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Abstract. In this paper we study the non-symmetric limit cycles for a family

of 3-dimensional piecewise linear differential systems with three zeros separated
by two parallel planes. For a class of these differential systems we study the

non-existence, existence and uniqueness of their limit cycles.

1. Introduction and statement of the main results

As we know, the continuous and discontinuous piecewise smooth differential
systems play an important role inside many disciplines, such as control theory,
electrical engineering, mechanics, biology and economics, see for instance the papers
[1, 5, 12, 13, 15] and the references quoted there.

The maximum number of limit cycles, i.e. the periodic orbits isolated in the
set of all periodic orbits, for differential systems is the second part of Hilbert’s
16th problem. In the last decades there have been extensively studied on the limit
cycles of continuous and discontinuous piecewise differential systems in R2, see
[2, 3, 4, 6, 8, 9, 10, 11, 14, 16]. Recently the authors of [17, 18, 19, 21] considered the
limit cycles in several cases of the 3-dimensional (3D) piecewise linear differential
systems. Freire et al. [7] considered the birth of limit cycles in 3D piecewise
linear systems for the relevant case of symmetrical oscillators with the three zones
separated by two planes. Llibre et al. [20] studied a one-parameter family of
symmetric 3D piecewise linear differential systems, and proved that it has at most
2 limit cycles. But there are no results about the non-symmetric limit cycles in 3D
piecewise linear differential systems with three zones.

Consider the piecewise linear differential systems

(1)
ẋ = Ax in P+ ∪R,
ẋ = Bx in P− ∪ C ∪ P+,
ẋ = Cx in L ∪ P−,

2010 Mathematics Subject Classification. Primary: 34C25, 37G15.
Key words and phrases. Limit cycles, periodic orbits, 3-dimensional, piecewise linear differen-

tial systems.

1



2 TING CHEN, LIHONG HUANG AND JAUME LLIBRE

in R3, so that we have x(t) = (x(t), y(t), z(t)) ∈ R3. And systems (1) are divided
into three zones L, C and R separated by the two parallel planes P±, where

L = {(x, y, z) ∈ R3 : x < −1},
C = {(x, y, z) ∈ R3 : −1 < x < 1},
R = {(x, y, z) ∈ R3 : x > 1},
P± = {(x, y, z) ∈ R3 : x = ±1}.

In this paper we consider a three–parametric family of piecewise linear differential
systems (1), with one continuous parameter α ∈ R and two discrete parameters r,
s ∈ Z. More precisely, we consider the three–parameter family of systems (1) with

(2) A =

 −6 −1 0
11 0 −1
−6 0 0

 , B =

 0 1 0
0 0 0
0 0 0


and

(3) C =

 (1 + r + s)α −1 0
(r + s+ rs)α2 0 −1

rsα3 0 0

 .

Therefore the eigenvalues of A are −1, −2 and −3, while the eigenvalues of C are
α, rα and sα.

The equilibrium points of systems (1)–(3) are the strip {(x, 0, z)|x ∈ [−1, 1]} if
rsα 6= 0, and the strip {(x, 0, z)|x ∈ [−1, 1]} union the half plane {(x, (1 + r +
s)αx, (r + s + rs)α2x)|x ∈ (−∞,−1]} if rsα = 0. The differential system ẋ = Bx
has no limit cycles, because it is linear in its domain of definition P− ∪C ∪P+ and
has no pure imaginary eigenvalues. Hence one limit cycle must intersect the three
zones L, C and R, and has at least two points on the plane P+.

Our main result is to study the non-symmetric limit cycles in the class of piece-
wise linear systems (1)–(3) by the algebraic approach, which is based on the closing
equations for periodic orbits, for more details see [1]. In fact we determine for
every value of α ∈ R the non-existence and the uniqueness of limit cycles having
two points in the plane P+, as studied in the following results.

Theorem 1. For r = 2 and s = 3 the piecewise linear differential systems (1)
satisfying (2) and (3) have no limit cycles for all α ∈ R.

Theorem 2. For r = 2 and s = −3 the following statements hold for the piecewise
linear differential systems (1) satisfying (2) and (3):

(a) If α < αN1
≈ 2.936 systems (1) have no limit cycles having exactly two

points in the plane P+.

(b) If αN1 < α < αN2 = 3 systems (1) have one non-symmetric limit cycle
having exactly two points in the plane P+.

(c) If α > αN2
systems (1) have no limit cycles having exactly two points in the

plane P+.

The above results are proved in Section 3, where algebraic expressions of deter-
mining the non-existence and uniqueness of the limit cycles are provided. From The-
orem 2 we obtain that the non-symmetric limit cycles are organized in one branch
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which exist for different ranges of parameter α. However, this three–parametric
family of piecewise linear differential systems (1) is not yet complete. We conjec-
ture that in this bifurcation there also appear limit cycles for other values of r and
s, as the following.

Conjecture For all α ∈ R and (r − 1)(s− 1)(r − s) 6= 0 for all r, s ∈ Z such that
the non-symmetric piecewise linear differential systems (1)–(3) satisfying α = 0 or
rs ≥ 0 have no limit cycles, and satisfying rs < 0 have a unique non-symmetric
limit cycle.

We note that if we fix the integers r and s then we can prove this conjecture. For
instance in the above theorems we prove the conjecture for some cases r = 2 and
s = 3, or r = 2 and s = −3. The arguments are given in that proof can be used for
proving the conjecture for other values of r and s, but of course the computations
increase when r and s increase. On the other hand, we can prove that systems
(1)–(3) satisfying (r− 1)(s− 1)(r− s) = 0 have no limit cycles for all α ∈ R. Since
solving the polynomial equations based on the closing equations becomes extremely
complex in this case, we do not provide it here.

2. Preliminaries

In this section we provide the algebraic procedure which helps us to determine
the limit cycles for the 3D piecewise linear differential systems (1)–(3).

The solution (x(t), y(t), z(t)) of systems (1) satisfying (2) in the region P+ ∪ R
starting at the point (1, y0, z0) when t = 0 is

(4) (x(t), y(t), z(t))T = eAt(1, y0, z0)T,

where

(5) eAt =
u

2

 1− 8u+ 9u2 (u− 1)(−1 + 3u) (u− 1)2

(1− u)(27u− 5) −5 + 16u− 9u2 (1− u)(3u− 5)
6(u− 1)(3u− 1) 6(u− 1)2 2(3− 3u+ u2)

 ,

and u = e−t. Note that for all positive values of t we will have 0 < u < 1.

Regarding the solution (x(τ), y(τ), z(τ)) of systems (1) satisfying (2) in the region
P− ∪ C ∪ P+ starting at the point (1, y0, z0) when τ = 0, and it satisfies

(6) (x(τ), y(τ), z(τ))T = eBτ (1, y0, z0)T.

In other wards, any points (1, y0, z0) of system (1) in P+ will map to the point
(−1, y0, z0) in P−.

While the solution (X(T ), Y (T ), Z(T )) of systems (1) satisfying (3) in the region
P− ∪ C starting at the point (−1, Y0, Z0) when T = 0 satisfies

(7) (X(T ), Y (T ), Z(T ))T = eCT (−1, Y0, Z0)T.

Assuming that there exists one of the periodic orbits for systems (1)–(3) having
two points in the plane P+. Let (1, y0, z0) ∈ P+ be the point where this periodic
orbit exists the zone C enter the zone P+ ∪R and let (1, Y0, Z0) ∈ P+ be the point
where this periodic orbit enters into the zone C. Then this periodic orbit will enter
into the zone L ∪ P− through the point (−1, Y0, Z0) ∈ P−. Let t be the time for
this periodic orbit in going from the point (1, y0, z0) to the point (1, Y0, Z0), and
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x

y − z

0

(1, y0, z0)(−1, Y (T ), Z(T ))

(1, y(t), z(t))(−1, Y0, Z0)

x = 1x = −1

Figure 1. The periodic orbits passing through the points
(1, y0, z0) and (1, Y0, Z0) in the plant P+.

let T be the elapsed time for this periodic orbit to go from the point (−1, Y0, Z0)
to the point (−1, y0, z0), see Figure 1. Hence we have the closing equations

(8) (x(t), y(t), z(t)) = (1, Y0, Z0), (X(T ), Y (T ), Z(T )) = (−1, y0, z0).

The specific case α = 0 of systems (1)–(3) will be considered with the above way.
Now we assume α 6= 0 and we can integrate backwards in time the solution from
the point (−1, y0, z0) to (−1, Y0, Z0) within L ∪ P−, by defining

(9) (X(−T ), Y (−T ), Z(−T ))T = e−CT (−1, y0, z0)T.

We have that the exponential e−CT is the matrix

(10)
1

(r − 1)(r − s)(s− 1)α2

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 ,

where

(11)

b11 =((r − s)v + r2vr(s− 1) + (1− r)s2vs)α2,

b12 =− ((r − s)v + (s− 1)rvr + (1− r)svs)α,
b13 =(r − s)v + (s− 1)vr + (1− r)vs,
b21 =((r2 − s2)v + (s2 − 1)r2vr + (1− r2)s2vs)α3,

b22 =((s2 − r2)v + (1− s2)rvr + (r2 − 1)svs)α2,

b23 =− ((s2 − r2)v + (1− s2)vr + (r2 − 1)vs)α,

b31 =((r − s)v + (s− 1)rvr + (1− r)svs)rsα4,

b32 =− ((r − s)v + (s− 1)vr + (1− r)vs)rsα3,

b33 =− ((s− r)rsv + (1− s)svr + (r − 1)rvs)α2,

and v = e−αT . Hence we must have (X(−T ), Y (−T ), Z(−T )) = (−1, Y0, Z0).
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Figure 2. The periodic orbits passing through the points
(1, y0, z0) and (1, Y0, Z0) in the plane P+.

Therefore the periodic orbits that we are looking for must satisfy the following
four equations

(12) x(t)− 1 = 0, X(−T ) + 1 = 0, y(t)− Y (−T ) = 0, z(t)− Z(−T ) = 0,

see Figure 2. Then we change the variables (t, T ) by the variables (u, v), through
t = − lnu > 0 and T = −(ln v)/α > 0, the four equations (12) become

(13) ei(y0, z0, u, v) = 0 for i = 1, 2, 3, 4.

For every periodic orbits having two points (1, y0, z0) and (1, Y0, Z0) in the plane
P+ we can associate one solution (y0, z0, u, v) of equations (13) with 0 < u < 1
and v > 1 (0 < v < 1) if α < 0 (α > 0). Also since ẋ = −6 − y when x =
1, the two conditions −6 − y0 > 0 and −6 − Y0 < 0 must be fulfilled. In fact
the parameterization x(u) is a cubic polynomial in its parameter, then the cubic
equation x(u) = 1 can not have four roots with y0 and z0 given. Thus these periodic
orbits can not have at least other two points in P+, i.e. they have two unique points
in P+. Similarly to Proposition 2 of [20] we give the following result to establish
an equivalence relation between solutions of equations (13) and periodic orbits of
systems (1)–(3) with two points in P+.

Proposition 3. Let (y0, z0, u, v) be one solution of corresponding equations (13)
and let Y0 = y(t), Z0 = z(t) computed from (4). If α < 0 (α > 0) and the four
conditions −6− y0 > 0,−6− Y0 < 0, 0 < u < 1 and v > 1 (0 < v < 1) are fulfilled,
then systems (1)–(3) have a periodic orbit passing through the points (1, y0, z0) and
(1, Y0, Z0) of P+.

3. The proof of Theorems 1 and 2

Now we study the non-existence, existence and uniqueness of limit cycles for the
piecewise linear systems (1)–(3) in the cases α = 0 and α(r − 1)(s− 1)(r − s) 6= 0,
as the following subsections.

3.1. The case α = 0. For the solution (x(t), y(t), z(t)) of systems (1)–(2) in the
region P+ ∪ R passing through the point (1, y0, z0) with y0 < −6, we have that
ẋ = −6 − y0 > 0. Then we remain for a time t in the right zone until arriving
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at (1, Y0, Z0), where from (4) we have (1, Y0, Z0)T = eAt(1, y0, z0)T. The solu-
tion (X(T ), Y (T ), Z(T )) of systems (1) in the region L ∪ P− starting at the point
(−1, Y0, Z0) is

(14)

 X(T )
Y (T )
Z(T )

 = eC0T

 −1
Y0
Z0

 =

 1 −T T 2

2
0 1 −T
0 0 1

 −1
Y0
Z0

 .

Using the flow in the left zone and starting from (−1, Y0, Z0), after a time T we
have a periodic orbit if the equations

(15) (1, Y0, Z0)T = eAt(1, y0, z0)T, (−1, y0, z0)T = eC0T (−1, Y0, Z0)T

hold. After eliminating Y0 = y0 + z0T and Z0 = z0, by using the last two equations
of (15), we obtain the algebraic equations
(16)
− 2y0 − Tz0 = 0, 2 + u+ 9u2 + (−u+ 3u2)y0 + (−u+ u2)z0 = 0,

− 3u+ 9u2 + (−3u+ 3u2)y0 + (1− 2u+ u2)z0 = 0,

− 5u+ 32u2 − 27u3 − (2 + 5u− 16u2 + 9u3)y0 − (2T + 5u− 8u2 + 3u3)z0 = 0,

where u = e−t. From the first equation of (16) we have T = −2y0/z0. Then
we observe that the second and third equations of (16) are linear in the variables
(y0, z0) and do not depend on T . And the determinant of this linear system is
−(u − 1)2u 6= 0, so it has one solution y0 = (2 − u + 5u2)/((1 − u)u) and z0 =
6(1 + u2)/(u − 1)2. Therefore substituting T , y0 and z0 in the forth equations of
(16) we have 4(u − 1)2/u = 0, but this is in contradiction with 0 < u < 1. Hence
we get no solutions from the algebraic equations (16). This proves the parts of
Theorems 1 and 2 when α = 0 and the conjecture when α = 0.

3.2. The case α(r−1)(s−1)(r−s) 6= 0. Equivalently, we can get a dual approach
to write the closing equations. We define the solution of systems (1)–(3) in the
region P+ ∪R backwards in time starting from the point (1, Y0, Z0) when t = 0 as

(17) (x(t), y(t), z(t))T = e−At(1, Y0, Z0)T,

where the matrix e−At has the same expression that eAt in (5) if we change u by
U = 1/u = et. Then we can take ȳ(t) = y0 and z̄(t) = z0 to write the closing
equations in the four unknowns (Y0, Z0, U, V )

(18) x̄(t)− 1 = 0, X(T ) + 1 = 0, y(t)− Y (T ) = 0, z(t)− Z(T ) = 0,

where (X(T ), Y (T ), Z(T ))T = eCT (1, Y0, Z0)T. The matrix eCT comes from e−CT

in (10) by V = 1/v = eαT . We will have U > 1 for all t > 0 and 0 < V < 1 (V > 1)
for α < 0 (α > 0) and T > 0.

Remark 4. We can obtain four equations of the form ei(Y0, Z0, U, V ) = 0, which
are exactly the same that in (13) if we take U = 1/u = et and V = 1/v = eT ,
from equations (18). Thus, if for α(r − 1)(s− 1)(r − s) 6= 0 there exists a periodic
orbit with two points (1, y0, z0) and (1, Y0, Z0) at P+, then both (y0, z0, u, v) and
(Y0, Z0, U, V ) are solutions of equations (13).

From Remark 4, note that if (u, v) are both different from zero and satisfy the
polynomial systems (13) for a given (r, s, α), the same is true for the pair (1/u, 1/v).
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By doing the changes u → 1/U and v → 1/V , we can get Y0 and Z0 from y0 and
z0, respectively.

Now we compute the four equations ei(y0, z0, u, v) (i = 1, 2, 3, 4) from (12). By
removing the factor (u − 1)/2 in the equation e1 = 0, we obtain the new first
equation ẽ1 = 0, where

(19) ẽ1 = 2 + u+ 9u2 + (−u+ 3u2)y0 + (−u+ u2)z0.

The second equation, after multiplying it by α2(r−1)(s−1)(r−s) becomes ẽ2 = 0,
where

(20)

ẽ2 =(r − s+ r2(s− 1)− (r − 1)s2 + (−r + s)v − r2(s− 1)vr

+ (r − 1)s2vs)α2 + ((−r + s)v − r(s− 1)vr + (r − 1)svs)y0α

+ ((r − s)v + (s− 1)vr + (1− r)vs)z0.

To obtain a simplified third equation we define the polynomial ẽ3 = 3(r− s)α(e3 +
(13− 9u)αẽ1/6 + 2(r+ s)ẽ2/((−1 + r)(r− s)(−1 + s)α)) that the equation becomes
ẽ3 = 0, where

(21)

ẽ3 =− α(13(r − s) + 5(r − s)u+ 6(r − s)u2 + 3(−r2 + s2)α

+ 3(r2vr − s2vs)α) + ((s− r)u− 3rvr + 3svs)y0α

+ ((−r + s)uα+ (r − s)u2α+ 3vr − 3vs)z0.

Finally to simplify the fourth equation we have

(22)

ẽ4 =(r − s)(3e4 + (5− 3u)ẽ1 + 3rsẽ2/((r − 1)(r − s)(s− 1)))

=10(r − s) + 8(r − s)u+ 6(r − s)u2 + (3r(r − s)s− 3rs(rvr − svs))α2

+ (4(r − s)u− 3rs(vr − vs)α)y0 + (4(r − s)u+ (−r + s)u2 + 3svr

− 3rvs)z0.

We obtain that the above equations ẽi (i = 1, 2, 3, 4) are linear in y0 and z0.
Furthermore ẽ1 is a quadratic polynomial with respect to u and independent on
v, ẽ2 is the polynomial with respect to v and independent on u, while ẽ3 and ẽ4
are both the polynomials with respect to u and v without mixed terms of the form
umvn. From the two equations ẽ1 = ẽ2 = 0 we have

(23) y0 =
F1

F3
, z0 =

F2

F3
,

where Fi (i = 1, 2, 3) are polynomials in the variables u and v. Substituting y0 and
z0 into ẽ3 = ẽ4 = 0 we obtain the polynomial expressions of Ej(u, v) for j = 3, 4 in
function of the variables u and v. Since we do not directly these expression in the
proof, we do not list them here.

Note that since we are assuming that α(r − 1)(s − 1)(r − s) 6= 0, u = e−t and
v = e−αT with t > 0 and T > 0, we have u ∈ (0, 1) and v ∈ (0, 1) ∪ (1,+∞).
We claim that the polynomial system E3(u, v) = E4(u, v) = 0 in the open square
W = {(u, v) : u ∈ (0, 1), v ∈ (0, 1) ∪ (1,+∞)} with F3(u, v) 6= 0 has at most one
solution satisfying Proposition 3. If our claim holds than the conjecture will have
a positive answer.
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We have proved this claim for the following values of (r, s) = (2, 3), (2, 4), (2, 10),
(3, 4), (2,−3), (2,−4), (3,−2). Here we provide all the details for the case (r, s) =
(2, 3) and (r, s) = (2,−3), all the other cases follow in a similar way.

The proof of Theorem 1: The polynomials E3(u, v) and E4(u, v) for (r, s) = (2, 3)
are

E3 =(1− v)v(−5u+ 11u2 + 6u4 + 2v2 + uv2 + 9u2v2)− u(u− v)v(12 + 3u

− 5u2 + 3v − 14uv + 15u2v − 5v2 + 15uv2)α+ (u− 1)u(2u2 − 5v + u2v

+ 11v2 + 9u2v2 + 6v4)α2,

E4 =6(u− 1)u(1 + u2)(v − 1)v + v(6u+ 11u3 − 5u4 − 18uv − 33u3v + 15u4v

+ 6v2 + 3uv2 + 27u2v2 − 2v3 − uv3 − 9u2v3)α− u(−6u2 + 2u3 − 6v

+ 18uv − 3u2v + u3v − 27u2v2 + 9u3v2 − 11v3 + 33uv3 + 5v4 − 15uv4)α2

+ 6(u− 1)u(v − 1)v(1 + v2)α3,

and the numerators and denominator of y0 and z0 in this case are

F1 =(2 + u+ 9u2)(1− v)v − (u− 1)u(2 + v + 9v2)α2,

F2 =− α(2 + u+ 9u2)v(−1 + 3v) + u(−1 + 3u)(2 + v + 9v2)α2,

F3 =uv((−1 + 3u)(v − 1) + (u− 1)(−1 + 3v)α).

By computing the resultant polynomial of the elimination of α from the equations
E3 = 0 and E4 = 0, we get a long expression in the form 4(u − 1)u2(u − v)(v −
1)v2p(u, v)q(u, v), where p(u, v) is

p(u, v) =− (1− 3v)2v + u(−1 + v − 7v2 + 9v3) + 9u3(−1 + v − 7v2 + 9v3)

+ u2(6 + v(−7 + 48v − 63v2)),

and q(u, v) is given in Appendix 1. If u = v we have

E3 =(v − 1)v2(−1 + 3v)(5 + 2v + 5v2)(−1 + α)(1 + α),

E4 =6(v − 1)2v2(1 + v2)(1 + α)(1 + α2).

The equations E3 = E4 = 0 have only one common solution α = −1, but the
denominator F3 = 0 when u = v and α = −1. Then we need to analyze the
solutions of p(u, v) and q(u, v) with (u, v) in the open rectangle W .

Proposition 5. The number of solutions of the equations p(u, v) = 0 or q(u, v) = 0
in W ′ = {(u, v) : u ∈ (0, 1), v ∈ (0,+∞)} appears in Table 1.

Proof. The following computations are based in the root determination of polyno-
mials in only one variable. We can select any value of v in (0,+∞) and get the
roots u ∈ (0, 1) of the corresponding polynomials p(u, v) and q(u, v). It is easy get
that the roots of these polynomials are continuous complex functions. By varying
v, the number of real roots of the polynomials p(u, v) and q(u, v) with u ∈ (0, 1)
can change only at values of v where the curve p(u, v) = 0 or q(u, v) = 0 has a hor-
izontal tangent, a branching point, or one solution escapes through the boundary
of the rectangle W ′.
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Figure 3. The zero level set of p(u, v)q(u, v) = 0 in the rectangle
W ′. Points p0, p1, p2 are in the boundary of the open rectangle.

Table 1. Number of solutions of p(u, v)q(u, v) = 0 in the open
rectangle W ′.

Range Solutions of p(u, v) Solutions of q(u, v) Periodic orbits
0 < v < 1/3 0 2 0

v = 1/3 2 2 0

1/3 < v < 1 0 2 0

v = 1 1 1 0

1 < v 1 0 0

Starting at the left edge of the rectangle W ′, the polynomial p(0, v) = −v(−1 +
3v)2 has v = 1/3 as the unique solution. Hence we get the point p0. In the right
edge the situation is p(1, v) = 2(v− 1)(2 + v+ 9v2) has one solution v = 1, then we
have the point p1. Similar we have that p(u, 0) = −u(−1 + 3u)2 has u = 1/3 as the
unique solution, which is a point p2 of horizontal tangent for the curve p(u, v) = 0.
We also obtain p(u, 1) = 2(u− 1)(2 + u+ 9u2), which has no solution in W ′.

Then we study other points belonging to the curve p(u, v) = 0 with horizontal
tangent. Taking derivatives with respect to u in p(u, v) = 0, so that these points
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must be satisfied with

(24) p(u, v) = 0, pu(u, v) = 0

with pv(u, v) 6= 0. We compute the resultant of the polynomials p(u, v) and pu(u, v)
with respect to the variable v. And we have the following polynomial 900(−1 +
3u)3(−1 + 9u+u2 + 3u3)3. The factor −1 + 3u gives the values v = 0 and v = 1/3,
but the first is not in W ′. We obtain the point p3 = (1/3, 1/3) is a branching point,
since then both pu and pv vanish. The other roots of −1 + 9u+ u2 + 3u3 in (0, 1)
are approximately 0.109346, but it has no values for v in the range W ′. Hence,
equations (24) have only one solution (1/3, 1/3).

On the other hand, at the rectangle W ′ we have the polynomials

q(0, v) =2v7(9 + v + 2v2)2,

q(1, v) =288(−1 + v)6(1 + v)(1 + v2)(1 + v + v2),

q(u, 0) =2u7(9 + u+ 2u2)2,

q(u, 1) =288(u− 1)6(1 + u)(1 + u2)(1 + u+ u2).

Only the second polynomial has one solution (1, 1) in W ′. Then we search for other
points belonging to the curve q(u, v) = 0 with horizontal tangent. Similarly the
wanted points must be satisfied with

(25) q(u, v) = 0, qu(u, v) = 0

with qv(u, v) 6= 0. Then we compute the resultant of the polynomials q(u, v) and
qu(u, v) with respect to the variable v, and we have the following polynomial

(26)

Resultant[q(u, v), qu(u, v), v] =A1(u− 1)16u26(9 + u+ 2u2)(5 + 2u+ 5u2)2

× (2 + u+ 9u2)(2 + u+ 6u2 + u3 + 2u4)2

×R2
24(u)R88(u),

where A1 is an integer. The factors R24 and R88 have the degrees indicated in
their subscripts and are not explicitly given for sake of brevity. The factors of (26)
have no roots in (0, 1) except R88. And the root of R88 is approximately 0.059872,
which has no solutions for v in the range (0,+∞). Therefore, it has no solutions
to satisfy the curves q(u, v) = qu(u, v) = 0.

The first three columns of Table 1 take intermediate values of v in the corre-
sponding range and provide the number of solutions of p(u, v) and q(u, v) in (0, 1),
respectively. �

Next we check the sign of α for such solutions. From the polynomials E3 and
E4, we see that in the rectangle W ′ the value of α only can vanish in the line v = 1.
Thus the sign of α only can change if v− 1 vanishes. Along the branch of solutions
we have α being negative when 0 < v < 1 and being positive when v > 1, which
is in contradiction with v > 1 (0 < v < 1) if α < 0 (α > 0). Then we discard all
branches for counting periodic solutions, i.e. systems (1)–(3) has no limit cycles
when r = 2 and s = 3. Therefore we have concluded the proof of Theorem 1.

�
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The proof of Theorem 2: The polynomials Ẽ3(u, v) and Ẽ4(u, v) for (r, s) = (2,−3)
are

Ẽ3 =(1− v)(−5u+ 11u2 + 6u4 + 8v − 6uv + 58u2v + 12u4v + 6v2 − 12uv2

+ 60u2v2 + 18u4v2 + 4v3 − 18uv3 + 62u2v3 + 24u4v3 + 2v4 + uv4 + 9u2v4)

− u(−18 + 18u− 9u2 + 15u3 − 10v − 6uv − 9u2v + 15u3v − 15v2 + 9uv2

− 9u2v2 + 15u3v2 − 15v3 + 9uv3 − 9u2v3 + 15u3v3 − 45v4 + 39uv4 − 24u2v4

+ 40u3v4 + 3v5 − 9uv5) + (u− 1)u(v − 1)(−9 + 9u2 − 30v + 18u2v − 21v2

+ 27u2v2 − 12v3 + 16u2v3 + 2v4)α2,

Ẽ4 =6(u− 1)u(1 + u2)(v − 1)(1 + 2v + 3v2 + 4v3) + (−18u− 33u3 + 15u4 + 16v

− 10uv + 72u2v − 33u3v + 15u4v + 6v2 − 15uv2 + 27u2v2 − 33u3v2 + 15u4v2

+ 6v3 − 15uv3 + 27u2v3 − 33u3v3 + 15u4v3 + 6v4 − 45uv4 + 27u2v4 − 88u3v4

+ 40u4v4 + 6v5 + 3uv5 + 27u2v5)α+ u(1− v)(2− 6u− 27u2 + 9u3 − 12v

+ 36uv − 54u2v + 18u3v − 21v2 + 63uv2 − 81u2v2 + 27u3v2 − 30v3 + 90uv3

− 48u2v3 + 16u3v3 − 9v4 + 27uv4)α2 + 6(1− u)u(v − 1)(1 + 6v + 6v2 + 6v3

+ v4)α3,

and the numerators and denominator of y0 and z0 in this case are

F1 =(1− v)((2 + u+ 9u2)(1 + 2v + 3v2 + 4v3)

+ (u− 1)u(9 + 18v + 27v2 + 16v3)α2),

F2 =− α(2 + u+ 9u2)(3 + 3v + 3v2 + 3v3 + 8v4)

+ u(3u− 1)(v − 1)(9 + 18v + 27v2 + 16v3)α2,

F3 =u(3u− 1)(v − 1)(1 + 2v + 3v2 + 4v3)

+ (u− 1)u(3 + 3v + 3v2 + 3v3 + 8v4)α.

The calculation of the resultant of the polynomials Ẽ3 and Ẽ4 with respect to
the parameter α yields 4(u− 1)u2(−1 + v)2P (u, v)Q(u, v) where P (u, v) is
(27)
P (u, v) =− (3 + 3v + 3v2 + 3v3 + 8v4)2 + (9 + 18v + 27v2 + 26v3 + 15v4

+ 6v5 − 3v6 + 38v7 + 64v8)u+ (−63− 126v − 189v2 − 192v3 − 165v4

− 102v5 − 39v6 − 276v7 − 448v8)u2 + 9(9 + 18v + 27v2 + 26v3 + 15v4

+ 6v5 − 3v6 + 38v7 + 64v8)u3

and Q(u, v) is given in Appendix 1. Similarly to the proof of Theorem 1 we consider
the solutions of P (u, v) and Q(u, v) with (u, v) in the open rectangle W.

Proposition 6. The number of solutions of the equation P (u, v) = 0 or Q(u, v) = 0
in W ′ = {(u, v) : u ∈ (0, 1), v ∈ (0,+∞)} is as displayed in Table 2. If r = 2 and
s = −3 the number of limit cycles of system (1)–(3) with exactly 2 points in the
plane P+ is as indicated in last column of Table 2.
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Figure 4. The zero level set of P (u, v)Q(u, v) = 0 in the rectangle W ′.

Table 2. Number of solutions of P (u, v)Q(u, v) = 0 in the open
rectangle W .

Range Solutions of P (u, v) Solutions of Q(u, v) Periodic orbits
0 < v ≤ v5 1 3 1

v5 < v < 1 1 3 0

v = 1 1 2 0

1 < v 1 0 0

Proof. At the left edge of the rectangle W ′ the polynomial P (0, v) = −(3 + 3v +
3v2 + 3v3 + 8v4)2 has no solutions. For the right edge the situation we get that
P (1, v) = 2(−1+v)2(1+2v+3v2+4v3)(9+18v+27v2+16v3) has a double root v = 1,
hence we have the point P2. Similar we obtain that P (u, 0) = 9(−1+u−7u2 +9u3)
has u = 0.809964 as the unique solution, it corresponds the point P3. We also
obtain P (u, 1) = 200(−1 + u)(2 + u+ 9u2), which has no real solutions in W ′.

Now we study the other points belonging to the curve P (u, v) = 0 with horizontal
tangent. Taking derivatives with respect to u in P (u, v) = 0, so that the points
must satisfy with P (u, v) = 0, Pu(u, v) = 0 and Pv(u, v) 6= 0. We compute the
resultant of the polynomials P (u, v) and Pu(u, v) with respect to the variable v,
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then we have A2(3u − 1)8(−1 + 9u + u2 + 3u3)8 where A2 is an integer. The two
factors give no corresponding values v in W ′.

Next we consider the solutions of Q(u, v) at the rectangle W ′ and have

Q(0, v) =− 2(−1 + v)v3(4 + 3v + 2v2 + v3)(16 + 27v + 18v2 + 9v3)2,

Q(1, v) =− 2880(−1 + v)6(1 + v)(1 + v + v2)(1 + 6v + 6v2 + 6v3 + v4),

Q(u, 0) =− u4(−2704− 2587u− 8173u2 + 4011u3 + 5232u4 + 4149u5

+ 2367u6 + 423u7 + 162u8),

Q(u, 1) =− 24000(−1 + u)6u(5 + 2u+ 5u2)2.

The first polynomial Q(0, v) has two solutions v = 1 and v = 0, the corresponding
point P1 = (0, 1) is in W ′ but P0 = (0, 0) is not in W ′. The second polynomial
Q(1, v) has only one solution v = 0 in W ′, while the solution of the third one
corresponds the point P4 = (0.937203, 0) in W ′. And the polynomial Q(u, 1) has
no solution in W ′.

Then we study the points belonging to the curve Q(u, v) = 0 with horizontal
tangent. Taking derivatives with respect to u in Q(u, v) = 0, so that the remaining
points must satisfy with

(28) Q(u, v) = 0, Qu(u, v) = 0 and Qv(u, v) 6= 0.

To study the solutions of (28) we compute the resultant of Q(u, v) and Qu(u, v)
with respect to the variable v. And we have the following polynomial A3(u −
1)18u7(5 + 2u + 5u2)R2

54(u)R144(u) where A3 is an integer. The polynomials R54

and R144 have the degrees indicated in their subscripts. The root of R54 in (1, 0)
are approximately 0.208334, 0.294286 and 0.840437. We must guarantee that the
corresponding point is in W ′ for these values of u. After checking these values
we conclude that it has no points of the curve Q(u, v) with horizontal tangent in
W ′. The root of R144 in (1, 0) are approximately 0.122432, 0.283114, 0.389696 and
0.399156. Similar we obtain no points of the curve Q(u, v) with horizontal tangent
in W ′.

Now we have to check whether all the solutions of Proposition 6 satisfy with
Proposition 3 to guarantee that a solution of P (u, v)Q(u, v) corresponds to a pe-
riodic orbit with only two points in P+. First we check the sign of α for such

solutions. From the polynomials Ẽ3 and Ẽ4, we see that the common factor of
terms of degree zero in α is v − 1. Hence, for a branch of solutions the sign of α
only can change if this factor vanishes. Accordingly, in the rectangle W ′ the value
of α only can vanish in the line v = 1. Along the branch of solutions from P0 to P1

we have α being positive. And we have that α being negative for all the branches
from P0 to P2, P2 to P3 and P2 to P4. On the other hand, α being positive for all
the branch from P2 to finite. In short only the branch from P0 to P1, the sign of α
is consistent with v > 1 (0 < v < 1) if α < 0 (α > 0).

To prove the second statement of Proposition 6 we need to show the inequalities
−6 − y0 > 0. We start by looking for possible values of (u, v) in the branch from
P0 to P1, where such inequality is not true any longer, that is

(29)
H(u, v, α) =− (2 + 9u)(v − 1)(1 + 2v + 3v2 + 4v3)− 6u(3 + 3v + 3v2 + 3v3

+ 8v4)α+ u(v − 1)(9 + 18v + 27v2 + 16v3)α2.
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Computing the resultants of the polynomials Ẽ3 and H, Ẽ4 and H, respectively,
then we have the following polynomials
(30)

h1(u, v) =Resultant[Ẽ3, H, α] = 2u2(−1 + v)2P (u, v)M1(u, v),

h2(u, v) =Resultant[Ẽ4, H, α] = 2u2(−1 + v)2(1 + 2v + 3v2 + 4v3)P (u, v)M2(u, v),

where the expression of P (u, v) is as displayed in (27) and

M1(u, v) =− 2(v − 1)4(3 + 4v + 3v2)2 + u(414 + 4824v + 13824v2 + 21748v3

+ 22685v4 + 14616v5 + 6106v6 + 636v7 − 153v8) + 4u2(72 + 432v

+ 1071v2 + 1880v3 + 2110v4 + 1488v5 + 623v6 + 24v7)− 6u3(18

+ 120v + 297v2 + 520v3 + 580v4 + 392v5 + 165v6 + 8v7)− 4u4(1 + 2v

+ 3v2 + 4v3)(9 + 18v + 27v2 + 16v3) + u5(1 + 2v + 3v2 + 4v3)(9 + 18v

+ 27v2 + 16v3),

M2(u, v) =4(v − 1)(−2 + 12v + 21v2 + 30v3 + 9v4)2 + 12u(−48 + 624v + 2070v2

+ 2690v3 + 1789v4 + 1143v5 + 1476v6 + 2460v7 + 1845v8 + 351v9)

+ 3u2(−3168− 1440v + 19728v2 + 31856v3 + 27109v4 − 2817v5

− 5970v6 + 762v7 + 16209v8 + 4131v9) + 6u4(−162− 486v − 1377v2

− 1515v3 + 840v4 + 5112v5 + 6671v6 + 4597v7 + 720v8)− 12u5(v

− 1)(9 + 18v + 27v2 + 16v3)2 + u6(v − 1)(9 + 18v + 27v2 + 16v3)2.

It is easy to get that P (u, v) 6= 0 on the branch P0-P1, see Figure 4. By com-
puting the resultant we eliminate v between polynomials M1 and M2, then we
obtain a polynomial in u whose roots in the interval W ′ are 0.00483442, 0.0163653,
0.0995178, 0.194119. Going back with these values to M1 = 0 and M2 = 0, we
obtain the points (0.004834, 0.221817), (0.016365, 0.087319), (0.099517,−1.342034)
and (0.194119,−0.860593). Clearly, only the second point P5 = (0.016365, 0.087319)
is in W ′ being in fact on the branch P0-P1. The conclusion is that, by continuity,
the sign of H(u, v, α) changes along the branch P0-P1.

We select v = 0.05 and have the values of u ≈ 0.010455 and α ≈ 2.96596
for the corresponding point on the branch P0-P1, so that the value of −6 − y0 is
approximately 8.55439. Next we select v = 0.1 and compute the values of u ≈
0.018116 and α ≈ 2.943606 for the corresponding point, then we obtain the value
of −6 − y0 ≈ −1.45632. Then we choose v = 0.3 and obtain the values of u ≈
0.035656 and α ≈ 3.00209 for the corresponding point, and the value of −6− y0 is
approximately −8.26739. Hence we conclude from Proposition 3 that all the points
of the branch P0-P5 correspond to periodic orbits of systems (1)–(3). �

We consider the branch from P0 to P5. By continuity the value of α reaches a
maximum positive value and a minimum positive value. These values correspond
to αN2

and αN1
, respectively, which can be calculated by standard procedures with

as much accuracy as possible. Hence the proof of Theorem 2 is complete. �
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4. Appendix 1

The polynomials q(u, v):

q(u, v) =2u7(9 + u+ 2u2)2 + u5(855− 1626u+ 1156u2 − 1592u3 + 225u4 − 178u5

+ 8u6)v + u3(−2700 + 420u− 1986u2 + 1707u3 + 1510u4 + 1796u5

+ 682u6 + 225u7 + 74u8)v2 + 2u2(−1350 + 5565u− 4791u2 + 11352u3

− 10267u4 + 5941u5 − 7290u6 + 898u7 − 796u8 + 18u9)v3 + 2u2(210

− 4791u− 43u2 − 6811u3 + 5518u4 − 862u5 + 5941u6 + 755u7 + 578u8

+ 81u9)v4 − u(−855 + 1986u− 22704u2 + 13622u3 − 32762u4 + 31872u5

− 11036u6 + 20534u7 − 1707u8 + 1626u9)v5 + u(−1626 + 1707u

− 20534u2 + 11036u3 − 31872u4 + 32762u5 − 13622u6 + 22704u7

− 1986u8 + 855u9)v6 + 2(81 + 578u+ 755u2 + 5941u3 − 862u4 + 5518u5

− 6811u6 − 43u7 − 4791u8 + 210u9)v7 − 2(−18 + 796u− 898u2 + 7290u3

− 5941u4 + 10267u5 − 11352u6 + 4791u7 − 5565u8 + 1350u9)v8 + (74

+ 225u+ 682u2 + 1796u3 + 1510u4 + 1707u5 − 1986u6 + 420u7

− 2700u8)v9 + (8− 178u+ 225u2 − 1592u3 + 1156u4 − 1626u5

+ 855u6)v10 + 2(2 + u+ 9u2)2v11

Q(u, v) =− 2(v − 1)v3(4 + 3v + 2v2 + v3)(16 + 27v + 18v2 + 9v3)2 − uv2(12352

+ 73648v + 136805v2 + 171365v3 + 138730v4 + 68846v5 + 16704v6

− 7980v7 − 8490v8 − 2430v9 + 27v10 + 423v11)− u2v(−16640− 129584v

− 332928v2 − 578585v3 − 731935v4 − 677770v5 − 458242v6 − 206364v7

− 36240v8 + 16410v9 + 17010v10 + 12501v11 + 2367v12)− u3v(12432

+ 210790v + 812054v2 + 1522535v3 + 1975495v4 + 1684186v5 + 976910v6

+ 302672v7 − 26860v8 − 49120v9 − 11268v10 + 2025v11 + 4149v12)

− 2u4(−1352− 42764v − 264806v2 − 679324v3 − 1124475v4 − 1362011v5

− 1231697v6 − 831833v7 − 414017v8 − 117325v9 − 13037v10 + 15561v11

+ 16464v12 + 2616v13) + u5(2587− 65653v − 571412v2 − 1665416v3

− 2831825v4 − 3434849v5 − 2891784v6 − 1905256v7 − 1171223v8 − 864575v9

− 697988v10 − 375888v11 − 82707v12 − 4011v13) + u6(1 + v)(8173 + 92982v

+ 492568v2 + 968910v3 + 1253915v4 + 1288284v5 + 1150336v6 + 1288284v7

+ 1253915v8 + 968910v9 + 492568v10 + 92982v11 + 8173v12) + u7(−4011

− 82707v − 375888v2 − 697988v3 − 864575v4 − 1171223v5 − 1905256v6

− 2891784v7 − 3434849v8 − 2831825v9 − 1665416v10 − 571412v11

− 65653v12 + 2587v13) + 2u8(−2616− 16464v − 15561v2 + 13037v3
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+ 117325v4 + 414017v5 + 831833v6 + 1231697v7 + 1362011v8 + 1124475v9

+ 679324v10 + 264806v11 + 42764v12 + 1352v13) + u9(−4149− 2025v + 11268v2

+ 49120v3 + 26860v4 − 302672v5 − 976910v6 − 1684186v7 − 1975495v8

− 1522535v9 − 812054v10 − 210790v11 − 12432v12) + u10(−2367− 12501v

− 17010v2 − 16410v3 + 36240v4 + 206364v5 + 458242v6 + 677770v7 + 731935v8

+ 578585v9 + 332928v10 + 129584v11 + 16640v12) + u11(−423− 27v + 2430v2

+ 8490v3 + 7980v4 − 16704v5 − 68846v6 − 138730v7 − 171365v8 − 136805v9

− 73648v10 − 12352v11) + 2u12(v − 1)(1 + 2v + 3v2 + 4v3)(9 + 18v + 27v2 + 16v3)2.
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