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ABSTRACT
We present a general mechanism of generation of limit cycles in
planar piecewise polynomial differential systems with two zones by
means of a transcritical bifurcation at infinity and from a global cen-
tre. This study justifies the existence of limit cycles that arise through
the intersection of the separation boundary with the one that char-
acterizes the global centre.
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1. Introduction and statement of themain results

In the classical Qualitative Theory of Differential Equations, it is usual to study the global
behaviour of the phase portrait of a given planar polynomial differential system by means
of the Poincaré compactification [11]. When we apply this construction to a polynomial
vector fieldG onR2, we obtain a new vector field on S2\S1 through the central projections
and its extension P(G) to the Poincaré sphere S2 is everywhere analytic and analytically
equivalent to G in each hemisphere.

The vector field P(G), called Poincaré compactification of G, has the equator S1 as an
invariant set which can be either a periodic orbit, a connected union of singular points and
arcs of S1, or even foliated by singular points. In addition, if S1 is a periodic orbit then it
cannot be a semistable one since the central projections provide two identical copies of the
dynamics of the vector field G each of them on one hemisphere of S2.

By means of another projection, for instance, the gnomonic projection such as in [11],
we can study the vector field D(G) obtained by the projection of P(G) onto D, where
D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} is the Poincaré disc. It follows that there exists a one-to-
one correspondence between points placed at infinity of G and points on ∂D = {(x, y) ∈
R2 : x2 + y2 = 1} of D(G). In this sense, we say p ∈ ∂D is a singular point at infinity of
the vector field G, if D(G)(p) = 0. When G has no singular points at infinity we say G has
a periodic orbit at infinity which is identified with ∂D.
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