Journal of Nonlinear Mathematical Physics, Vol. 27, No. 2 (2020) 267-278

Final evolutions of a class of May-Leonard Lotka-Volterra systems

Claudio A. Buzzi and Robson A. T. Santos

Departamento de Matemática, Universidade Estadual Paulista, Rua Cristóvão Colombo 2265, São José do Rio Preto, 15115-000, Brazil claudio.buzzi@unesp.br and robson.trevizan@outlook.com

Jaume Llibre

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edificio C Facultad de Ciencias, Bellaterra (Barcelona), Catalonia, 08193, Spain jllibre@mat.uab.cat

Received 8 June 2019

Accepted 29 August 2019

We study a particular class of Lotka-Volterra 3-dimensional systems called May-Leonard systems, which depend on two real parameters *a* and *b*, when a + b = -1. For these values of the parameters we shall describe its global dynamics in the compactification of the non-negative octant of \mathbb{R}^3 including its infinity. This can be done because this differential system possesses a Darboux invariant.

Keywords: May-Leonard system; Lotka-Volterra system; invariant, global dynamics.

2000 Mathematics Subject Classification: 34D45, 34D05, 37N25, 92D25, 34C12

1. Introduction

Polynomial ordinary differential systems are often used in various branches of applied mathematics, physics, chemist, engineering, etc. Models studying the interaction between species of predator-prey type have been extensively analyzed as the classical Lotka-Volterra systems. For more information on the Lotka-Volterra systems see for instance [8] and the references quoted there. In particular, one of these competition models between three species inside the class of 3-dimensional Lotka-Volterra systems is the *May-Leonard model* given by the polynomial differential system in \mathbb{R}^3

$$\dot{x} = x(1 - x - ay - bz),
\dot{y} = y(1 - bx - y - az),
\dot{z} = z(1 - ax - by - z),$$
(1.1)

where a and b are real parameters and the dot denotes derivative with respect to the time t. See for more details on the May-Leonard system the papers [10] and [2] and on Lotka-Volterra systems [9], and the references quoted there.

The Lotka-Volterra systems in \mathbb{R}^3 have the property that the three coordinate planes are invariant by the flow of these systems. Moreover, at points of straight line x = y = z, system (1.1) is reduced to $\dot{x} = x - (1 + a + b)x^2$, because the other equations do not provide any further information. Therefore, the bisectrix of the non-negative octant is an invariant straight line for this differential system.