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Abstract. We apply the averaging method in a class of planar systems given by a
linear center perturbed by a sum of continuous homogeneous vector fields, to study
lower bounds for their number of limit cycles. Our results can be applied to models
where the smoothness is lost on the set Σ = {xy = 0}. They also motivate to consider a
variant of Hilbert 16th problem, where the goal is to bound the number of limit cycles
in terms of the number of monomials of a family of polynomial vector fields, instead of
doing this in terms of their degrees.

1. Introduction

A limit cycle is a periodic orbit of a differential system that is isolated in the set of
all its periodic orbits. The investigation of the existence of limit cycles is relevant for
its theoretical interest, because they are the α or ω limit set of many other trajectories,
as well as for their importance in the study of many phenomena in applied sciences,
see of instance [3, 11, 21, 29, 30]. One of the approaches to detect such objects is the
averaging theory. We refer the books of Sanders and Verhulst [27] and Verhulst [31] for
an introduction on this subject.

In this paper we will apply this theory to give a lower bound for the number of limit
cycles of a special family of continuous planar differential equations. Motivated from our
results on this family we will propose to approach the classical Hilbert 16th problem from
a different point of view. Our results on both questions are described in more detail in
next two subsections.

1.1. Limit cycles for a sum of continuous homogeneous vector fields. The pie-
cewise smooth differential system theory has developed very quickly in recents years and
has certainly become an important common frontier between Mathematics, Physics and
Engineering, for example. Many studies on piecewise smooth differential system concern
the case in which the set Σ, where the systems lose smoothness, is a regular manifold.
Nevertheless, in the recent years the interested in the case where Σ is the union of regular
manifolds has increased, including the case when Σ is not regular, but it is an algebraic
manifold. See for instance Panazzolo and Da Silva in [23]. There are also studies that
deal with the search of limit cycles of discontinuous systems with Σ being an algebraic
manifold, see for instance [18] and [22].

In this work we give some lower bounds for the number of limit cycles in some classes of
continuous, not necessarily locally Lipschitz, piecewise smooth differential systems where
Σ = {xy = 0}. The main technique is the averaging theory.

Some systems and problems that motivated this study are introduced in Section 2.
They include models of capillary rise, population models and also some type of SIR
models. All of them have in common that can be written as differential equations of the
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form

ẋ = f(x, y,
√
x,
√
y), ẏ = g(x, y,

√
x,
√
y), (1)

where f and g are smooth or polynomial functions and x, y ≥ 0. We can consider the
natural odd extension of the function

√
u given by

√
u

R
:= sgn(u)

√
|u| defined for any

real number and then these systems can be considered in the full plane but they are
non-smooth on the set Σ = {xy = 0}. They clearly belong to the category described
above. Notice also that the corresponding vector fields are not Lipschitz functions on Σ.

In fact, these systems could also be treated by introducing new variables u and v such
that u2 = x and v2 = y and changing the time, but as we will see, the approach presented
in the paper can be applied directly to the original system and can also be applied to
more general systems involving simultaneously several non-differentiable functions. For
example, the functions k

√
x, for different values of k, also can be treated with our point

of view.
Recall that a continuous vector field X(x, y) is called homogeneous with degree of

homogeneity α, where 0 ≤ α ∈ R, if X(rx, ry) = rαX(x, y) for all (x, y) ∈ R2 and all
0 ≤ r ∈ R. For simplicity sake, we will denote X(x, y) = (f(x, y), g(x, y)) instead of the
more usual notation X(x, y) = f(x, y) ∂

∂x
+ g(x, y) ∂

∂y
. When α < 1, this vector field is

continuous but it is not Lipschitz. Its associated planar system of differential equations is
(ẋ, ẏ) = X(x, y), or equivalently, ẋ = f(x, y), ẏ = g(x, y). Our first result is the following:

Theorem 1.1. Consider the class Fa of planar vector fields

X(x, y) = (−y, x) +
n∑
j=0

ajXj(x, y), a = (a0, a1, . . . , an) ∈ Rn+1, (2)

where for each j, Xj = (fj, gj) is a fixed continuous homogeneous vector field with degree
of homogeneity 0 ≤ αj ∈ R and α0 < α1 < · · · < αn. There exist values of a such that the
differential equation associated to X has at least m hyperbolic limit cycles, where m + 1
is the number of non-zero values among

Ij =

∫ 2π

0

(
fj(cos θ, sin θ) cos θ + gj(cos θ, sin θ) sin θ

)
dθ, j = 0, 1, . . . , n.

As we have already said, the proof of Theorem 1.1 is based on the averaging first order
method. This theorem extends some of the results of [9] to the non-smooth case.

For instance, simple examples of non-smooth Xj where our approach can be used are

Xj(x, y) =
(
ajsgn(x)|x|αj + bjsgn(y)|y|αj , cjsgn(x)|x|αj + djsgn(y)|y|αj

)
,

where 0 < αj < 1. They clearly include our goal functions.

1.2. A new Hilbert 16th type problem. The second part of the paper deals with
polynomial vector fields. Recall that the second part of the Hilbert’s 16th problem asks
about the maximum number of limit cycles for planar polynomial vector fields in terms of
their degrees. Usually, the maximum number of limit cycles of vector fields of degree n, is
denoted asH(n) (admitting in principle that this number could be infinity) and it is called
Hilbert number. One of the most famous and difficult open problems in Mathematics
is to prove its finiteness and to exhibit the number H(n), see [12, 28]. It is known that
H(1) = 0, H(2) ≥ 4, and H(3) ≥ 13, see [26] for more lower bounds for small n and other
related references. It is also known that there is a sequence of values n going to infinity

such that H(n) ≥M(n) where M(n) =
(n2 log(n)

2 log 2

)
(1 + o(1)), see for instance [2] and their

references. To the best of our knowledge the first result proving the existence of a lower
bound of type O(n2 log(n)) for H(n) is due to Christopher and Lloyd [8].
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From the statement of Theorem 1.1 we started to think on a different version of Hilbert’s
sixteenth problem facing the question from a different point of view. Instead of trying
to bound the number of limit cycles in terms of the degrees of the vector fields we start
wondering ourselves if it is not better to do this in terms of the number of homogeneous
vector fields involved in a family. This formulation leads us essentially to the same
problem, since polynomial vector fields of degree n are the sum of n + 1 homogeneous
vector fields. In fact, it is even a worst point of view in the light of the following family
of polynomials vector fields studied in [10],

ż = Az +Bz|z|2(k−2) + iczk−1,

where z = x+ iy, A = a1 + ia2, B = b1 + ib2 ∈ C, c ∈ R and k ≥ 3. It has at least k limit
cycles but it can also be written in real variables as

(ẋ, ẏ) = a1X1(x, y) + a2X2(x, y) + b1X3(x, y) + b2X4(x, y) + cX5(x, y),

that is, involving only five homogeneous vector fields with only three different degrees.
However, this way of thinking the problem leads us to a new point of view that may

be interesting to the reader: Why do not try to study the number of limit cycles in terms
of the number of homogeneous vector fields formed by single monomials?

Somehow this point of view tries to mimic the role of Descartes theorem in the study of
the number of real zeroes of a polynomial P (x) of degree n, having m non-zero monomials.
Recall that while the maximum number of real roots is n, the actual maximum number
of real roots is 2m − 1 and this bound is independent of the degree of P. Indeed, P has
at most m− 1 positive roots, m− 1 negative roots, and eventually the root 0.

To state more clearly our point of view and our results, for each m ∈ N fixed, we
consider the following family of polynomials differential equations:

• Family Mm given by

(ẋ, ẏ) =
m∑
j=1

ajXj(x, y), with Xj(x, y) =

{(
xnjykj , 0

)
, or,(

0, xnjykj
)
,

where a ∈ Rm and the pairs (nj, kj) ∈ N2 vary among all the possible values.
Varying m, this family covers all polynomial differential equations. The letter
M is chosen because the important point is to count the number of involved
monomials.

We define HM [m] ∈ N∪ {∞} to be the maximum number of limit cycles that systems
of the family Mm can have.

The next theorem includes the results on lowers bounds for this Hilbert type number.
The proof of the first part for m ≥ 4 is a straightforward consequence of Theorem 1.1
and also a consequence of other known results on classical Liénard systems. The second
part is a direct corollary of the recent paper [2] and uses results on generalized Liénard
systems.

Theorem 1.2. With the notation introduced above it holds that HM [m] = 0 for m =
1, 2, 3 and for m ≥ 4, HM [m] ≥ m − 3. Moreover, there exits a sequence of values of m
tending to infinity such that HM [m] ≥ N(m), where

N(m) =
((m−3

2
) log(m−3

2
)

log 2

)
(1 + o(1)).

A similar result could be stated by using the lower bounds of H(n) of type O(n2 log(n))
because the systems of degree n involve m = (n + 1)(n + 2) monomials. These systems
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and the ones presented in [2] are relevant because for m big enough they have more limit
cycles than monomials.

It is not difficult to see that all the results given in Theorem 1.2 also hold for the
subclass ofMm of second order differential equations ẍ = P (x, ẋ) where P is a polynomial
with m − 1 monomials, since classical Liénard differential equations are written as ẍ =
f(x) + g(x)ẋ, or equivalently, like the system (ẋ, ẏ) = (y,−f(x)− g(x)y).

It is also worth to mention that the celebrated examples of quadratic systems that
prove that H(2) ≥ 4 are given by systems with m = 8 monomials, see for instance [7, 24],
and so they have m − 4 limit cycles. The cubic system given in [14] that proves that
H(3) ≥ 13 has m = 9 monomials and at least m+ 4 limit cycles.

Under the light of the above results, a natural problem is to find the minimal m such
that there exists a system with m monomials having at least m+ 1 limit cycles.

We remark that, although our results give a new point of view for counting the number
of limit cycles of polynomials vector fields, they do not provide new lower bounds for the
classical Hilbert numbers.

2. Some motivating models

In this section we shortly explain some models that motivate the class of equations (1)
that can be treated with the tools introduced in this paper.

2.1. Capillary rise. A first example is given by the equation that models the capillary
rise. The capillary action is a physical property that the fluids have in to go down or
up in extremely thin tubes. Sometimes this action forces the liquid to go up against the
force of gravity or even to induce a magnetic field. This ability to rise or fall results
from the ability of the liquid to “wet” or not the pipe surface (glass, plastic, metal, etc.).
For instance in the case of water in a glass beaker, we have tendency of water to adhere
to the glass, bending upward near the wall, forming a concave meniscus and rising to a
certain height above water level, here we have a capillary rise. In the case of mercury
the opposite happens, the tendency of mercury is to move away from the wall, forming a
convex meniscus and descending at a certain height from the mercury level, here we have
a capillary depression.

This phenomenon is described in more detail in [25] and can be modeled in an adimen-
sional way by the planar system{

ẋ = y,

ẏ = 1− ay −
√

2x, x ≥ 0,

where a is a positive parameter.

2.2. Some population models. Following [1] we introduce the herd behavior. If R
represents the density of certain population, namely number of individuals per surface
unit, with the herd occupying an area A, then the individuals who take the outermost
positions in the herd are proportional to the perimeter of the region where the herd is
located whose length depends on

√
A. They are therefore in number proportional to the

square root of the density, that is to
√
R, with a proportionality constant that depend on

the shape of the herd. Then, the interactions with the second population with density Q
occur only via these peripheral individuals, so that instead of the usual QR that appears
in most predator-prey systems, there is a term proportional to Q

√
R. In a dimensional-less

set of variables these type of models write as{
ẋ = x(1− x)− y

√
x,

ẏ = −xy + cy
√
x, x ≥ 0,
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for c ∈ R, see also [4]. For other population models, involving also square roots, see [3,
Sec. 4.10].

2.3. A SIR type model. In [20] the author proposes a variation of the classical SIR
model. Recall that it is a mathematical model of the spread of infectious diseases that
classifies the population in three categories: Susceptible, Infectious, or Recovered. This
model relate these categories by the differential system

Ṡ = −β
√
SI, İ = β

√
SI − γ

√
I, Ṙ = γ

√
I, for S, I, R ≥ 0,

where α, β and γ are real parameters. Notice that it can be studied via a planar system
because Ṡ + İ + Ṙ = 0 and as a consequence S(t) + I(t) +R(t) = S0 + I0 +R0.

3. Definitions and Preliminaries.

In this section we review some definitions and results that will be used in this paper. For
the characterization of Chebyshev Systems in an open interval we will use the following
results which can be found in [13] and [19].

Definition 3.1. Let u0, . . . , un−1, un be functions defined in an open interval L of R. The
ordered set (ui)

n
i=0 forms an extended complete Chebyshev system, for short ECT -system,

on L if any nontrivial linear combination a0u0 + · · · + akuk has at most k isolated roots
in L counting multiplicity, for every k = 0, 1, . . . , n.

The following result is a very useful characterization of smooth ECT -systems in terms
of Wronskians.

Proposition 3.2. The set of ordered Cn-functions (u0, . . . , un) forms an ECT -system on
L if, and only if, for every k = 0, ..., n,

W (u0, . . . , uk)(x) =

∣∣∣∣∣∣∣∣∣
u0(x) · · · uk(x)
u′0(x) · · · u′k(x)

...
. . .

...

u
(k)
0 (x) · · · u

(k)
k (x)

∣∣∣∣∣∣∣∣∣ 6= 0,

for every x ∈ L.

We will need the following lemma.

Lemma 3.3. Consider βi ∈ R such that β0 < β1 < · · · < βm. Then the functions
(xβ0 , . . . , xβm) form an ECT -system on (0,∞).

Proof. We claim that

W = W (xβ0 , . . . , xβk) = xS
( k∏

0≤i<j≤k

(βj − βi)
)
, where S =

k∑
i=0

βi −
k(k + 1)

2
. (3)

Then, each W (xβ0 , . . . , xβk) 6= 0 in (0,∞), for k = 0, . . . ,m, and by Proposition 3.2 the
functions

(
xβj
)m
j=0

form an ECT on (0,∞) as we wanted to prove.
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Let us prove the claim. For 1 ≤ k ∈ N, set (β)k = β(β − 1)(β − 2) · · · (β − k). Then,

W =

∣∣∣∣∣∣∣∣∣∣

xβ0 · · · xβk

β0x
β0−1 · · · βkx

βk−1

(β0)1x
β0−2 · · · (βk)1x

βk−2

...
. . .

...
(β0)k−1x

β0−k · · · (βk)k−1x
βk−k

∣∣∣∣∣∣∣∣∣∣
= xS

∣∣∣∣∣∣∣∣∣∣

1 · · · 1
β0 · · · βk

β0(β0 − 1) · · · βk(βk − 1)
...

. . .
...

(β0)k−1 · · · (βk)k−1

∣∣∣∣∣∣∣∣∣∣

=xS

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
β0 · · · βk
β2
0 · · · β2

k

β0(β0 − 1)(β0 − 2) · · · βk(βk − 1)(βk − 2)
...

. . .
...

(β0)k−1 · · · (βk)k−1

∣∣∣∣∣∣∣∣∣∣∣∣
= · · · = xS

∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
β0 · · · βk
β2
0 · · · β2

k

β3
0 · · · β3

k
...

. . .
...

βk0 · · · βkk

∣∣∣∣∣∣∣∣∣∣∣∣
,

where this last determinant is the celebrated Vandermonde determinant and coincides
with expression (3). Notice that in the first equality we have used that taking the product
of k + 1 elements of the determinant, being each one of them elements of different rows
and columns, always appears xS as a factor. Moreover, in the first equality of the second
line of equalities we have changed the third file by the sum of the second and third files
of the previous determinant. Similarly, we change the fourth file of this new determinant
by a suitable linear combinations of the second, third and fourth ones, and so on, until
arriving to the final equality. So, the claim follows. �

A second key tool for proving Theorem 1.1 will be next classical result about averaging
theory proved in [31] see also [16]. The hyperbolicity is guaranteed by the fundamental
lemma of [17].

Theorem 3.4. (First order averaging). Consider the system of differential equations

x′(t) = εH(t, x) + ε2K(t, x, ε), (4)

where H : R× C → Rn, K : R× C × (−ε0, ε0)→ Rn are T -periodic in the first variable
(T independent of ε), H is twice differentiable in the second variable, K is differentiable
in the second variable, C is a bounded domain of Rn and (−ε0, ε0) is a neighborhood of
0 ∈ R. Define the averaged function, h : C → Rn as

h(z) =
1

T

∫ T

0

H(t, z) dt. (5)

Suppose that the functions H,K,DxH,D
2
xH and DxK are continuous and bounded by a

constant M (independent of ε) in [0,∞)×C. If a is a zero of h such that det(Dxh(a)) 6= 0
then for each |ε| > 0 small enough, there is a T -periodic solution x = ϕ(t, ε) of system (4)
such that ϕ(0, ε)→ a as ε→ 0.

Moreover, if all the eigenvalues of Dxh(a) have negative real parts, then the corre-
sponding periodic solution x = ϕ(t, ε) of equation (4) is hyperbolic and asymptotically
stable for ε sufficiently small. If one of these eigenvalues has positive real part then it is
unstable.

As we will see in the proof of Theorem 1.1, although the components the differential
equation (2) are only continuous, their homogeneity allows to use the above classical
result of averaging theory for smooth differential equations. The reason is that when one
writes our planar system in polar coordinates it becomes smooth with respect to r, outside
a neighborhood of the origin r = 0, and the limit cycles that we find lie in compact set
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contained in this domain. For more general continuous vector fields an extension of the
averaging theory is developed by Buică and Llibre in [5], see also [6].

The key result for proving the second part of Theorem 1.2 will be the following theorem.

Theorem 3.5. ([2]) There is a sequence of natural numbers n, tending to infinity, such
that for these values of n there exist generalized Liénard systems{

ẋ = y − F (x),
ẏ = G(x),

with F and G are polynomials of degree at most n, having at least K(n) limit cycles,
where

K(n) =
(n log n

log 2

)
(1 + o(1)).

We also will need next result about non-existence of limit cycles.

Proposition 3.6. Systems

(ẋ, ẏ) =
(
axpyq, bxiyj + cxkyl

)
,

where (a, b, c) ∈ R3 and (p, q, i, j, k, l) ∈ N6
0, with N0 = N ∪ {0}, have no limit cycle.

Proof. We will use the following well-known properties for proving non-existence of limit
cycles:

P1: Periodic orbits must surround some critical point. So systems without critical
points have no periodic orbit.

P2: If a system has an invariant line passing by all its critical points, if any, then it
has no periodic orbits. This is so by property P1 if the system has no critical
points, or, otherwise, by uniqueness of solutions, because an eventual periodic
orbit would surround some of the critical points and as a consequence, must cut
the line.

P3: If one of the two differential equations only involves ones of the variables (for
instance ẋ = f(x)) then the system has no periodic orbits. This is so, because
autonomous one dimensional ordinary differential equations have no non-constant
periodic solution.

P4: If a planar system has a smooth first integral defined on an open set U ⊂ R2,
although it can have continua of periodic orbits, it can not have limit cycles
entirely contained in U .

P5: If the divergence of a planar system (ẋ, ẏ) = (P (x, y), Q(x, y)), div(P,Q) =
∂P (x,y)
∂x

+ ∂Q(x,y)
∂y

does not change sign and vanishes only on a null Lebesgue measure

set, then the system has not periodic orbits.
P6: Let X be a planar vector field with a unique critical point, (0, 0), and assume that

it is reversible, that is, invariant by one of the two changes of variables and time:

(x, y, t) −→ (−x, y,−t) or (x, y, t) −→ (x,−y,−t).
If the system has a periodic orbit that crosses transversally the axes then it is in
the interior of a continua of periodic orbits and it is not a limit cycle. This is so,
because any of the described symmetries implies that if an orbit turns around the
origin it is periodic. Sometimes this criterion is called reversibility criterion of
Poincaré, because he was the first in using it for proving the existence of periodic
orbits.

When a = 0, the system can not have periodic orbits because of property P3. When
bc = 0, we assume, for instance, that c = 0 and b 6= 0, because when c 6= 0 and b = 0
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the situation is the same and the case b = c = 0 is trivial. Then, two situations may
happen: either x = 0 or y = 0 are a continuum of critical points and no other critical
points appear or it writes as (ẋ, ẏ) = (ayq, bxi). In the first case the only critical points
belong to an invariant line full of critical points, so the system can not have periodic
orbits by property P2. In the second case the system is integrable with U = R2 and by
property P4 no limit cycle appears.

Hence, from now on, we will assume that abc 6= 0. Next step will use that the phase
portraits of any two systems of the form

(ẋ, ẏ) = (P (x, y)R(x, y), Q(x, y)R(x, y)) and (ẋ, ẏ) = (P (x, y), Q(x, y)),

are the same (modulus a change of time orientation) in each connected component of
R2 \ {R(x, y) = 0}. We will take R as some suitable polynomial of one of the forms xn

or yn to reduce our study to simpler vector fields. Taking R(x, y) = xs for s to be the
minimum of p, i and k we can reduce the situation to one of the next two differential
systems:

(ẋ, ẏ) =
(
ayq, bxiyj + cxkyl

)
, i ≥ 1 or (ẋ, ẏ) =

(
axpyq, byj + cxkyl

)
, (6)

where for simplicity we keep the same notation for the new exponents and without loss
of generality we have assumed that i ≤ k. Next we take R(x, y) = yu with u being the
minimum of q, j and l. Finally, we only need to study the following five cases:

(i) (ẋ, ẏ) =
(
a, bxiyj + cxkyl

)
, i ≥ 1, (ii) (ẋ, ẏ) =

(
ayq, bxi + cxkyl

)
, i ≥ 1, q ≥ 1,

(iii) (ẋ, ẏ) =
(
axp, byj + cxkyl

)
, (iv) (ẋ, ẏ) =

(
axpyq, b+ cxkyl

)
,

(v) (ẋ, ẏ) =
(
axpyq, byj + cxk

)
,

where we also keep the old notation for the new exponents. Notice that (i) and (ii) come
from the first differential equations of (6) and the other three cases from the second one.

The case (i) has no critical point, so it has no periodic orbit by property P1.
In case (ii), when l = 0 we can apply property P4 with U = R2 because the system has

a polynomial first integral.
When l 6= 0 the system has a unique critical point (0, 0) and it writes as

(ẋ, ẏ) = (ayq, bxi + cxkyl), i ≥ 1, q ≥ 1, l ≥ 1. (7)

Notice that studying the vector field on the axes we get

ẋ
∣∣
x=0

= ayq and ẏ
∣∣
y=0

= bxi.

Since a periodic orbit must surround the origin, the above conditions imply that this is
only possible when q and i are both odd numbers and ab < 0. So, in this case we will
assume that these conditions hold because otherwise the system has not periodic orbits.

If l is even the system is invariant by the change (x, y, t) −→ (x,−y,−t) and by
property P6 the system has no limit cycle and we are done. If k is odd, then the system
is invariant by the change (x, y, t) −→ (−x, y,−t) and again by property P6 we are done.
Hence it only remains to consider the case l odd and k even. Notice that

div(X) = clxkyl−1,

and then it does not change sign and only vanishes on {xy = 0}, provided that l 6= 1, or
on {x = 0} provided that l = 1. Hence by property P5 the system has no periodic orbit.

In case (iii), we use property P3.
In case (iv) when pqkl 6= 0 we can apply property P1. Also, when p = q = 0 we can

apply property P1. Next we split the study according one of the variables p, q, k or l
vanishes and taking into account that p2 + q2 6= 0.
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Assume that p = 0. Then q 6= 0. When l 6= 0 we can apply again property P1. When
l = 0 we can apply property P4 because the system has a polynomial first integral.

Assume that q = 0. Then the first equation of the system is ẋ = axp and we can apply
property P3.

Assume that k = 0. Then the second equation of the system is ẏ = b+ cyl and we can
apply again property P3.

Finally, assume that l = 0. When p = 0 the system has a polynomial first integral and
we can apply property P4 with U = R2. When p 6= 0, the system has the invariant line
L = {x = 0}, and it can be integrated by separating the variables, giving an smooth
first integral in R2 \ L. Then we can apply again property P4 to each of the connected
components of R2\L and prove the non-existence of limit cycles because L is also invariant
and eventual limit cycles can not cut it.

Finally we study case (v). When q = 0 by property P3 no periodic orbit appears. We
consider four diferent subcases that cover all the situations.

When q 6= 0, p = 0 and j = 0 the system has a polynomial first integral and by
property P4 we are done.

When q 6= 0, p = 0 and j 6= 0 the system writes as

(ẋ, ẏ) = (ayq, byj + cxk), q ≥ 1, j ≥ 1. (8)

If k = 0 in (8) then we use property P3. The case k 6= 0 in (8) we notice that, by changing
the names of same of the parameters it coincides with the system (7) studied in case (ii)
taking in that system k = 0. Hence, again this system has no limit cycle.

When q 6= 0, p 6= 0 and j = 0 the system has once more the invariant line L = {x = 0},
and it can be integrated by separating the variables, giving an smooth first integral in
R2 \ L. As in the similar previous situation, we can prove that it has no limit cycles by
using property P4.

In the remaining case q 6= 0, p 6= 0 and j 6= 0. Then the (0, 0) is its unique critical
point and x = 0 is an invariant line. By property P2 it has no periodic orbit.

Hence we have proved that although sometimes the system has continua of periodic
orbits it has not limit cycles, as is stated in the lemma. �

4. Proof of Theorem 1.1

To find m hyperbolic limit cycles for the continuous planar differential system

(ẋ, ẏ) = (−y, x) + ε

n∑
j=0

bjXj(x, y),

we will apply the averaging method given in the Theorem 3.4. Notice that we have taken
a = εb in the expression (2) and ε is a small parameter. As usual, we write the system
in polar coordinates x = r cos θ, y = r sin θ, see for instance [5]. We get

ṙ =ε
n∑
j=0

bj
(
xfj(x, y) + ygj(x, y)

)
= ε

n∑
j=0

bjFj(θ)r
αj ,

θ̇ =1 + ε

n∑
j=0

bj
(
xgj(x, y)− yfj(x, y)

)
= 1 + ε

n∑
j=0

bjGj(θ)r
αj−1,

where

Fj(θ) =fj(cos θ, sin θ) cos θ + gj(cos θ, sin θ) sin θ,

Gj(θ) =gj(cos θ, sin θ) cos θ − fj(cos θ, sin θ) sin θ.
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Finally, we have the differential equation

dr

dθ
= r′ =

ε
∑n

j=0 bjFj(θ)r
αj

1 + ε
∑n

j=0 bjGj(θ)rαj−1
= ε

n∑
j=0

bjFj(θ)r
αj +O(ε2). (9)

It is under the hypotheses of Theorem 3.4 for (θ, r) ∈ R× [R0, R1] for R1 > R0 > 0,with
T = 2π and ε small enough. We can easily compute the averaged function h,

h(z) =
1

2π

∫ 2π

0

n∑
j=0

bjFj(θ)z
αj dθ =

n∑
j=0

bj
2π

(∫ 2π

0

Fj(θ) dθ
)
zαj =

n∑
j=0

bjIj
2π

zαj .

Since, from all Ij, j = 0, 1, . . . , n, only m + 1 values are non-zero, we rename the corre-
sponding ordered αj as β0, β1, . . . , βm and then

h(z) =
m∑
j=0

cjz
βj ,

with all cj arbitrary real constants and β0 < β1 < · · · < βm. By Lemma 3.3 the functions
zβj form an ECT -system on (0,∞), and consequently also on (R0, R1). In particular, the
maximum number of positive zeroes of h is m and there exist c0, c1, . . . , cm such that the
associated h has exactly m simple zeroes in (R0, R1). Notice that the upper bound of
m zeroes for h is also a straightforward consequence of Descarte’s rule of signs, which
also works for this family of functions. Taking the corresponding values of b we obtain a
system with |ε| small enough and at least m periodic orbits. Since these positives zeros
of h are simple roots, h′ does not vanish on them. Then, again by Theorem 3.4, they are
hyperbolic limit cycles. Hence, the theorem is proved.

4.1. Examples of application. As a first application we prove that the simple diffe-
rential system(

ẋ
ẏ

)
=

(
s1
s2

)
+

(
q1,1 q1,2
q2,1 q2,2

)( √
x

R

√
y R

)
+

(
p1,1 p1,2
p2,1 p2,2

)(
x
y

)
, (10)

where recall that
√
z

R
= sgn(z)

√
|z|, has for some values of the parameters a limit cycle

crossing Σ = {xy = 0}. This family includes for instance the one given in Subsection 2.1.
In the notation of the theorem, all systems of the form (10) can be written as

(ẋ, ẏ) =
2∑
j=0

ajXj(x, y),

withX0(x, y) = (s1, s2), X1(x, y) = (q1,1
√
x

R
+q1,2

√
y R, q2,1

√
x

R
+q2,2

√
y R) andX2(x, y) =

(p1,1x+ p1,2y, p2,1x+ p2,2y). Moreover (α0, α1, α2) = (0, 1/2, 1). Notice that for simplicity
we keep the same names for the constants although they have varied. Clearly,

I0 =

∫ 2π

0

(s1 cos θ + s2 sin θ) dθ = 0,

I2 =

∫ 2π

0

(p1,1 cos2 θ + (p1,2 + p2,1) sin θ cos θ + p2,2 sin2 θ) dθ = (p1,1 + p2,2)π,

I1 =4(q1,1 + q2,2)

∫ π/2

0

cos3/2 θ dθ,
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where in the last equality we have used that∫ 2π

0

√
cos θ

R
cos θ dθ =2

∫ π
2

−π
2

cos3/2 θ dθ = 4

∫ π
2

0

cos3/2 θ dθ > 0,∫ 2π

0

√
sin θ

R
sin θ dθ =4

∫ π
2

0

sin3/2 θ dθ = 4

∫ π
2

0

cos3/2 θ dθ,

and by symmetry, ∫ 2π

0

√
sin θ

R
cos θ dθ =

∫ 2π

0

√
cos θ

R
sin θ dθ = 0.

Thus when (p1,1+p2,2)(q1,1+q2,2) 6= 0, the number of non-zero values in the list I0, I1, I2
is 2 and by Theorem 1.1 we have a system of the form (10) with 1 hyperbolic limit cycle.

As a second example of application consider(
ẋ
ẏ

)
=

(
s1
s2

)
+

(
p1,1 p1,2
p2,1 p2,2

)(
x
y

)
+

(
q1,1 q1,2
q2,1 q2,2

)(
3
√
x√
y R

)
. (11)

We will prove that it has at least 2 limit cycles crossing Σ = {xy = 0} for same values of
the parameters.

Writing it in the notation of Theorem 1.1 we get

(ẋ, ẏ) =
3∑
j=0

ajXj(x, y),

where X0(x, y) = (s1, s2), X1(x, y) = (q1,1 3
√
x, q2,1 3

√
x), X2(x, y) = (q1,2

√
y R, q2,2

√
y R) and

X3(x, y) = (p1,1x+p1,2y, p2,1x+p2,2y). Moreover, (α0, α1, α2, α3) = (0, 1/3, 1/2, 1). Notice
that again, for simplicity, we keep the same names for the constants although they have
varied. In this case,

I0 = 0, I1 = 4q1,1

∫ π
2

0

cos4/3 θ dθ, I2 = 4q2,2

∫ π
2

0

sin3/2 θ dθ, I3 = (p1,1 + p2,2)π.

where I0, I2 and I3 are obtained similarly that in the previous case and to get I1 we have
used that∫ 2π

0

3
√

cos θ cos θ dθ = 4

∫ π
2

0

cos4/3 θ dθ > 0 and

∫ 2π

0

3
√

cos θ sin θ dθ = 0.

Hence, when q1,1q2,2(p1,1 + p2,2) 6= 0, the number of non-zero values in the list I0, I1, I2, I3
is 3 and by Theorem 1.1 we have an example of system (11) with at least 2 hyperbolic
limit cycles.

5. Proof of Theorem 1.2

The statement HM [j] = 0, for j = 1, 2, 3, is a straightforward consequence of Proposi-
tion 3.6. Notice that this proposition covers all cases except the trivial ones, where either
ẋ = 0 or ẏ = 0, and the right-hand side of the other equation has j monomials.

Let us prove that for m ≥ 4, HM [m] ≥ m− 3. Consider the Liénard classic system in
class Mm,

(ẋ, ẏ) = (y,−x+ a0y + a1y
3 + · · ·+ am−3y

2m−5).

With the notation of Theorem 1.1 we get that for all j = 0, 1, . . . ,m− 3,

Ij =

∫ 2π

0

sin2j+2 θ dθ > 0,
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and as a consequence we get examples with m−3 limit cycles. In fact, this system includes
the celebrated van der Pol system when m = 4 and coincides with the example of classical
Liénard system studied in [15], where the author, with another notation, already proved
the existence of m− 3 limit cycles.

Notice that there are many different families in Mm with at least m − 3 limit cycles.
For instance it suffices to consider systems of the form

(ẋ, ẏ) = (y,−x+ a0x
2n0y2k0+1 + a1x

2n1y2k1+1 + · · ·+ am−3x
2nm−3y2km−3+1),

with nj, kj ∈ N0 and all 2(nj +kj), j = 0, 1, . . .m−3, taking different values. Also similar
terms could be added in the first differential equation, removing some other ones from
the second one.

To prove that HM [m] ≥ N(m) we will use Theorem 3.5. For a sequence of values of
n tending to infinity, the number of monomials of these generalized Liénard systems is
m = 2n+ 3 while their number of limit cycles is at least K(n). Hence these systems are
in Mm and have at least N(m) = K((m − 3)/2) limit cycles. This function is the one
that appears in the statement of the theorem.
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