

Check for updates

Transcritical bifurcation at infinity in planar piecewise polynomial differential systems with two zones

Denis de Carvalho Braga ¹^o^a, Jaume Llibre^b and Luis Fernando Mello^a

^aInstituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, MG, Brazil; ^bDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

ABSTRACT

We present a general mechanism of generation of limit cycles in planar piecewise polynomial differential systems with two zones by means of a transcritical bifurcation at infinity and from a global centre. This study justifies the existence of limit cycles that arise through the intersection of the separation boundary with the one that characterizes the global centre.

ARTICLE HISTORY

Received 1 May 2021 Accepted 17 June 2022

KEYWORDS

Limit cycle; piecewise differential system; Poincaré compactification; transcritical bifurcation

2010 MATHEMATICS SUBJECT CLASSIFICATIONS 37C27; 37G15; 37C75

1. Introduction and statement of the main results

In the classical Qualitative Theory of Differential Equations, it is usual to study the global behaviour of the phase portrait of a given planar polynomial differential system by means of the Poincaré compactification [11]. When we apply this construction to a polynomial vector field G on \mathbb{R}^2 , we obtain a new vector field on $\mathbb{S}^2 \setminus \mathbb{S}^1$ through the central projections and its extension $\mathscr{P}(G)$ to the Poincaré sphere \mathbb{S}^2 is everywhere analytic and analytically equivalent to G in each hemisphere.

The vector field $\mathscr{P}(G)$, called *Poincaré compactification* of *G*, has the equator \mathbb{S}^1 as an invariant set which can be either a periodic orbit, a connected union of singular points and arcs of \mathbb{S}^1 , or even foliated by singular points. In addition, if \mathbb{S}^1 is a periodic orbit then it cannot be a semistable one since the central projections provide two identical copies of the dynamics of the vector field *G* each of them on one hemisphere of \mathbb{S}^2 .

By means of another projection, for instance, the gnomonic projection such as in [11], we can study the vector field $\mathscr{D}(G)$ obtained by the projection of $\mathscr{P}(G)$ onto \mathbb{D} , where $\mathbb{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ is the *Poincaré disc*. It follows that there exists a one-to-one correspondence between points placed at infinity of *G* and points on $\partial \mathbb{D} = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ of $\mathscr{D}(G)$. In this sense, we say $p \in \partial \mathbb{D}$ is a singular point at infinity of the vector field *G*, if $\mathscr{D}(G)(p) = 0$. When *G* has no singular points at infinity we say *G* has a periodic orbit at infinity which is identified with $\partial \mathbb{D}$.

CONTACT Denis de Carvalho Braga 🖾 braga@unifei.edu.br

^{© 2022} Informa UK Limited, trading as Taylor & Francis Group