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ABSTRACT

Complex systems such as ecosystems, electronic circuits, lasers, or chemical reactions can be modelled
by dynamical systems which typically experience bifurcations. It is known that transients become ex-
tremely long close to bifurcations, also following well-defined scaling laws as the bifurcation parameter
gets closer the bifurcation value. For saddle-node bifurcations, the dynamical mechanism responsible for
these delays, tangible at the real numbers phase space (so-called ghosts), occurs at the complex phase
space. To study this phenomenon we have complexified an ecological map with a saddle-node bifurca-
tion. We have investigated the complex (as opposed to real) dynamics after this bifurcation, identifying
the fundamental mechanism causing such long delays, given by the presence of two repellers in the com-
plex space. Such repellers appear to be extremely close to the real line, thus forming a narrow channel
close to the two new fixed points and responsible for the slow passage of the orbits. We analytically
provide the relation between the well-known inverse square-root scaling law of transient times and the
multipliers of these repellers. We finally prove that the same phenomenon occurs for more general i.e.

non-necessarily polynomial, models.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Bifurcations are responsible for qualitative changes in dynami-
cal systems due to parameter changes [1,2]. Local bifurcations typ-
ically involve stability shifts or collisions between fixed points.
Classical examples are transcritical, saddle-node (hereafter labeled
as s-n, also named fold or tangent), pitchfork, or Hopf-Andronov
bifurcations [2]. Bifurcations occur in most physical systems and
have been mathematically described in elastic-plastic materials
[3], electronic circuits [4,5], or open quantum systems [6], among
many others. Bifurcations have been also largely investigated in
population dynamics [7-11] since they often involve important
changes such as the separation between species’ persistence and
extinctions. Further theoretical research in socioecological systems
[12,13], in autocatalytic systems [14-16], in the fixation of alleles
in population genetics and biological or computer virus propaga-
tion [17-20], has revealed bifurcation phenomena, often governed
by abrupt changes (typically due to s-n bifurcations). Additionally,
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bifurcations have been identified experimentally in many physi-
cal [5,21-23], chemical [24,25], and biological systems [26,27].

One of the most remarkable properties of systems approaching
a local bifurcation is that transients’ lengths slow down drastically.
The length of these transients typically scales with the distance to
the bifurcation value [2,28]. Such scaling properties are found both
in continuous-time (flows) and discrete-time (maps) dynamical
systems. For instance, the length of transients, t, in transcritical bi-
furcations diverges as a power law © ~ | — pc|~! [28,29], with p
and u. being, respectively, the control parameter and the value at
which it bifurcates. The same scaling exponent is found in the su-
percritical Pitchfork bifurcation in flows [28], and in the Pitchfork
and the period-doubling bifurcation in maps [29]. For the s-n, tran-
sients scale as T ~ |t — pc|~1/2 for flows and maps [2,14,30] (see
Fig. 1 and Fig. 7a). Remarkably, this scaling law was found experi-
mentally in an electronic circuit modelling Duffing’s oscillator [5].
The same scaling exponent has been recently found in a delayed
differential equation suffering a s-n bifurcation [15].

In short, the s-n bifurcation involves the collision and conse-
quent annihilation of fixed points. This annihilation actually in-
volves the jump of these two equilibria from the real numbers
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