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ABSTRACT. The anisotropic Kepler problem has a group of symmetries
with three generators; they are symmetries respect to zero velocity
curve and the two axes of motion's plane. For a fixed negative energy
level it has four homothetic orbits. We describe the symmetric perio-
dic orbits near these homothetic orbits. Full details and proofs will
appear elsewhere (Casasayas-Llibre).

1. INTRODUCTION AND EQUATIONS OF MOTION.

The anisotropic Kepler problem was introduced by Gutzwiller
(1973) to model certain quantum mechanical systems. But for us it has
a mathematical interest because it is an easy model in order to study
usual tools in the analysis of the n-body problem as non-integrabili-
ty, collision manifold,... (Devaney, 1981).
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This problem deals with the motion of a body which is attracted by
a gravitational potential and has an anisotropic mass. It is described

by the Hamiltonian system d
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a = (a,,q,) €RZ={(0 0)} and p = (p,,p,) ER®
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are the position and momentum coordinates of the body,
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is the masses matrix and u, 1< p < 4o, is the mass parameter and
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