Final evolutions of a class of May-Leonard Lotka-Volterra systems

Claudio A. Buzzi and Robson A. T. Santos
Departamento de Matemática, Universidade Estadual Paulista, Rua Cristóvão Colombo 2265, São José do Rio Preto, 15115-000, Brazil
claudio.buzzi@unesp.br and robson.trevizan@outlook.com
Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edificio C Facultad de Ciencias, Bellaterra (Barcelona), Catalonia, 08193, Spain
jllibre@mat.uab.cat

Received 8 June 2019
Accepted 29 August 2019

Abstract

We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which depend on two real parameters a and b, when $a+b=-1$. For these values of the parameters we shall describe its global dynamics in the compactification of the non-negative octant of \mathbb{R}^{3} including its infinity. This can be done because this differential system possesses a Darboux invariant.

Keywords: May-Leonard system; Lotka-Volterra system; invariant, global dynamics.
2000 Mathematics Subject Classification: 34D45, 34D05, 37N25, 92D25, 34C12

1. Introduction

Polynomial ordinary differential systems are often used in various branches of applied mathematics, physics, chemist, engineering, etc. Models studying the interaction between species of predator-prey type have been extensively analyzed as the classical Lotka-Volterra systems. For more information on the Lotka-Volterra systems see for instance [8] and the references quoted there. In particular, one of these competition models between three species inside the class of 3-dimensional Lotka-Volterra systems is the May-Leonard model given by the polynomial differential system in \mathbb{R}^{3}

$$
\begin{align*}
& \dot{x}=x(1-x-a y-b z), \\
& \dot{y}=y(1-b x-y-a z), \tag{1.1}\\
& \dot{z}=z(1-a x-b y-z),
\end{align*}
$$

where a and b are real parameters and the dot denotes derivative with respect to the time t. See for more details on the May-Leonard system the papers [10] and [2] and on Lotka-Volterra systems [9], and the references quoted there.

The Lotka-Volterra systems in \mathbb{R}^{3} have the property that the three coordinate planes are invariant by the flow of these systems. Moreover, at points of straight line $x=y=z$, system (1.1) is reduced to $\dot{x}=x-(1+a+b) x^{2}$, because the other equations do not provide any further information. Therefore, the bisectrix of the non-negative octant is an invariant straight line for this differential system.

