
02

4a21
there are several subcases. First if a203 + 2a202a21 + 4a03a

2
21 + 4a421 < 0,

i.e a02 < −
√

−2a321 and 0 < a03 < −2a221 +
√

−2a202a21 then the vector field (4) has four extra
finite equilibrium points q8,9,10,11, where

q8,9 =

(
0,±−a02 +

√
a202 + 4a03a21
2a03

)
,

q10,11 =

(
0,∓a02 +

√
a202 + 4a03a21
2a03

)
,

which are four saddles. Then we have that the global phase portrait is topologically equivalent
to the phase portrait 1.18 of Figure 1.

If a203 + 2a202a21 + 4a03a
2
21 + 4a421 > 0 then the vector field (4) has eight extra equilibrium

points qi for i = 4, 5, · · · , 10, 11. We compute the Jacobian matrices of the vector field (4) at
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Figure 10. A homo-heteroclinic loop.

q8,9,10,11 and obtain

(29)

J |q8,9 =

 0 −−a2
02−4a03a21+a02

√
a2
02+4a03a21

2a03

−a2
03+a2

02a21+2a03a
2
21−a02a21

√
a2
02+4a03a21

2a2
03

0

 ,

J |q10,11 =

 0
−a2

02−4a03a21+a02

√
a2
02+4a03a21

2a03

−a2
03+a2

02a21+2a03a
2
21+a02a21

√
a2
02+4a03a21

2a2
03

0

 .

By the eigenvalues of J |q8,9,10,11 we obtain that q8,9 are two saddles and q10,11 are two centers
when (a): M16 > 0, where

(30)

M16 =− a202a
3
03 − 2a402a03a21 − 4a403a21 − 10a202a

2
03a

2
21 − 8a303a

3
21

+ a02a
3
03

√
a202 + 4a03a21 + 2a302a03a21

√
a202 + 4a03a21

+ 6a02a
2
03a

2
21

√
a202 + 4a03a21.

And q8,9 are two centers and q10,11 are two saddles when (b): M16 < 0. Then we have the local
phase portraits at all equilibrium points of the vector field (4) in the Poincaré disc, see Figure
9 (a) and (b), respectively. Using the Hamiltonian quantifies we know that q4,5,6,7 are in the
same energy level. By the symmetries the separatrices of the saddles q4,5,6,7 connect with the
other one by one.

Subcase (a): That is either −2
√
−2a321 < a02 ≤ −

√
−2a321 and −2a221+

√
−2a202a21 < a03 <

− a2
02

4a21
, or −

√
−2a321 < a02 < 0 and 0 < a03 < − a2

02

4a21
. If the saddles q4,7 are on the boundary of

the period annulus of the center q1, they create a heteroclinic loop. Then the saddle q8 is on the
boundary of the period annulus of the center q10, creating a center-loop. By the symmetries
we obtain the global phase portrait 1.31 of Figure 2, which can be realized when a02 = −1,
a21 = −1 and a03 = 0.24.

If the centers q4,5 are also on the boundary of the period annulus of the center q10, by the
symmetries they create a quadruple-heteroclinic loop with the saddles q4,5,6,7 and the centers
q1,2,3,10,11. Then the one attracting and one repelling separatrices of the saddle q8 connect with
the ones of the saddle q9. The global phase portrait is topologically equivalent to the phase
portrait 1.33 of Figure 2, which can be realized when a02 = −1, a21 = −1 and a03 = 0.2.

From the phase portraits 1.31 and 1.33 it follows by the continuity of the phase portraits
with respect to the parameters the existence of the phase portrait 1.32 of Figure 2, which can
be realized when a02 = −1, a21 = −1 and a03 ≈ 0.228747. In this subcase the values of the
Hamiltonian at these six saddles q4,5,6,7,8,9 are H+(x, y)|q4,5,8 = H−(x, y)|q6,7,9 , i.e.

− M15

24(a03 + 2a221)
3
=

(−a02 +
√
a202 + 4a03a21)

2(−a202 − 6a03a21 + a02
√
a202 + 4a03a21)

96a303
.

By solving the above equation we obtain −2
√
−2a321 < a02 < 0 and a03 = R[M17, 1], where

M17 =− 8a402a
4
21 + 32a202a

7
21 + (−12a402a

2
21 + 32a202a

5
21 + 144a821)a03

+ (−6a402 + 8a202a
3
21 + 288a621)a

2
03 + 216a421a

3
03 + 72a221a

4
03 + 9a503.
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Figure 11. With condition IX or X, one possible phase portrait of vector
field (4) when a03 ̸= 0 and b03 = 0.

Subcase (b): That is a02 < −2
√
−2a321 and −2a221 +

√
−2a202a21 < a03 < − a2

02

4a21
. If the

saddles q4,5 are on the boundary of the period annulus of the center q8, then it creates a
heteroclinic loop. By the symmetry the saddles q6,7 are on the boundary of the period annulus
of the center q9. Then the saddles q10,11 are on the boundary of the period annulus of the
centers q1,2,3, creating a tri-heteroclinic loop. Hence we have the global phase portrait 1.34 of
Figure 2, which can be realized when a02 = −1, a21 = −0.4 and a03 = 0.6.

If the saddles q4,7 are on the boundary of the period annulus of the center q1, the saddles q5,6
are on the boundary of the period annulus of the center q2, then they create two heteroclinic
loops. By the symmetries the saddles q10,11 must be on the boundary of the period annulus
of the center q3, then the saddles q10,11 are also on the boundary of the period annulus of the
centers q8,9, respectively. Thus they create a homo-heteroclinic loop, see Figure 10. The global
phase portrait is topologically equivalent to the phase portrait 1.36 of Figure 2, which can be
realized when a02 = −1, a21 = −0.4 and a03 = 0.61.

From the phase portraits 1.34 and 1.36 it follows by the continuity of the phase portraits
with respect to the parameters the existence of the phase portrait 1.35 of Figure 2, which can
be realized when a02 = −1, a21 = −0.4 and a03 ≈ 0.606045. Similar to the phase portrait 1.32,
we obtain that the values of Hamiltonian at these six saddles q4,5,6,7,10,11 are equal. We obtain

the conditions a02 < −2
√
−2a321 and a03 = R[M17, 1].

(i.2.2.2) Assume that condition IX or X holds. From the previous analysis the known infinite
and finite equilibrium points have total index 6. Hence the total index of the remaining finite
equilibrium points must be −4. Since a21 ≥ 0 these remaining equilibrium points can not be
cusps. And we obtain that the extra equilibrium points are four saddles q4,5,6,7 and two centers
q8,9. If the saddles q4,5 are on the boundary of the period annulus of the center q8, they create
a heteroclinic loop. By the symmetries the saddles q6,7 are on the boundary of the period
annulus of the center q9. Then the saddle q3 is on the boundary of the period annulus of the
centers q1,2, and they create an eight-figure loop. Then we have the global phase portrait 1.37
of Figure 2, which can be realized when a02 = −1, a21 = −0.4 and a03 = 0.6.

If the saddles q4,7 are on the boundary of the period annulus of the center q1, they create
a heteroclinic loop. By the symmetries the saddles q5,6 are on the boundary of the period
annulus of the center q2. Then the saddles q8,9 are on the boundary of the period annulus of
the center q3, they create an eight-figure loop. We obtain the phase portrait of Figure 11, but
this phase portrait is topologically equivalent to the phase portrait 1.37 of Figure 2.

From the phase portrait 1.37 to the phase portrait of Figure 11 it follows by the continuity
of the phase portraits with respect to the parameters the existence of the phase portrait 1.38
of Figure 2, which can be realized when a02 ≈ −1.10668, a21 = 0 and a03 = 1. In this subcase
the five saddles q3,4,5,6,7 are in the same energy level of the Hamiltonian (28) and we have

a02 = − 4

√
3(a03+2a2

21)
3

2 .



25

(i.2.3) We consider the subcase when the vector field (4) has no infinite equilibrium points,
then one of the conditions XIV, XVII and XIX must be satisfied in this subcase.

(i.2.3.1) Assume that the condition XIV holds. Then the vector field (4) has no extra finite
equilibrium points different from q1,2,3, where q3 is a saddle. Then the global phase portrait is
topologically equivalent to the phase portrait 1.39 of Figure 2.

(i.2.3.2) Assume that one of the conditions XVII and XIX holds. Then the vector field (4)
has two extra finite equilibrium points q8,9, where q3 is a center and q8,9 are two saddles. The
global phase portrait in the Poincaré disc is topologically equivalent to the phase portrait 1.24
of Figure 1.

Table 4. The conditions for the phase portraits of the vector field (4) with
a03 ̸= 0 and b03 = 0.

Conditions Phase portraits

a03 = −2a221
a21 > 0 1.23

a21 < 0 1.24

a03 + 2a221 ̸= 0

a21 > 0

−2a221 < a03 < 0, a02 ̸= − 4
√

3(a03+2a2
21)

3

2
1.25,1.27

−2a221 < a03 < 0, a02 = − 4
√

3(a03+2a2
21)

3

2
1.26

a03 > 0, a02 ̸= − 4
√

3(a03+2a2
21)

3

2
1.37

a03 > 0, a02 = − 4
√

3(a03+2a2
21)

3

2
1.38

a03 < −2a221 1.39

a21 = 0
a03 > 0, a02 ̸= − 4

√
3a3

03
2

1.37

a03 > 0, a02 = − 4
√

3a3
03
2

1.38

a03 < 0 1.24

a21 < 0

a03 > − a2
02

4a21
1.28

a03 = − a2
02

4a21
, a202 + 8a321 ̸= 0 1.29

a03 = − a2
02

4a21
, a202 + 8a321 = 0 1.30

a02 < −
√

−2a321, 1.18

0 < a03 < −2a221 +
√

−2a202a21

−2
√

−2a321 < a02 ≤ −
√

−2a321, 1.31,1.33

−2a221 +
√

−2a202a21 < a03 < − a2
02

4a21
;

−
√

−2a321 < a02 < 0, 0 < a03 < − a2
02

4a21

−2
√

−2a321 < a02 < 0, a03 = R[M17, 1] 1.32

a02 < −2
√

−2a321, a03 ̸= R[M17, 1], 1.34,1.36

−2a221 +
√

−2a202a21 < a03 < − a2
02

4a21

a02 < −2
√

−2a321, a03 = R[M17, 1] 1.35

a03 < 0 1.24

In summary we have the following result.

Theorem 3.3. When a03 ̸= 0 and b03 = 0 the phase portraits of the continuous piecewise
Z2-equivariant cubic Hamiltonian vector field (4) are topologically equivalent to one of the 18
phase portraits showed in Figures 1 and 2. The corresponding conditions realizing these phase
portraits are given in Table 4.

(ii) We assume that b03 ̸= 0. The explicit expressions of the finite equilibrium points different
from qk for k = 1, 2, 3, and their eigenvalues in terms of the four parameters a02, a03, a21 and
b03 are more complicated. From the first vector field of (4) we compute the Gröbner basis for
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ẋ and ẏ and we obtain sixteen polynomials, the following two polynomials

y2
[
x(a02a21 + a03a21y + 2a321y − 9b203y)

− b03(3a21 − 3a02y − 3a03y
2 + 2a221y

2)

]
and

(31)

− y2
[
− a21(a

2
02 − 9b203) + a02(a

2
02 − 2a03a21 − 4a321 − 9b203)y

+ (3a202a03 − a203a21 + 4a202a
2
21 − 4a03a

3
21 − 4a521 − 9a03b

2
03 + 30a221b

2
03)y

2

+ a02M18y
3 +M2y

4

]
= −y2f(y),

are enough for our analysis, where

M18 = (a03 + 2a221)(3a03 + 2a221)− 36a21b
2
03.

Thus to find the number of finite equilibrium points of the first vector field of (4) for y > 0 is
equivalent to find the number of positive real roots of f(y).

Subcase (ii.1): Assume that M2 = 0, i.e. the coefficient of the quartic term of f(y) in (31) is
zero.

(ii.1.1) If M18 = 0, then f(y) has at most two positive real roots. Correspondingly the
vector field (4) has at most four finite elementary equilibrium points for y > 0. By solving
M2 =M18 = 0, from a03 ̸= 0 we have 8a321−27b203 = 0 and a03 = 2

3a
2
21. Hence only condition XI

of Proposition 2.7 satisfies this subcase. Then the vector field (4) has four infinite equilibrium
points Ai and Bi (i = 1, 2), which are nodes. The origin q3 is a saddle. The total index of
the known infinite and finite equilibrium points is 6. Hence the total index of the remaining
finite equilibrium points must be −4. Since the vector field (4) has no cusps for y > 0 when
a21 ≥ 0, these remaining equilibrium points are two saddles. By the symmetry in this subcase
the phase portraits are topologically equivalent to the phase portraits 1.10–1.12 of Figure 1.

(ii.1.2) Otherwise M18 ̸= 0, then the coefficient of the cubic term of f(y) in (31) is nonzero.
From M2 = 0 we find that only condition II or XIII of Proposition 2.7 satisfies this subcase.

(ii.1.2.1) When condition II holds the vector field (4) has six infinite equilibrium points A1,2,3

and B1,2,3, where A1,2 and B1,2 are four nodes, A3 and B3 are two E-H points. If the hyperbolic
sectors of A3 and B3 are outside the Poincaré disc, then they do not appear in the phase portrait
of our piecewise differential vector field. The known infinite and finite equilibrium points have
total index 10. Hence the total index of the remaining finite equilibrium points must be −8,
i.e. they are four saddles. In fact from a03 = R[M2, 3] we have that the cubic polynomial f(y)
has two positive real roots, and its constant term is positive and the coefficient of the cubic
term is also positive. In this subcase the phase portraits are topologically equivalent to the
phase portraits 1.40–1.41 of Figure 2.

If the elliptic sectors of A3 and B3 are outside the Poincaré disc, then the known infinite
and finite equilibrium points have total index 6. Hence the total index of the remaining finite
equilibrium point must be −4. Similarly from a03 = R[M2, 2] the remaining equilibrium points
are two saddles. By the symmetry the phase portraits are topologically equivalent to the phase
portraits 1.7–1.9 of Figure 1.

(ii.1.2.2) When condition XIII holds the vector field (4) has two infinite equilibrium points
A1 and B1, which are two E-H equilibrium points.

(ii.1.2.2.1) We assume that a21 ≥ 0 the vector field (4) has no extra equilibrium points, where
the origin q3 is a saddle. In this subcase the phase portrait is topologically equivalent to the
phase portrait 1.1 of Figure 1.

(ii.1.2.2.2) We assume that a21 < 0. There is no parameters a02, a21, a03 and b03 by solving
M7 > 0, M2 = 0 and M18 < 0, we obtain M18 > 0. Further the coefficient of the cubic term
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of f(y) in (31) is negative and the constant one is positive, then the polynomial f(y) cannot
have two positive real roots.

If the elliptic sectors of A1 and B1 are inside the Poincaré disc, the known infinite and
finite equilibrium points have total index 10. Hence the total index of the remaining finite
equilibrium points must be −8, i.e. they are four saddles and two cusps. From the previous

analysis we have a03 = −a2
02−9b203
4a21

when one finite equilibrium point of the vector field (4) is a
cusp, then we obtain

M2 =
1

64a221
(−a302 + 8a02a

3
21 − 9a202b03 + 8a321b03 − 27a02b

2
03 − 27b303)

× (a302 − 8a02a
3
21 − 9a202b03 + 8a321b03 + 27a02b

2
03 − 27b303).

But there is no values of the parameters a02, a21 and b03 such that M2 ≤ 0, so we obtain that

a03 ̸= a2
02−9b203
4a21

when M2 ≤ 0, then the vector field (4) has no cusps when M2 ≤ 0. Thus this
subcase cannot hold.

If the hyperbolic sectors of A1 and B1 are inside the Poincaré disc, the known infinite and
finite equilibrium points have total index 6. Hence the total index of the remaining finite
equilibrium points must be −4, i.e. they are either two saddles, or four saddles and two
centers.

When the remaining equilibrium points are two saddles q4,5, then they create a tri-heteroclinic
loop with the centers q1,2,3. We obtain that the phase portrait is topologically equivalent to
the phase portrait 1.2 of Figure 1.

Otherwise the vector field (4) has four centers q1,2,8,9 and five saddles q3,4,5,6,7. Since the
number of saddles is more than the number of centers, there is at least one saddle on the
boundary of the period annulus of two centers. Assume that the saddle q4 is on the boundary
of the period annulus of the centers q1,8, by the symmetry, the saddle q6 is on the boundary of
the period annulus of the centers q2,9. Then they create two eight-figure loops, which are inside
one tri-heteroclinic loop creating by the center q3 and the saddles q5,7. Then we obtain the
phase portrait 1.42 of Figure 2, which can be realized when a02 = −1, a21 = −1, a03 ≈ −0.01995
and b03 = −0.1.

Table 5. The conditions for the phase portraits of the vector field (4) with
a03b03 ̸= 0 and M2 = 0.

Conditions Phase portraits

8a321 − 27b203 = 0, a03 = 2
3
a221 1.10–1.12

8a321 − 27b203 > 0 a21 > 0
a03 = R[M2, 2] 1.7–1.9

a03 = R[M2, 3] 1.40–1.41

8a321 − 27b203 ̸= 0
a21 ≥ 0 a03 = R[M2, 1] 1.1

a21 < 0 a03 = R[M2, 1] 1.2,1.42

In summary we have the following result.

Theorem 3.4. When a03b03 ̸= 0 and M2 = 0 the phase portraits of the continuous piecewise
Z2-equivariant cubic Hamiltonian vector field (4) are topologically equivalent to one of the 11
phase portraits showed in Figures 1 and 2. The corresponding conditions realizing these phase
portraits are given in Table 5.

Subcase (ii.2): Assume that M2 ̸= 0, i.e. the coefficient of the quartic term of f(y) in (31) is
nonzero.

(ii.2.1) Assume that a21 = 0. Then the polynomial f(y) = yf(y), where

f(y) = a02(a
2
02 − 9b203) + 3a03(a

2
02 − 3b203)y + 3a02a

2
03y

2 + (a303 + 54b403)y
3.
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Now we compute the number of negative real roots of −f̄(−y) in order to analyze the positive
real roots of f(y). So we consider the discriminant sequence

(32) {d̄1d̄2, d̄2d̄3, d̄3d̄4, d̄4d̄5, d̄5d̄6, d̄6d̄7}

associated to −f̄(−y), and we have

(33)

d̄1 = a303 + 54b403 =M2, d̄2 = 3M
2

2, d̄3 = −3a02a
2
03M

2

2,

d̄4 = 54a03b
2
03M

2

2M10, d̄5 = −54a203b
2
03M

2

2M11, d̄6 = 2916b603M
2

2M12,

d̄7 = −2916a02b
6
03(a

2
02 − 9b203)M

2

2M12,

where

M10 =a303 − 18a202b
2
03 + 54b403,

M11 =− a202a
3
03 + 27a402b

2
03 + 6a303b

2
03 − 135a202b

4
03 + 324b603,

M12 =a603 − 27a602b
2
03 − 54a202a

3
03b

2
03 + 486a402b

4
03 + 54a303b

4
03 − 2187a202b

6
03.

Since the coefficient of the cubic term of f̄(y) is nonzero, f̄(y) has at most three positive real
roots. Hence the vector field (4) has at most six finite equilibrium points different from q1,2,3.

(ii.2.1.1) We consider condition IV or VII, i.e. a03 > 3b03
3
√
2b03, where the vector field (4)

has four infinite nodes A1,2 and B1,2. Since the origin q3 is a saddle the total index of the
known infinite and finite equilibrium points is 6. Hence the total index of the remaining finite
equilibrium points must be −4, i.e. they are either two saddles, or two saddles and two cusp,
or four saddles and two centers. But the vector field (4) has no cusps for y > 0 when a21 ≥ 0.

When the remaining finite equilibrium points are two saddles q4,5, we obtain that the global
phase portraits in the Poincaré disc are topologically equivalent to the phase portraits 1.10–1.12
of Figure 1.

When the remaining finite equilibrium points are four saddles q4,5,6,7 and two centers q8,9,
we assume that the saddles q4,6 are on the boundary of the period annulus of the centers q1,2,
respectively. If the saddles p5,7 are on the boundary of the period annulus of the centers q8,9,
respectively. Then the vector field (4) has four center-loops. The global phase portrait in the
Poincaré disc is topologically equivalent to the phase portrait 1.43 of Figure 2, which can be
realized when a03 = 1, b03 = −0.1 and a02 = −1.

If the saddle q3 is on the boundary of the period annulus of the centers q8,9, creating one
eight-figure loop. Then in this case the phase portrait is topologically equivalent to the phase
portrait 1.45 of Figure 2, which can be realized when a03 = 1, b03 = −0.1 and a02 = −0.8.

From the phase portraits 1.43 and 1.45 it follows by the continuity of the phase portraits
with respect to the parameters the existence of the phase portrait 1.44 of Figure 2, which can
be realized when a03 = 1, b03 = −0.1 and a02 ≈ −0.83.

(ii.2.1.2) We consider that the condition XV holds, i.e. a03 < 3b03
3
√
2b03, where the vector

field (4) has no infinite equilibrium points and M2 < 0. Further we have d1d2 < 0, d2d3 > 0,
d3d4 > 0, d4d5 < 0 and d6d7 > 0 so the number of the sign changes is at least three, i.e. −f̄(−y)
has no negative real roots. Hence the vector field (4) has no finite equilibrium points different
from q1,2,3. We obtain that the global phase portrait in the Poincaré disc is topologically
equivalent to the phase portrait 1.39 of Figure 2.

(ii.2.2) Assume that a21 ̸= 0. We consider the discriminant sequence

(34) {d̃1d̃2, d̃2d̃3, d̃3d̃4, d̃4d̃5, d̃5d̃6, d̃6d̃7, d̃7d̃8, d̃8d̃9}

associated to

− f(−y) = a21(a
2
02 − 9b203) + a02(a

2
02 − 2a03a21 − 4a321 − 9b203)y

− (3a202a03 − a203a21 + 4a202a
2
21 − 4a03a

3
21 − 4a521 − 9a03b

2
03 + 30a221b

2
03)y

2

+ a02M18y
3 −M2y

4,
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from (31), and we have

(35)

d̃1 = −M2, d̃2 = 4M2
2 , d̃3 = a02M7M

2
2 , d̃4 =M2

2 M̃10,

d̃5 =M2
2 M̃11, d̃6 = 2M2

2 M̃12, d̃7 = −2a02M
2
2 M̃13, d̃8 = 4b203M

2
2 M̃14,

d̃9 = 4a21(a
2
02 − 9b203)b

2
03M

2
2 M̃14,

where

M̃10 =3a202a
4
03 + 8a503a21 + 16a202a

3
03a

2
21 + 64a403a

3
21 + 40a202a

2
03a

4
21 + 192a303a

5
21 + 64a202a03a

6
21

+ 256a203a
7
21 + 48a202a

8
21 + 128a03a

9
21 + 72a403b

2
03 + 216a202a

2
03a21b

2
03 − 240a303a

2
21b

2
03

− 384a202a03a
3
21b

2
03 − 1888a203a

4
21b

2
03 − 608a202a

5
21b

2
03 − 2368a03a

6
21b

2
03 − 256a821b

2
03

− 1296a202a03b
4
03 − 2160a203a21b

4
03 + 2160a202a

2
21b

4
03 + 792a03a

3
21b

4
03 + 3648a521b

4
03

+ 3888a03b
6
03 − 12960a221b

6
03,

M̃11 =3a202a
6
03a21 + 4a703a

2
21 + 16a202a

5
03a

3
21 − 8a402a

3
03a

4
21 + 48a603a

4
21 + 12a202a

4
03a

5
21

− 48a402a
2
03a

6
21 + 240a503a

6
21 − 64a202a

3
03a

7
21 − 96a402a03a

8
21 + 640a403a

8
21 − 112a202a

2
03a

9
21

− 64a402a
10
21 + 960a303a

10
21 + 768a203a

12
21 + 64a202a

13
21 + 256a03a

14
21 − 54a202a

5
03b

2
03

− 216a402a
3
03a21b

2
03 + 72a603a21b

2
03 + 54a202a

4
03a

2
21b

2
03 + 216a402a

2
03a

3
21b

2
03 + 92a503a

3
21b

2
03

+ 1368a202a
3
03a

4
21b

2
03 + 1152a402a03a

5
21b

2
03 − 1376a403a

5
21b

2
03 + 2848a202a

2
03a

6
21b

2
03

+ 736a402a
7
21b

2
03 − 7168a303a

7
21b

2
03 + 1024a202a03a

8
21b

2
03 − 11904a203a

9
21b

2
03 − 992a202a

10
21b

2
03

− 7168a03a
11
21b

2
03 − 512a1321b

2
03 + 1458a402a

2
03b

4
03 + 324a503b

4
03 + 1620a202a

3
03a21b

4
03

− 3888a402a03a
2
21b

4
03 − 3240a403a

2
21b

4
03 − 18144a202a

2
03a

3
21b

4
03 − 3240a402a

4
21b

4
03

− 4320a303a
4
21b

4
03 − 15984a202a03a

5
21b

4
03 + 34752a203a

6
21b

4
03 + 4416a202a

7
21b

4
03

+ 61248a03a
8
21b

4
03 + 11136a1021b

4
03 − 7290a202a

2
03b

6
03 + 5832a402a21b

6
03 − 7776a303a21b

6
03

+ 69984a202a03a
2
21b

6
03 + 77760a203a

3
21b

6
03 + 3240a202a

4
21b

6
03 − 148608a03a

5
21b

6
03

− 80640a721b
6
03 + 17496a203b

8
03 − 52488a202a21b

8
03 − 116640a03a

2
21b

8
03 + 194400a421b

8
03,

M̃12 =a202a
8
03a

2
21 + 4a402a

6
03a

3
21 + 4a903a

3
21 + 4a602a

4
03a

4
21 + 32a202a

7
03a

4
21 + 64a402a

5
03a

5
21

+ 64a803a
5
21 + 32a602a

3
03a

6
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Since the sequence associated to −f(−y) is very completed, it is not easy to analyze all
RSL. We consider the following two subcases a21 > 0 and a21 < 0 in order to study the phase
portraits of vector field (4).

(ii.2.2.1) Assume that a21 > 0. From the previous analysis we know that the vector field (4)
has no cusps.

(ii.2.2.1.1) We consider the vector field (4) has eight infinite nodes Ai and Bi (i = 1, 2, 3, 4),
i.e. the vector field (4) satisfies condition I. Since M2 < 0 we obtain that the polynomial
−f(−y) has four distinct negative real roots if and only if the RSL of (32) is [1, 1, 1, 1, 1, 1, 1, 1],
which cannot be obtained varying the parameters a02, a21, a03 and b03 by solving the inequality

didi+1 > 0, i.e. M7 < 0 and M̃10,11,12,13,14 > 0. And the polynomial −f(−y) has three distinct
negative real roots if and only if the RSL of (32) is [1, 1, 1, 1, 1, 1, 0, 0], which also cannot be
obtained. Therefore the polynomial −f(−y) has at most two negative real roots. By the
symmetry the vector field (4) has at most four additional finite equilibrium points different
from q1,2,3.
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(a) (b)

Figure 12. (a) A center-heteroclinic loop; (b) A chain-heteroclinic loop.

From the previous analysis we obtain that the known infinite and finite equilibrium points
have total index 10. Hence the total index of the remaining finite equilibrium points must be
−8, i.e. they are four saddles q4,5,6,7. Then we obtain that the global phase portraits in the
Poincaré disc are topologically equivalent to the phase portraits 1.19–1.21 of Figure 1.

(ii.2.2.1.2) We consider the vector field (4) has four infinite nodes, i.e. the vector field (4)

satisfies one of the conditions III, VI and IX. Since M2 > 0 we have d̃1d̃2 < 0 and d̃8d̃9 > 0,
so the RSL of (32) can not be [−1,−1,−1,−1,−1,−1,−1,−1]. Hence the polynomial −f(−y)
has at most three negative real roots. By the symmetry the vector field (4) has at most six
finite equilibrium points different from q1,2,3.

From the previous analysis the known infinite and finite equilibrium points have total index
6. Hence the total index of the remaining finite equilibrium points must be −4, i.e. they
are either two saddles, or four saddles and two centers. Similar to the subcase (ii.2.1.1) the
global phase portraits in the Poincaré disc are topologically equivalent to the phase portraits
1.10–1.12 of Figure 1 and 1.43–1.45 of Figure 2.

(ii.2.2.1.3) We consider the vector field (4) has no infinite equilibrium points, i.e. it satisfies
condition XIV. We find that −f(−y) has no negative real roots, by the symmetry the global
phase portrait in the Poincaré disc is topologically equivalent to the phase portrait 1.39 of
Figure 2.

(ii.2.2.2) Assume that a21 < 0.

(ii.2.2.2.1) We consider the vector field (4) has four infinite nodes, i.e. it satisfies condition
V or VIII. The polynomial −f(−y) has at most four negative real roots, then the vector field
(4) has at most eight finite equilibrium points different from q1,2,3. From the previous analysis
the known infinite and finite equilibrium points have total index 10. Hence the total index of
the remaining finite equilibrium points must be −8, i.e. they are either four saddles, or four
saddles and two cusps, or six saddles and two centers.

When the remaining finite equilibrium points are four saddles q4,5,6,7 we can obtain the phase
portraits 1.16–1.18 of Figure 1.

When the remaining finite equilibrium points are four saddles q4,5,6,7 and two cusps q8,9 =

( 3b03a02
, 2a21

a02
), the global phase portraits in the Poincaé disc are topologically equivalent to the

phase portraits 1.46 of Figure 2, which can be realized when a21 = −1, a03 = 2/3, b03 = −1
and a02 ≈ −3.415651.

When the remaining finite equilibrium points are six saddles q4,5,6,7,8,9 and two centers
q10,11, the local phase portraits at all equilibrium points of the vector field (4) are topologically
equivalent to the one of Figure 9(a). We can obtain the global phase portraits 1.13–1.15 of
Figure 1.

On the other hand, if the saddles q4,6,8,9 are on the boundary of the period annulus of the
centers q1,2,10,11, respectively, creating four center-loops. Then the saddles q5,7 must be on the
boundary of the period annulus of the center q3, creating a heteroclinic loop. The global phase
portrait is topologically equivalent to 1.47 of Figure 2.

From the phase portrait 1.13, which can be realized when a21 = −1, a03 = 2/3, b03 = −1
and a02 = −3.43, to the phase portrait 1.47, which can be realized when a21 = −1, a03 = 2/3,
b03 = −1 and a02 = −3.42, it follows by the continuity of the phase portraits with respect to
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the parameters the existence of the phase portrait 1.48 of Figure 2, which can be realized when
a21 = −1, a03 = 1, b03 = −0.1 and a02 ≈ −3.4217. In fact the saddle q4 is on the boundary
of the period annulus of the center q1, and the saddles q4,8 are on the boundary of the period
annulus of the center q10, they create a center-heteroclinic loop, see Figure 12 (a).

If the saddles q4,6,8,9 are on the boundary of the period annulus of the centers q1,2,10,11,
respectively, they create four center-loops. Then the saddles q5,7 must be on the boundary
of the period annulus of the center q3, and they create a heterclinic loop. The global phase
portrait is topologically equivalent to the phase portrait 1.49 of Figure 2, which can be realized
when a21 = −0.4, a03 = 0.61, b03 = −0.01 and a02 = −1.

If the saddles q4,6 are on the boundary of the period annulus of the centers q1,2, respectively,
they create two center-loops. The saddles q5,7 can be on the boundary of the period annulus of
the centers q3,10,11, they create a homo-heteroclinic loop. Then one attracting and one repelling
separatrices of the saddle q8 connect with the ones of the saddle q9. This global phase portrait
is topologically equivalent to the phase portrait 1.51 of Figure 2, which can be realized when
a21 = −0.41, a03 = 0.61, b03 = −0.01 and a02 = −1.

From the phase portraits 1.49 and 1.51 it follows by the continuity of the phase portraits
with respect to the parameters the existence of the phase portrait 1.50 of Figure 2, which can
be realized when a21 ≈ −0.406, a03 = 0.61, b03 = −0.01 and a02 = −1. In fact the saddles
q5,7 are on the boundary of the period annulus of the center q3, simultaneously, the saddles
q5,8 are on the boundary of the period annulus of the center q10, and the saddles q7,9 are on
the boundary of the period annulus of the center q11, they create a chain-heteroclinic loop, see
Figure 12 (b).

(ii.2.2.2.2) We consider vector field (4) has no infinite equilibrium points, i.e. it satisfies

one of the conditions XVI, XVII and XIX. Since M2 < 0 and a21 < 0 we have d̃1d̃2 > 0

and d̃8d̃9 < 0, the number of the sign changes of this RSL is at least one. Then −f(−y) has
at most three negative real roots. By the symmetry the vector field (4) has at most six finite
equilibrium points different from q1,2,3. Similar to the subcase (ii.1.2.2.3), the total index of the
known infinite and finite equilibrium points is 6, we have that the remaining finite equilibrium
points are either two saddles, or four saddles and two centers.

When the remaining finite equilibrium points are two saddles q4,5 the global phase portrait
in the Poincaé disc is topologically equivalent to 1.24 of Figure 1.

When the remaining finite equilibrium points are four saddles q4,5,6,7 and two centers q8,9
the global phase portrait in the Poincaré disc is topologically equivalent to the phase portrait
1.52 of Figure 2.

Table 6. The conditions for the phase portraits of the vector field (4) with
a03b03M2 ̸= 0.

Conditions Phase portraits

a21 > 0

−
2
√

6a3
21

9
< b03 <

2
√

6a3
21

9
, R[M2, 2] < a03 < R[M2, 3] 1.19–1.21

b03 ≥
2
√

6a3
21

9
or b03 ≤ −

2
√

6a3
21

9
, a03 > R[M7, 1]; 1.10–1.12, 1.43–1.45

−
2
√

6a3
21

9
< b03 <

2
√

6a3
21

9
, R[M7, 1] < a03 < R[M2, 2]

or a03 > R[M2, 3];

R[M2, 1] < a03 < R[M7, 1]

a03 < R[M2, 1] 1.39

a21 = 0
a03 > 3b03

3
√

2b03 1.10–1.12, 1.43–1.45

a03 < 3b03
3
√

2b03 1.39

a21 < 0
R[M2, 1] < a03 1.13–1.18, 1.47–1.51

a03 = −a2
02−9b203
4a21

, 3a202 + 8a321 − 27b203 = 0 1.46

a03 < R[M2, 1] 1.24,1.52
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In summary we have the following result.

Theorem 3.5. When a03b03M2 ̸= 0 the phase portraits of the continuous piecewise Z2-
equivariant cubic Hamiltonian vector field (4) are topologically equivalent to one of the 24
phase portraits showed in Figures 1 and 2. The corresponding conditions realizing these phase
portraits are given in Table 6.
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