Transcritical bifurcation at infinity in planar piecewise polynomial differential systems with two zones

Denis de Carvalho Braga (${ }^{\text {a }}$, Jaume Llibre ${ }^{\text {b }}$ and Luis Fernando Mello ${ }^{\text {a }}$
${ }^{\text {a }}$ Instituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, MG, Brazil; ${ }^{\text {b }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

Abstract

We present a general mechanism of generation of limit cycles in planar piecewise polynomial differential systems with two zones by means of a transcritical bifurcation at infinity and from a global centre. This study justifies the existence of limit cycles that arise through the intersection of the separation boundary with the one that characterizes the global centre.

ARTICLE HISTORY

Received 1 May 2021
Accepted 17 June 2022

KEYWORDS

Limit cycle; piecewise differential system; Poincaré compactification; transcritical bifurcation

2010 MATHEMATICS
SUBJECT
CLASSIFICATIONS
37C27; 37G15; 37C75

1. Introduction and statement of the main results

In the classical Qualitative Theory of Differential Equations, it is usual to study the global behaviour of the phase portrait of a given planar polynomial differential system by means of the Poincaré compactification [11]. When we apply this construction to a polynomial vector field G on \mathbb{R}^{2}, we obtain a new vector field on $\mathbb{S}^{2} \backslash \mathbb{S}^{1}$ through the central projections and its extension $\mathscr{P}(G)$ to the Poincaré sphere \mathbb{S}^{2} is everywhere analytic and analytically equivalent to G in each hemisphere.

The vector field $\mathscr{P}(G)$, called Poincaré compactification of G, has the equator \mathbb{S}^{1} as an invariant set which can be either a periodic orbit, a connected union of singular points and arcs of \mathbb{S}^{1}, or even foliated by singular points. In addition, if \mathbb{S}^{1} is a periodic orbit then it cannot be a semistable one since the central projections provide two identical copies of the dynamics of the vector field G each of them on one hemisphere of \mathbb{S}^{2}.

By means of another projection, for instance, the gnomonic projection such as in [11], we can study the vector field $\mathscr{D}(G)$ obtained by the projection of $\mathscr{P}(G)$ onto \mathbb{D}, where $\mathbb{D}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$ is the Poincaré disc. It follows that there exists a one-toone correspondence between points placed at infinity of G and points on $\partial \mathbb{D}=\{(x, y) \in$ $\left.\mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ of $\mathscr{D}(G)$. In this sense, we say $p \in \partial \mathbb{D}$ is a singular point at infinity of the vector field G, if $\mathscr{D}(G)(p)=0$. When G has no singular points at infinity we say G has a periodic orbit at infinity which is identified with $\partial \mathbb{D}$.

