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PHASE PORTRAITS OF THE FAMILIES VII AND VIII

OF THE QUADRATIC SYSTEMS

LAURENT CAIRÓ1 AND JAUME LLIBRE2

Abstract. The quadratic polynomial differential systems in the plane are the
easiest nonlinear differential systems. They have been studied intensively due
to their nonlinearity and to their big number of applications. These systems
can be classified in ten classes. Here we provide all the topologically different
phase portraits in the Poincaré disc of two of these classes.

1. Introduction and statement of the main results

A quadratic polynomial differential system or simply a quadratic system is a
differential system of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P and Q are real polynomials in the variables x and y and the maximum
degree of the polynomials P and Q is two.

At the beginning of the XX century started to be studied the quadratic systems.
In [5] Coppel said that Büchel [3] in 1904 published the first work on quadratic
systems. Two short surveys on quadratic systems were published by Coppel [5] In
1966, and by Chicone and Tian [4] in 1982.

During these last decades quadratic systems were studied intensively and many
good results on them were obtained, see the books [2, 13] and the references therein.
In the second book you can find many applications of the quadratic systems. Al-
though quadratic systems have been studied in more than one thousand papers, we
are far for a complete understanding of these systems.

In [8] it is proved that any quadratic system is affine-equivalent, scaling the time
variable if necessary, to a quadratic system of the form

ẋ = P (x, y), ẏ = Q(x, y) = d+ ax+ by + ℓx2 +mxy + ny2,

where ẋ = P (x, y) is one of the following ten:

(I) ẋ = 1 + xy, (VI) ẋ = 1 + x2,
(II) ẋ = xy, (VII) ẋ = x2,
(III) ẋ = y + x2, (VIII) ẋ = x,
(IV) ẋ = y, (IX) ẋ = 1,
(V) ẋ = −1 + x2, (X) ẋ = 0.
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Roughly speaking the Poincaré disc is the disc centered at the origin of R2 and
radius one, where the interior of this disc is identified with the whole plane R

2 and
its boudary the circle S

1 is identified with the infinity of the plane R
2, because in

the plane we can go to infinity in as many directions as points has the circle S
1.

For more details on the Poincaré compactification see subsection 2.2, and for the
definition of topologically equivalent phase portraits in the Poincaré disc see the
subsection 2.3.

We note that the quadratic systems X have all the straight lines x = constant
formed by orbits, and the conic Q(x, y) = 0 is filled with equilibrium points, so their
phase portraits are trivial. While the quadratic systems IX have no equilibrium
points, so these quadratic systems are a subclass of the class called chordal quadratic
systems whose phase portraits in the Poincaré disc have been completely studied in
[8]. So the aim of this paper is to classify the different topological phase portraits
in the Poincaré disc of the classes of quadratic systems VII and VIII, i.e. of the
systems

(2) ẋ = x2, ẏ = d+ ax+ by + ℓx2 +mxy + ny2,

and

(3) ẋ = x, ẏ = d+ ax+ by + ℓx2 +mxy + ny2,

respectively.

Our main result is the following one.

Theorem 1. The following two statements hold.

(a) The family of quadratic systems VII has 27 topologically different phase

portraits in the Poincaré disc.

(b) The family of quadratic systems VIII has 25 topologically different phase

portraits in the Poincaré disc.

Statements (a) and (b) of Theorem 1 are proved in sections 3 and 4, respectively.

The paper is organized as follows. In section 2 we recall the basic results that
we need about equilibrium points and the Poincaré compactification. In section 3
and 4 first we study the local phase portraits of the finite equilibrium points, after
we study the local phase portraits of the infinite equilibrium points, and finally we
analyze the phase portraits of the quadratic systems (2) and (3) in the Poincaré
disc, respectively.

2. Preliminary definitions

The study of the phase portraits of the quadratic systems always begin with the
study of the local phase portraits of their equilibria, finite and infinite, followed by
the study of their separatrix connections and of their limit cycles.

In this section we introduce the basic notations and definitions that we shall use
for the analysis of the local phase portraits of the finite and infinite equilibrium
points.
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2.1. Equilibrium points. A point q ∈ R
2 is said to be equilibrium point of a

polynomial differential system (1) if P (q) = Q(q) = 0. If the real part of the
eigenvalues of the linear part of system (1) at the equilibrium point q are not zero,
then q is a hyperbolic equilibrium point and its possible phase portraits are well
known, see for instance Theorem 2.15 of [7]. If only one of the eigenvalues of
the linear part of system (1) at the equilibrium point q is zero, then q is called
a semi-hyperbolic equilibrium point, whose possible local phase portraits are also
well known, see among others Theorem 2.19 of [7]. When both eigenvalues of the
linear part of system (1) at the equilibrium point q are zero but the linear part is
not identically null, then q is a nilpotent equilibrium point and again its local phase
portraits are known, see for instance Theorem 3.5 of [7]. Finally when the linear
part of system (1) at the equilibrium point q is identically zero, then we say that q
is degenerate or q is linearly zero. The local phase portraits of a such equilibrium
point can be studied using the change of variables called blow-ups, see for instance
[1].

2.2. Poincaré compactification. Let X = (P,Q) be the vector field defined by
the polynomial differential system (1). Roughly speaking the Poincaré compacti-
fication consists in creating a vector field p(X) in a 2–dimensional sphere S

2 such
that its phase portrait in the open northern and southern hemispheres is a copy of
the phase portrait of the vector field X , and the equator of the sphere plays the
role of the infinity of the phase portrait of X , see for details [9], or Chapter 5 of [7].
In this way we can study the orbits of the vector field X which goes to or comes
from the infinity.

Let S2 = {x = (x1, x2, x3) ∈ R
3 : x2

1 + x2
2 + x2

3 = 1} be the Poincaré sphere. We
denote by TxS

2 the tangent plane to S
2 at a point x ∈ S

2. We consider the vector
field X defined on the plane T(0,0,1)S

2. Then the central projection f : T(0,0,1)S
2 →

S
2 defines two copies of X in S

2, one in the northern hemisphere and the other
in the southern hemisphere. Obviously the equator S

1 = {y ∈ S
2 : y3 = 0},

represents the infinity of R2. The projection of the closed northern hemisphere
of S2 on x3 = 0 under (x1, x2, x3) 7−→ (x1, x2) is called the Poincaré disc, and
it is denoted by D

2. As S
2 is a differentiable manifold, we define six local charts

Ui = {x ∈ S
2 : xi > 0}, and Vi = {x ∈ S

2 : xi < 0} for i = 1, 2, 3; with the
corresponding diffeomorphisms Fi : Ui → R

2 and Gi : Vi → R
2 for i = 1, 2, 3 which

are the inverses of the central projections from the tangent planes at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively.

We denote by (u, v) the value of Fi(x) or Gi(x) for any i = 1, 2, 3, so a few simple
calculations lead for p(X) the following formulae in the corresponding local charts
(see Chapter 5 of [7]):

vd
(

Q

(

1

v
,
u

v

)

− uP

(

1

v
,
u

v

)

,−vP

(

1

v
,
u

v

))

in U1,

vd
(

P

(

u

v
,
1

v

)

− uQ

(

u

v
,
1

v

)

,−vQ

(

u

v
,
1

v

))

in U2,

(P (u, v), Q(u, v)) in U3,
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where d is the degree of the polynomial differential system (1). The formulae for
Vi are similar to the one for Ui with a multiplicative factor (−1)d−1. In these
coordinates for i = 1, 2, the points (u, v) of the infinity S

1 satisfy v = 0.

2.3. Phase portraits on the Poincaré disc. The separatrix of p(X) are all the
orbits of the circle at the infinity, the equilibrium points, the limit cycles and the
orbits which lie in the boundary of a hyperbolic sectors, i.e. the two separatrices
of a hyperbolic sector.

Neumann in [11] shown that the set of all separatrices S(p(X)) of the vector
field p(X), is closed.

When there is an orientation preserving or reversing homeomorphism which maps
the trajectories of p(X) into the trajectories of p(Y ) we say that the two differential
systems defined by p(X) and p(Y ) in the Poincaré disc are topologically equivalent.

The canonical regions of p(X) are the open connected components of D
2 \

S(p(X)). The set formed by the union of S(p(X)) plus one orbit chosen from
each canonical region is called a separatrix configuration of p(X). When there is
an orientation preserving or reversing homeomorphism which maps the trajecto-
ries of S(p(X)) into the trajectories of S(p(Y )) we say that the two separatrices
configurations S(p(X)) and S(p(Y )) are topologically equivalent.

The next result is mainly due to Markus [10], Neumann [11] and Peixoto [12].

Theorem 2. The phase portraits in the Poincaré disc of two compactified polyno-

mial differential systems p(X ) and p(Y) with finitely many separatrices are topolog-

ically equivalent if and only if their separatrix configurations S(p(X )) and S(p(Y))
are topologically equivalent.

3. Proof of statement (a) of Theorem 1

3.1. Finite equilibrium points. We are going to determine the local phase por-
trait at the finite equilibrium points of the quadratic system (2).

Assume first n 6= 0. If b2 − 4dn > 0 then the finite equilibrium points of system
(2) are

p± =

(

0,
−b±

√
b2 − 4dn

2n

)

,

The eigenvalues of the Jacobian matrix of system (2) at p± are 0 and ±
√
b2 − 4dn.

So from Theorem 2.19 of [7] we have that p+ and p− are semi-hyperbolic saddle-
nodes.

If b2 − 4dn < 0 there are no finite equilibrium points.

If b2−4dn = 0 then d = b2/(4n) and p+ = p− = p = (0,−b/(2n)). The Jacobian
matrix of the differential system at p is

(

0 0

a− bm

2n
0

)

.
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If a− bm/(2n) 6= 0 then this equilibrium point is nilpotent, and from Theorem 3.5
of [7], this equilibrium point is a saddle-node.

If a = bm/(2n) the linear part of the differential system at the equilibrium
point p is identically zero, and the differential system becomes a homogeneous
quadratic differential system. Using the results of Date in [6] who classified the
phase portraits of all the homogeneous quadratic systems we obtain that the phase
portraits of system (3) when (m − 1)2 − 4ℓn > 0 are given in Figure 1 according
the sign of n, If (m− 1)2− 4ℓn = 0 then the phase portraits of system (3) are given
in Figure 2 according with the sign of n. Finally if (m − 1)2 − 4ℓn < 0 the phase
portraits of system (3) are given in Figure 3 according with the sign of n.

< 0> 0n n

Figure 1. (m− 1)2 − 4ℓn > 0.

< 0> 0n n

Figure 2. (m− 1)2 − 4ℓn = 0.

We assume now n = 0. In this case if b 6= 0 there exists a unique equilibrium
point namely q = (0,−d/b), and the eigenvalues of the Jacobian matrix at q are
0 and b. If b 6= 0 then q is a semi-hyperbolic saddle-node by Theorem 2.19 of [7].
If b = 0 and d 6= 0 the differential system has no finite equilibria. If b = d = 0
then the system has a straight line filled with equilibria and we do not consider this
kind of differential systems because this case can be reduced to a linear differential
system doing a rescaling in the independent variable.

In summary we have proved the following proposition.

Proposition 3. Assume that n 6= 0.
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< 0> 0n n

Figure 3. (m− 1)2 − 4ℓn < 0.

(a) If b2 − 4dn > 0 the differential system (2) has two finite equilibria p± that

are semi-hyperbolic saddle-nodes.

(b) If b2 − 4dn < 0 the differential system (2) has no finite equilibria.

(c) b2 − 4dn = 0.
(c.1) If a−bm/(2n) 6= 0 the differential system (2) has one finite equilibrium

point p that is a nilpotent saddle-node.

(c.2) a− bm/(2n) = 0.
(c.2.1) If (m− 1)2 − 4ℓn > 0 the phase portrait of the differential system (2)

is topologically equivalent to the ones of Figure 1 according with the

sign of n.
(c.2.2) If (m− 1)2 − 4ℓn = 0 the phase portrait of the differential system (2)

is topologically equivalent to the ones of Figure 2 according with the

sign of n.
(c.2.3) If (m− 1)2 − 4ℓn < 0 the phase portrait of the differential system (2)

is topologically equivalent to the ones of Figure 3 according with the

sign of n.

Assume that n = 0.

(d) If b 6= 0 the differential system (2) has one finite equilibria q which is a

semi-hyperbolic saddle-node.

(e) If b = 0 then differential system (2) has no finite equilibria if d 6= 0, and
one straight line of filled with equilibria if d = 0.

3.2. The infinite equilibrium points in the chart U1. System (2) in the local
chart U1 writes

(4) u̇ = ℓ− u+mu+ nu2 + av + buv + dv2, v̇ = −v.

Assume n 6= 0 the infinite equilibrium points are

P± =

(

0,
1−m±

√

(1 −m)2 − 4ℓn

2n

)

.

The eigenvalues of the Jacobian matrix at P± are S± =
(

−1,±
√

(1−m)2 − 4ℓn
)

.

If they are real, then (1−m)2 − 4ℓn > 0 and P+ is a hyperbolic saddle and P− is a
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hyperbolic stable node. If (1−m)2−4ℓn = 0 then P+ = P− = P = (0, (1−m)/(2n)).
In this case the Jacobian matrix writes





0 a+
b(1−m)

2n

0 −1



 ,

and the eigenvalues are -1 and 0, wich means that the unique equilibrium point in
the chart U1 it is semi-hyperbolic and from Theorem 2.19 of [7] is a semi-hyperbolic
saddle-node.

Assume now n = 0. Then the unique infinite equilibrium point in the local chart
U1 is P = (−ℓ/(m − 1), 0), and the eigenvalues of the Jacobian matrix of system
(4) at P are −1 and m − 1. If m 6= 1, from Theorem 2.15 of [7] P is a hyperbolic
saddle if m > 1 and a hyperbolic node if m < 1. If m = 1 there are no equilibrium
points in U1.

3.3. The infinite equilibrium point at the origin of the chart U2. Studying
the infinite equilibrium points in the local chart U1 we also have studied the infinite
equilibrium points in the local chart V1. So only remains to see if the origins of the
local charts U2 and V2 are infinite equilibrium points or not.

System (2) in the local chart U2 writes

(5)
u̇ = −u(n+ (m− 1)u+ bv + ℓu2 + auv + dv2) = P (u, v),

v̇ = −v(n+mu+ bv + ℓu2 + auv + dv2) = Q(u, v),

so the origin of U2 always is an infinite equilibrium point. The eigenvalues of the
Jacobian matrix of system (5) at the origin are −n with multiplicity two. Therefore
the origin is a hyperbolic stable node if n > 0, and unstable node if n < 0.

If n = 0 then the Jacobian matrix of the system at the origin of the local chart
U2 is the zero matrix and we need to make blow-ups in order to study its local
phase portrait. Before doing a vertical blow-up we need to be sure that u = 0 is
not a characteristic direction. If u = 0 is a characteristic direction then u is a factor
of the polynomial Π = vP2(u, v) − uQ2(u, v), where P2(u, v) and Q2(u, v) are the
terms of degree two of P (u, v) and Q(u, v). In our case Π = u2v. So u = 0 is a
characteristic direction and consequently before doing a vertical blow-up, we must
do a twist in order that u = 0 do not be a characteristic direction. This is done
with the change of variables (u, v) → (u1, v1) where u1 = u+ v, v1 = v. Doing this
change of variables the differential system (5) writes
(6)
u̇1 = (1 −m)u2

1 − (b+ 2−m)u1v1 + v21 − ℓu3
1 − (a− 2ℓ)u2

1v1 + (a− d− ℓ)u1v
2
1

v̇1 = −mu1v1 + (m− b)v21 − ℓu2
1v1 + (2ℓ− a)u1v

2
1 + (a− d− ℓ)v31 ,

Since u1 = 0 is not a characteristic direction we can do a vertical blow-up. This
vertical blow-up is given by the change of variables (u1, v1) → (u2, v2) where u2 =
u1, v2 = v1/u1. Then system (6) becomes

u̇2 = u2
2

(

m− 1 + ℓu2 + (b −m+ 2)v2 + (a− 2ℓ)u2v2 − v2 − (a− d− ℓ)u2v
2
2

)

,

v̇2 = −u2v2(−1 + v2)
2.
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Now doing a rescaling of the time with the factor u2 we obtain the system

u̇2 = u2

(

m− 1 + ℓu2 + (b −m+ 2)v2 + (a− 2ℓ)u2v2 − v2 − (a− d− ℓ)u2v
2
2

)

,

v̇2 = −v2(−1 + v2)
2.

The equilibrium points of the previous system on u2 = 0 are (0, 0) and (0, 1)
which is double. The eigenvalues of the Jacobian matrix at (0, 0) are −1 and 1−m.
So the point (0, 0) is a hyperbolic stable node if m > 1, a hyperbolic saddle if
m < 1, and for m = 1 a semi-hyperbolic saddle-node according to Theorem 2.19
of [7]. The eigenvalues of the Jacobian matrix at (0, 1) are 0 and −b. So the local
phase portrait of the origin of the local chart U2 is shown in Figure 4(a) when
n = 0, b > 0 and m > 1.

(a) (b) (c) (d)

u1u2u2 u

v1
v2v2

v

Figure 4. The sequences of blow-ups for obtaining the local phase
portrait at the origin of the local chart U2 when n = 0, b > 0 and
m > 1.

Starting from Figure 4(a) we obtain the local phase portrait at the axis u2 = 0
of system (10): see Figure 4(b) and going back through the vertical blow, taking
into account the value of u̇1|u1=0 = v21 we obtain the local phase portrait at the
origin of system (5) in Figure 4(c). Finally undoing the twist we get the local phase
portrait at the origin of the local chart U2 which is shown in 4(d) and 5(a).

Working in a similar way to the preceding case, doing the convenient blow ups
and using Theorems 2.15 and 2.19 of [7] we obtain all the local phase portraits at
the origin of the local chart U2 in Figure 5. All those local phase portraits are then
the following
n = 0, b > 0 and m > 1 in Figure 5(a);
n = 0, b < 0 and m > 1 in Figure 5(b);
n = 0, b > 0 and m < 1 in Figure 5(c);
n = 0, b < 0 and m < 1 in Figure 5(d);
n = 0, b > 0, m = 1 and l 6= 0 in Figure 5(e);
n = 0, b > 0, m = 1 and l = 0 then v = 0 is a straight line of equilibrium points;
n = 0, b < 0, m = 1 and l 6= 0 in Figure 5(f);
n = 0, b < 0, m = 1 and l = 0 then v = 0 is a straight line of equilibrium points;
n = 0, b = 0, d > 0 and m > 1 in Figure 5(g);
n = 0, b = 0, d < 0 and m > 1 in Figure 5(h);
n = 0, b = 0, d > 0 and m < 1 in Figure 5(i);
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

u u

uu u

uu

u uuu

u

vv

vv vv

vv v

v vv v

Figure 5. The distinct topological local phase portraits at the
origin of the local chart U2.

n = 0, b = 0, d < 0 and m < 1 in Figure 5(j);
n = 0, b = 0, d > 0 and m = 1 in Figure 5(k);
n = 0, b = 0, d < 0 and m = 1 in Figure 5(l);
n = 0, b = 0 and d = 0 then u = 0 is a straight line of equilibrium points.

P

P

-

+

-

+p

p

Figure 6. The local phase portraits at the finite and infinite equi-
librium points for the case n > 0, b2 − 4dn > 0 and (1−m)2 > 4ℓn.

3.4. The global phase portaits. The preceding results for the finite and infinite
equilibrium points, allow to obtain the global phase portraits quite easily, taking
into account that the straight line x = 0 is invariant.
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S = 10, r = 3 S = 19, r = 6S = 4, r = 1

S = 21, r = 6 S = 21, r = 6

S = 17, r = 6S = 11, r = 4

S = 14, r = 3

S = 17, r = 6 S = 16, r = 5

(1) (3)

(9) (10) (11) (12)

S = 21, r = 6

(4)

(5) (6)

S = 13, r = 4

S = 13, r = 4

(7) (8)

(19)

(16)

S = 6, r = 2

(14)

S = 18, r = 5

(13)

S = 8, r = 3

(15)

S = 12, r = 3

(18)

S = 13, r = 4

(20)

S = 14, r = 5

(17)

S = 20, r = 5

(2)

S = 9, r = 4 S = 10, r = 3

(21) (23)

S = 14, r = 5 S = 12, r = 3

(22)

S = 5, r = 2

(24)

(27)(((26)(((25)

S = 9, r = 2 S = 5, r = 2

Figure 7. All the distinct topological phase portraits of the qua-
dratic systems VII. Here s (respectively r) denotes the number of
separatrices of a phase portrait in the Poincaré disc (respectively
canonical regions).
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First we consider the case satisfying the following conditions: n > 0, b2−4dn > 0
and (1 −m)2 > 4ℓn. We have seen that if n > 0 then there is a stable hyperbolic
node at the origin of the chart U2. Since b2 − 4dn > 0 there exist two real finite
equilibrium points p+ and p− that are semi-hyperbolic saddle-nodes. Finitely since
(1−m)2 > 4ℓn imply the existence of two infinite equilibrium points in the chart U1

(P+ is a hyperbolic saddle and P− a hyperbolic node). The local phase portraits at
all these equilibrium points are shown in Figure 6. The tools for studying the phase
portraits in this case are employed for all possible configurations which appears in
Figures 7.
n > 0, b2 − 4dn > 0 and (1 − m)2 > 4ℓn in Figures 7(1) to 7(4), but the phase
portrait in Figure 7(2) appears by continuity between the phase portraits in Figure
7(1) to 7(3);
n > 0, b2 − 4dn > 0 and (1−m)2 < 4ℓn from Figure 7(5);
n > 0, b2 − 4dn > 0 and (1−m)2 = 4ℓn in Figures 7(6) to 7(8);
n > 0, b2 − 4dn < 0, and (1−m)2 > 4ℓn in Figure 7(9);
n > 0, b2 − 4dn < 0, and (1−m)2 < 4ℓn in Figure 7(10);
n > 0, b2 − 4dn < 0, (1−m)2 = 4ℓn in Figure 7(11);
n > 0, b2 − 4dn = 0, and (1−m)2 > 4ℓn from Figure 7(12) and 7(13);
n > 0, b2 − 4dn = 0, and (1−m)2 < 4ℓn in Figures 7(14) and 7(15);
n > 0, b2 − 4dn = 0, (1−m)2 = 4ℓn in Figures 7(16) to 7(20).

The phase portraits with n < 0 are symmetric with respect to the origin of
coordinates of the preceding eight cases.

Now we study the phase portraits when n = 0.
n = 0, b > 0 and m > 1 in Figure 7(21);
n = 0, b > 0 and m < 1 in Figure 7(22);
n = 0, b > 0 and m = 1 in Figure 7(23);
The cases with b < 0 are the symmetric with respect to the origin of coordinates of
the preceding three cases.
n = 0, b = 0, d > 0 and m > 1 in Figure 7(24);
The cases with d < 0 are the symmetric with respect to the origin of coordinates
of all the preceding case.
n = 0, b = 0, d > 0 and m < 1 in Figure 7(25);
The cases with d < 0 are the symmetric with respect to the origin of coordinates
of all the preceding case.
n = 0, b = 0, d > 0 and m = 1 in Figure 7(26);
n = 0, b = 0, d < 0 and m = 1 in Figure 7(27).

s 4 5 6 8 9 9 10 11 12
r 1 2 2 3 4 2 3 4 3

p.p. 10 26, 27 14 15 23 25 11, 24 5 18, 22

s 13 14 14 16 17 18 19 20 21
r 4 3 5 5 6 5 6 5 6

p.p. 16, 19, 20 9 17, 21 8 6, 7 13 12 2 1, 3, 4
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Table 1. Here p.p. denotes phase portrait in the Poincaré disc, s denotes the
number of separatrices of the phase portrait, and r denotes the number of canonical
regions of the phase portrait.

Of course from the Table 1 the phase portraits with different number of separa-
trices and canonical regions are topologically distinct. Now we shall see that the
phase portraits with the same number of separatrices and canonical regions of the
Table 1 also are topologically different.

The phase portraits 26 and 27 of Figure 7 are topologically different because the
phase portrait 27 has two elliptic sectors and the phase portrait 26 has no elliptic
sectors.

The phase portraits 11 and 24 of Figure 7 are topologically different because the
phase portrait 24 has two elliptic sectors and the phase portrait 11 has no elliptic
sectors.

The phase portraits 18 and 22 of Figures 7 are topologically different because
the phase portrait 18 have orbits starting at the origin of the local chart U2 and
ending at the origin of the local chart U1, and this kind of orbits do not exist in
the phase portrait 22.

The phase portraits 16, 19 and 20 of Figure 7 are topologically different. First
the phase portrait 16 have orbits starting at the origin of the local chart U2 and
ending at the origin of the local chart U1, and this kind of orbits do not exist in the
phase portrait 19 and 20. The phase portrait 19 has a separatrix starting at the
origin of the local chart U2 and ending at an infinite equilibrium point in the local
chart V1, and such a kind of separatrix does not exist in the phase portrait 20.

The phase portraits 17 and 21 of Figure 7 are topologically different because the
phase portrait 21 has two elliptic sectors and the phase portrait 17 has no elliptic
sectors.

The phase portraits 1, 3 and 4 of Figure 7 are topologically different because
the unstable separatrix of the lower equilibrium point on the straight line x = 0
contained in x > 0 has different ending infinite equilibrium point in the these three
phase portraits.

4. Proof of statement (b) Theorem 1

4.1. Finite equilibrium points. We are going to analyze the equilibrium points
of the quadratic system (3).

Assume first n 6= 0. The finite equilibrium points of system (3) are

p± =

(

0,
−b±

√
b2 − 4dn

2n

)

.

If b2−4dn > 0, the eigenvalues of the Jacobian matrix of system (3) at p± are 1 and

±
√
b2 − 4dn. So from Theorem 2.15 of [7] we have p+ is a hyperbolic unstable node

and p− is a hyperbolic saddle. If b2 − 4dn = 0 then p+ = p− = p = (0,−b/(2n)).
The eigenvalues of the Jacobian matrix of system (3) at p are 1, 0 therefore by
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Theorem 2.19 of [7] we obtain that p is a semi-hyperbolic saddle-node. Of course,
if b2 − 4dn < 0 there are no finite equilibrium points.

We assume now n = 0. In this case if b 6= 0 there exists a unique equilibrium
point namely p = (0,−d/b), and the eigenvalues of the Jacobian matrix at p are 1
and b. If b > 0 then p is a hyperbolic unstable node. If b < 0 then p is a hyperbolic
saddle. If b = 0 there are no finite equilibrium points.

4.2. The infinite equilibrium points in the chart U1. System (3) in the local
chart U1 writes

(7) u̇ = ℓ+mu+ av + nu2 + (b − 1)uv + dv2, v̇ = −v2,

Assume n 6= 0 the infinite equilibrium points are

P± =

(

0,
−m±

√
m2 − 4ℓn

2n

)

,

if m2 − 4ℓn > 0. If m2 − 4ℓn = 0 then P+ = P− = P = (0,−m/(2n)). The

eigenvalues of the Jacobian matrix at P± are 0 and ±
√
m2 − 4ℓn). By Theorem

2.19 of [7] we get P± are semi-hyperbolic saddle-nodes. The Jacobian matrix at P
is





0
2an− bm+m

2n

0 0



 .

If 2an + (1 − b)m 6= 0 then P is a nilpotent equilibrium point, and by Theorem
3.5 of [7] is a saddle-node. If 2an + (1 − b)m = 0, then P is degenerate. If we
translate the equilibrium point P to the origin it becomes a homogeneous quadratic
system and their phase portraits have been classified by Date in [6]. It follows that
if b2 − 4dn ≥ 0 we obtain that the local phase portrait at P on the Poincaré
sphere is formed by two hyperbolic sectors separated by two parabolic ones, the
infinity separates the two hyperbolic sectors which have one separatrix at infinity.
If b2 − 4dn < 0, then the local phase portrait at P is a node, unstable if n < 0, and
stable if n > 0.

Assume now n = 0. Then the unique infinite equilibrium point in the local chart
U1 is P = (−l/m, 0), and the eigenvalues of the Jacobian matrix of system (7) at P
are 0 and m. Ifm 6= 0, from Theorem 2.19 of [7] P is a semi-hyperbolic saddle-node.
If m = 0 there are no infinite equilibrium points in the local chart U1.

4.3. The infinite equilibrium point at the origin of the chart U2. Studying
the infinite equilibrium points in the local chart U1 we also have studied the infinite
equilibrium points in the local chart V1. So only remains to see if the origins of the
local charts U2 and V2 are infinite equilibrium points or not.

System (3) in the local chart U2 writes

(8)
u̇ = −u(n+mu+ (b− 1)v + ℓu2 + auv + dv2) = P (u, v),

v̇ = −v(n+mu+ bv + ℓu2 + auv + dv2) = Q(u, v),

so the origin of U2 always is an infinite equilibrium point. The eigenvalues of the
Jacobian matrix of the system at the origin are −n with multiplicity two. Therefore
the origin is a hyperbolic node, stable if n > 0, and unstable if n < 0.
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If n = 0 then the Jacobian matrix of the system at the origin is the zero matrix
and we need to make blow-ups in order to study the local phase portrait at the
origin of U2. Before doing a vertical blow-up we need to be sure that u = 0 is not
a characteristic direction. If u = 0 is a characteristic direction then u is a factor
of the polynomial Π = vP2(u, v) − uQ2(u, v), where P2(u, v) and Q2(u, v) are the
terms of lowest degree of P (u, v) and Q(u, v). In our case Π = uv2. So u = 0 is
characteristic direction and consequently before doing a vertical blow-up, we must
do a twist in order that u = 0 do not be a characteristic direction. This is done
with the change of variables (u, v) → (u1, v1) where u1 = u+ v, v1 = v. Doing this
change of variables the differential system (8) writes

(9)
u̇1 = −mu2

1 − v21 + (1 − b+m)u1v1 + (a− d− ℓ)u1v
2
1 − ℓu3

1 + (2ℓ− a)u2
1v1

v̇1 = −v1
(

mu1 + (b−m)v1 + ℓu2
1 + (a− 2ℓ)u1v1 + (d− a+ ℓ)v21

)

,

The characteristic directions of this system are given by the polynomial Π = (u1 −
v1)v

2
1 , so u1 = 0 is not a characteristic direction and we can do a vertical blow-up.

This vertical blow-up is given by the change of variables (u1, v1) → (u2, v2) where
u2 = u1, v2 = v1/u1. Then system (9) becomes
(10)

u̇2 = u2
2

(

−m− ℓu2 + (1− b+m)v2 + (2ℓ− a)u2v2 − v22 + (a− d− ℓ)u2v
2
2

)

,

v̇2 = u2(−1 + v2)v
2
2 .

Now doing a rescaling of the time with the factor u2 we obtain the system
(11)

u̇2 = u2

(

−m− ℓu2 + (1− b+m)v2 + (2ℓ− a)u2v2 − v22 + (a− d− ℓ)u2v
2
2

)

,

v̇2 = (−1 + v2)v
2
2 .

The equilibrium points of system (11) on u2 = 0 are (0, 0) which is double and
(0, 1). The eigenvalues of the Jacobian matrix at (0, 0) are 0 and −m. So the (0, 0)
is a semi-hyperbolic equilibrium point, applying to it Theorem 2.19 of [7] it is a
saddle-node. The eigenvalues of the Jacobian matrix at (0, 1) are 1 and −b. So this
equilibrium point is hyperbolic, a saddle if b > 0, an unstable node if b < 0, see
Figure 8(a) when n = 0, m < 0 and b < 0.

(a) (b) (c) (d)

u1u2u3 u

v1
v2v3

v

Figure 8. The sequences of blow-ups for obtaining the local phase
portrait at the origin of the local chart U2 when n = 0, b < 0 and
m < 0.

From Figure 8(a) we obtain that the local phase portrait at the axis u2 = 0
of system (10) is given in Figure 8(b). Now going back through the vertical blow
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up and taking into account the value of u̇1|u1=0 = −v21 we obtain the local phase
portrait at the origin of system (8) in Figure 8(c). Finally unding the twist we get
the local phase portrait at the origin of the local chart U2 which is shown in 8(d)
and 9(a).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

u

u u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

v v

vv v v

vv v v

vv v v

v

v v

v

Figure 9. The distinct topological local phase portraits at the
origin of the local chart U2.

Working in a similar way to the case n = 0, b < 0 and m < 0, i.e. doing the
convenient blow ups and using Theorems 2.15 and 2.19 of [7] we obtain all the local
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phase portraits at the origin of the local chart U2 in Figure 9 for the following cases:
n = 0, m < 0 and b > 0 in Figure 9(b);
n = 0, m < 0, b = 0, and d < 0 in Figure 9(c);
n = 0, m < 0 b = 0 and d > 0, in Figure 9(d);
n = 0, m > 0 and b < 0 in Figure 9(e);
n = 0, m > 0 and b > 0 in Figure 9(f);
n = 0, m > 0, b = 0 and d < 0 in Figure 9(g);
n = 0, m > 0, b = 0 and d > 0 in Figure 9(h);
n = 0, m = 0, ℓ < 0 and b < 0 in Figure 9(i);
n = 0, m = 0, ℓ < 0 and 0 < b ≤ ℓ+ 2 in Figure 9(j);
n = 0, m = 0, ℓ < 0 and b > ℓ+ 2 in Figure 9(k);
n = 0, m = 0, ℓ < 0, b = 0 and d < 0 in Figure 9(l);
n = 0, m = 0, ℓ < 0, b = 0 and d > 0 in Figure 9(m);
n = 0, m = 0, ℓ > 0, b < 0 and in Figure 9(n);
n = 0, m = 0, ℓ > 0 and 0 < b ≤ ℓ+ 2 in Figure 9(o);
n = 0, m = 0, ℓ > 0 and b > ℓ+ 2 in Figure 9(p);
n = 0, m = 0, ℓ > 0, b = 0 and d < 0 in Figure 9(q);
n = 0, m = 0, ℓ > 0 b = 0 and d > 0 in Figure 9(r).

P-

P+

+

-

p

p

Figure 10. The local phase portraits at the finite and infinite
equilibrium points for the case n > 0, b2 − 4dn > 0 and m2 > 4ℓn.

4.4. The global phase portaits. The preceding results for the finite and infinite
equilibrium points, allow to obtain the global phase portraits quite easily, taking
into account that the straight line x = 0 is invariant.

First we consider the case satisfying the following conditions: n > 0, b2−4dn > 0
and m2 > 4ℓn. We have seen that n > 0 denotes a stable hyperbolic node at the
origin of the chart U2, b2 − 4dn > 0 indicates the existence of two real finite
equilibrium points (p+ a hyperbolic unstable node and p− a hyperbolic saddle),
and m2 > 4ℓn imply two infinite equilibrium points in the chart U1 (P+ and P−

which are nilpotent saddle-nodes). The local phase portraits at all these equilibrium
points are shown in Figure 10.

With the help of Mathematica we have proved that in order that the conditions
n > 0, b2 − 4dn > 0 and m2 > 4ℓn hold, the parameters of the differential system
(3) must satisfy one of the conditions:

(i) b < 0, d ≤ 0, ℓ < 0 and n > 0;

(ii) b < 0, d ≤ 0, ℓ ≥ 0, n > 0 and m < −2
√
ℓn;
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S = 8, r = 1 S = 18, r = 5S = 10, r = 3

S = 20, r = 5 S = 20, r = 5

S = 15, r = 4

S = 10, r = 3

S = 9, r = 2

S = 16, r = 5 S = 4, r = 1S = 14, r = 3

(1) (2)

(6)

(9)

(7) (8)

(10) (11) (12)

S = 18, r = 5

(13)

S = 19, r = 4

(3)

S = 17, r = 4

(14)

(4)

(5)

S = 8, r = 3 S = 13, r = 4

(15)
(16)

S = 12, r = 3S = 12, r = 3

(17) (18)

S = 7, r = 2

(22)

S = 5, r = 2

S = 6, r = 1

(24)

(25)

(23)

S = 13, r = 4

S = 11, r = 4

S = 14, r = 5

(20)
(19)

(21)

S = 9, r = 4

Figure 11. All the distinct topological phase portraits of the qua-
dratic systems VIII. Here s (respectively r) denotes the number of
separatrices of a phase portrait in the Poincaré disc (respectively
canonical regions).
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(iii) b < 0, d ≤ 0, ℓ ≥ 0, n > 0 and m > −2
√
ℓn;

(iv) b < 0, d > 0, ℓ < 0 and 0 < n < b2/(4d);

(v) b < 0, d > 0, ℓ ≥ 0, 0 < n < b2/(4d) and m < −2
√
ℓn;

(vi) b < 0, d > 0, ℓ ≥ 0, 0 < n < b2/(4d) and m > −2
√
ℓn;

(vii) b = 0, d < 0, ℓ < 0 and n > 0;

(viii) b = 0, d < 0, ℓ ≥ 0, n > 0 and m < −2
√
ℓn;

(ix) b = 0, d < 0, ℓ ≥ 0, n > 0) and m > −2
√
ℓn;

(x) b > 0, d ≤ 0, ℓ < 0 and n > 0;

(xi) b > 0, d ≤ 0, ℓ ≥ 0, n > 0 and m < −2
√
ℓn;

(xii) b > 0, d ≤ 0, ℓ ≥ 0, n > 0 and m > −2
√
ℓn;

(xiii) b > 0, d > 0, ℓ < 0 and 0 < n < b2/(4d);

(xiv) b > 0, d > 0, ℓ ≥ 0, 0 < n < b2/(4d) and m < −2
√
ℓn;

(xv) b > 0, d > 0, ℓ ≥ 0, 0 < n < b2/(4d) and m > −2
√
ℓn.

We have proved that in the cases (i), (ii), (iv), (vii) and from (ix) to (xv) we get
the phase portrait (1) of Figure 11; in the cases (iii), (vi) and (viii) we obtain the
phase portrait (2) of Figure 11; and finally in the case (v) we get the phase portrait
symmetric to the phase portrait (2) with respect to the straigt line x = 0. For
instance: the phase portrait (1) of Figure 11 is obtained when the parameters of
system (3) are d = a = 0, b = −1, ℓ = −1, m = −3 and n = 1; the phase portrait
(2) of Figure 11 is obtained when the parameters are d = a = 0, b = −1, ℓ = 1,
m = 3 and n = 1.The phase portrait (3) of Figure 11 exists by continuity going
from the phase portrait (1) to the phase portrait (2).

We recall that the separatrices of a polynomial differential system in the Poincaré
disc are all the orbits at infinity, the finite equilibria and the two orbits at the
boundary of an hyperbolic sector. Also the limit cycles are separatrices but the
quadratic system VIII has no limit cycles. If in a phase portrait of the Poincaré
disc we remove all the separatrices the open components which remain are called
the the canonical regions of the phase portrait. For more details on the separatrices
and canonical regions see [?, ?].

The tools for studying the phase portraits of system (3) for the case n > 0,
b2 − 4dn > 0 and m2 > 4ℓn are used in the following cases, leading to the next
results:
n > 0, b2 − 4dn > 0, and m2 < 4ℓn in Figure 11(4);
n > 0, b2 − 4dn > 0, m2 = 4ℓn and 2an+ (1− b)m > 0 in Figure 11(5);
n > 0, b2 − 4dn > 0, m2 = 4ℓn and 2an + (1 − b)m < 0 in this case the phase
portrait is symmetric with respect to the straight line x = 0 of the phase portrait
of the previous case;
n > 0, b2 − 4dn > 0, m2 = 4ℓn and 2an+ (1− b)m = 0 in Figure 11(6);
n > 0, b2 − 4dn < 0, and m2 > 4ℓn in Figure 11(7);
n > 0, b2 − 4dn < 0, and m2 < 4ℓn in Figure 11(8);
n > 0, b2 − 4dn < 0, m2 = 4ℓn and 2an+ (1− b)m > 0 in Figure 11(9);
n > 0, b2 − 4dn < 0, m2 = 4ℓn and 2an + (1 − b)m < 0 this case is a symmetric
phase portrait with respect to the straight line x = 0 of the previous phase phase
portrait;
n > 0, b2−4dn < 0, m2 = 4ℓn and 2an+(1−b)m = 0 in Figures 11(10) and11(11);
n > 0, b2 − 4dn = 0, and m2 > 4ℓn from Figure 11(12) to 11(14);
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n > 0, b2 − 4dn = 0, and m2 < 4ℓn in Figure 11(15);
n > 0 b2−4dn = 0, m2 = 4ℓn and 2an+(1−b)m > 0 in Figures 11(16) and 11(17);
n > 0, b2 − 4dn = 0, m2 = 4ℓn and 2an+ (1− b)m = 0 in Figure 11(18);
The cases with n < 0 are the symmetric with respect to the straight line y = 0 to
all the preceding cases;
n = 0, m > 0, b > 0 in Figure 11(19);
n = 0, m > 0, b < 0 in Figure 11(20);
n = 0, m > 0, b = 0 and d > 0 in Figure 11(21);
n = 0, m > 0, b = 0 and d < 0 this case has a symmetric phase portrait with
respect to y = 0 to the previous case;
The phase portraits of the cases n = 0 and m < 0 are symmetric with respect to
the straight line x = 0 of the phase portraits of the cases n = 0 and m > 0;
n = 0, m = 0, b > 2 + l and ℓ > 0 in Figure 11(22);
n = 0, m = 0, b > 2 + l and ℓ < 0 this case has a symmetric phase portrait with
respect to the y = 0 axis;
n = 0, m = 0, 0 < b ≤ 2 + ℓ and ℓ 6= 0 in Figure 11(23);
n = 0, m = 0, b < 0 and ℓ > 0 in Figure 11(24);
n = 0, m = 0, b < 0 and ℓ < 0 the phase portrait of this case is symmetric with
respect to the straight line y = 0 of the previous phase portrait;
n = 0, m = 0, b = 0, ℓ > 0 and d < 0 in the Figure 11(25);
n = 0, m = 0, b = 0, ℓ < 0 and d > 0 the phase portrait of this case is symmetric
with respect to the straight line y = 0 of the previous phase portrait;
n = 0, m = 0, b = 0, ℓ > 0 and d > 0 this case has the same phase portrait of
Figure 11(8);
n = 0, m = 0, b = 0, ℓ < 0 and d < 0 this case has the symmetric phase portrait
with respect to the straight line y = 0 to the phase portrait of Figure 11(8).

Of course from the Table 2 the phase portraits with different number of separa-
trices and canonical regions are topologically distinct. Now we shall see that the
phase portraits with the same number of separatrices and canonical regions of the
Table 2 also are topologically different.

s 4 5 6 7 8 8 9 9 10 11
r 1 2 1 2 1 3 2 4 3 4

p.p. 8 25 23 22 11 15 9 24 4, 10 21

s 12 13 14 14 15 16 17 18 19 20
r 3 4 3 5 4 5 4 5 4 5

p.p. 17, 18 16, 19 7 20 5 6 14 12, 13 3 1, 2

Table 2. Here p.p. denotes phase portrait in the Poincaré disc, s denotes the
number of separatrices of the phase portrait, and r denotes the number of canonical
regions of the phase portrait.

The phase portraits 4 and 10 of Figure 12 are topologically different because the
phase portrait 4 has two finite equilibrium points and the phase portrait 10 has no
finite equilibrium points.
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The phase portraits 17 and 18 (respectively 16 and 19) of Figure 12 are topolog-
ically different because the phase portrait 17 (respectively 16) has two orbits going
to the origin of the chart U2, and such orbits do not exist in the phase portrait 18
(respectively 19).

The phase portrait 14 of Figure 12 has three pairs of infinite equilibrium points
while the phase portrats 16 and 19 only have only two pairs of infinite equilibrium,
so the phase portrait 14 is different from the phase portraits 16 and 19.

We note that the phase portrait 13 of Figure 12 has three pairs of infinite equi-
librium points, while the phase portrait 20 has only two pairs, so these two phases
portraits are topologically disctinct.

5. Discussion

Authors should discuss the results and how they can be interpreted from the
perspective of previous studies and of the working hypotheses. The findings and
their implications should be discussed in the broadest context possible. Future
research directions may also be highlighted.

6. Conclusions

This section is not mandatory, but can be added to the manuscript if the dis-
cussion is unusually long or complex.

7. Patents

This section is not mandatory, but may be added if there are patents resulting
from the work reported in this manuscript.
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