

Check for updates

# On the dynamics of the Euler equations on so(4)

Claudio A. Buzzi<sup>a</sup>, Jaume Llibre<sup>b</sup> and Rubens Pazim<sup>c</sup>

<sup>a</sup>Departamento de Matemática, IBILCE – UNESP Universidade Estadual Paulista, São José do Rio Preto, SP, Brazil; <sup>b</sup>Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; <sup>c</sup>Instituto de Ciências Naturais Humanas e Sociais, Universidade Federal de Mato Grosso, Sinop, MT, Brazil

### ABSTRACT

This paper deals with the Euler equations on the Lie Algebra so(4). These equations are given by a polynomial differential system in  $\mathbb{R}^6$ . We prove that this differential system has four 3-dimensional invariant manifolds and we give a complete description of its dynamics on these invariant manifolds. In particular, each of these invariant manifolds are fulfilled by periodic orbits except in a zero Lebesgue measure set.

#### **ARTICLE HISTORY**

Received 8 February 2019 Accepted 6 December 2019

#### KEYWORDS

Euler equations on so(4); periodic orbits; reversible systems

## 1. Introduction

The Euler equations on the Lie algebra so(4) have a very long story that can be found in [2, 4, 5, 8, 10–12] and in the references quoted therein. The Euler differential equations on so(4) in  $\mathbb{R}^6$  depend on six parameters  $\lambda_i$ , i = 1, ..., 6, and are given by

$$\dot{x_{1}} = (\lambda_{3} - \lambda_{2})x_{2}x_{3} + (\lambda_{6} - \lambda_{5})x_{6}x_{5}, 
\dot{x_{2}} = (\lambda_{1} - \lambda_{3})x_{1}x_{3} + (\lambda_{4} - \lambda_{6})x_{4}x_{6}, 
\dot{x_{3}} = (\lambda_{2} - \lambda_{1})x_{1}x_{2} + (\lambda_{5} - \lambda_{4})x_{4}x_{5}, 
\dot{x_{4}} = (\lambda_{3} - \lambda_{5})x_{3}x_{5} + (\lambda_{6} - \lambda_{2})x_{2}x_{6}, 
\dot{x_{5}} = (\lambda_{4} - \lambda_{3})x_{3}x_{4} + (\lambda_{1} - \lambda_{6})x_{1}x_{6}, 
\dot{x_{6}} = (\lambda_{2} - \lambda_{4})x_{2}x_{4} + (\lambda_{5} - \lambda_{1})x_{1}x_{5},$$
(1)

where the dot denotes derivative with respect to the time *t*.

Equation (1) can have a very complicated dynamics, due to the complexity of the system: nonlinear, high dimension and many parameters. From the integrability point of view, in the paper [7] it is proved that the Euler equations on the Lie algebra so(4) with a diagonal quadratic Hamiltonian either satisfy the Manakov condition, or have at most four functionally independent polynomial first integrals.

In the present paper, our first interest was about the existence or non-existence of periodic orbits for system (1). As we will see in what follows, we have proved that there exist three-dimensional invariant manifolds for the flow of system (1) that are fulfilled by periodic orbits.

CONTACT Claudio A. Buzzi 🖾 claudio.buzzi@unesp.br

<sup>© 2019</sup> Informa UK Limited, trading as Taylor & Francis Group