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Abstract. In this paper we determine the phase portraits in the Poincaré disc of five classes of ho-

mogeneous Hamiltonian polynomial differential systems of degrees 1, 2, 3, 4, and 5 with finitely many

equilibria. We showed that these polynomial differential systems exhibit precisely 2, 2, 3, 3, and 4
topologically distinct phase portraits in the Poincaré disc.

1. Introduction and Statement of the Main Results

The centers of the polynomial differential systems of the form

(1) ẋ = −y + Pn(x, y), ẏ = x+Qn(x, y),

with Pn and Qn homogeneous polynomials of degree n have been studied for n = 2, 3, 4 and 5. Then
for n = 2 see [3, 7, 9, 10, 19, 18], for n = 3 see [13, 20], for n = 5 see [5], and for n = 5 see [6]. While
the centers of systems (1) of degrees 2 and 3 have been completely classified, this is not the case for
the centers of degree 4 and 5. Moreover for systems (1) having a center of degree 2 and 3 their phase
portraits in the Poincaré disc have been classified in [18, 19] and in [4], respectively.

In a similar way to the study done for the centers of systems (1) in this paper we classify the phase
portraits in the Poincaré disc of the homogeneous Hamiltonian systems of degree 1, 2, 3, 4, and 5, i.e. of
the systems

ẋ = −∂Hn(x, y)

∂y
, ẏ = −∂Hn(x, y)

∂x
,

where Hn(x, y) is a homogeneous polyonomial of degree n for n ∈ {2, 3, 4, 5, 6}.

Roughly speaking the Poincaré disc is the closed disc centered at the origin of coordinates of R2 of
radius one where the interior of this disc has been identified with R2 and its boundary, the circle S1 with
the infinity of R2. In the plane we can go to infinity in as many directions as points has the circle S1.
Any polynomial differential system can be extended analytically to the Poincaré disc and in this way
we can study its dynamics in a neighborhood of the infinity. For more details on the Poincaré disc, see
chapter 5 of [8] or subsection 2.2.

In the following theorem we provide the phase portraits in the Poincaré disc of all the homogeneous
Hamiltonian differential systems of degree 1, 2, 3, 4 and 5.

Theorem 1. The phase portraits in the Poincaré disc of the homogeneous Hamiltonian systems with
finitely many equilibria of degree n are given in Figure n, for n = 1, 2, 3, 4, 5.

Theorem 1 is proved in section 3, 4, 5, 6 and 7.

We note that the phase portraits in the Poincaré disc of other classes of Hamiltonian systems also
have studied for other authors, see for instance [2, 11, 14, 17].
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(a) (b)

Figure 1. Phase portraits of the homogeneous Hamiltonian systems of degree 1.

(a) (b)

Figure 2. Phase portraits of the homogeneous Hamiltonian systems of degree 2.

(a) (b) (c)

Figure 3. Phase portraits of the homogeneous Hamiltonian systems of degree 3.

(a) (b) (c)

Figure 4. Phase portraits of the homogeneous Hamiltonian systems of degree 4.

2. Preliminaries and basic results

In this section we present some basic results and notations which are necessary for proving our results.
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(a) (b) (c) (d)

Figure 5. Phase portraits of the homogeneous Hamiltonian systems of degree 5.

2.1. Poincaré compactification. In this subsection we give some basic results which are necessary for
studying the behavior of the trajectories of a planar polynomial differential system near infinity.

Let X (x, y) = (P (x, y), Q(x, y)) be a polynomial vector field of degree n, and we consider its analytic
extension p(X ) to S2.

In order to study the extended vector field p(X ) on the sphere S2 = {y = (y1, y2, y3) ∈ R3 : y21 +
y22 + y23 = 1} we use the six local charts given by Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0}
for k = 1, 2, 3. The corresponding local maps ϕk : Uk → R2 and ψk : Vk → R2 are defined as ϕk(y) =
ψk(y) = (ym/yk, yn/yk) for m < n and m,n ̸= k. We denote by z = (u, v) the value of ϕk(y) or ψk(y)
for any k, such that (u, v) will play different roles depending on the local chart we are considering.

After a scaling of the independent variable in the local chart (U1, F1) the expression for p(X ) is

u̇ = vn
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vn+1P

(
1

v
,
u

v

)
;

in the local chart (U2, F2) the expression for p(X) is

u̇ = vn
[
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)]
, v̇ = −vn+1Q

(
u

v
,
1

v

)
;

and for the local chart (U3, F3) the expression for p(X) is

u̇ = P (u, v), v̇ = Q(u, v).

The singular or equilibrium points on the circle of infinity of the Poincaré disc are called the infinite
singular points. Of course, the singular points in the interior of the Poincaré disc are called the finite
singular points.

To study the singular points at infinity we have to study the infinite singular points of the chart U1 and
the origin of the chart U2, because the singular points at infinity appear in pairs diametrically opposite.

For more details on the Poincaré compactification see Chapter 5 of [8].

2.2. Phase portraits on the Poincaré disc. In this subsection we are going to see how to characterize
the phase portraits in the Poincaré disc of all the homogeneous Hamiltonian systems of degree 1, 2, 3, 4,
and 5.

The separatrix of p(X ) are all the orbits of the circle at the infinity, the singular or equilibrium points,
the limit cycles and the orbits which lie in the boundary of a hyperbolic sectors.

Neumann [15] proved that the set formed by all separatrices of p(X ); denoted by S(p(X )) is closed.

The open connected components of D2 \ S(p(X )) are called canonical regions of p(X ): We define a
separatrix configuration as the union of S(p(X )) plus one orbit chosen from each canonical region. Two
separatrices configurations S(p(X )) and S(p(Y)) are topologically equivalent if there is an orientation
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preserving or reversing homeomorphism which maps the trajectories of S(p(X )) into the trajectories of
S(p(Y)).

The following result is due to Markus [12], Neumann [15] and Peixoto [16].

Theorem 2. The phase portraits in the Poincaré disc of two compactified polynomial differential systems
p(X ) and p(Y) with finitely many separatrices are topologically equivalent if and only if their separatrix
configurations S(p(X )) and S(p(Y)) are topologically equivalent.

2.3. Homogeneous polynomial Hamiltonian systems. It is well known that the flow of the Hamil-
tonian systems in the plane preserves the area (see for instance [1]). Also it is known that the local phase
portrait of any equilibrium point of an analytic planar differential system is either a focus, or a center, or
a finite union of hyperbolic, parabolic and elliptic sectors (see for instance [8]). So any equilibrium point
of a planar polynomial Hamiltonian system is either a center or a finite union of hyperbolic sectors.

In order to do the phase portrait in the Poincaré disc of a planar homogeneous polynomial Hamiltonian
system, first we must determine the real linear factors of the Hamiltonian of the system. These linear
factors provide invariant straight lines through the origin of coordinates, the endpoints of these straight
lines are the infinite singular points of the homogeneous polynomial Hamiltonian systems. Moreover,
these straight lines separate the Poincaré disc in sectors, with a vertex at the origin of coordinates, and
in each one of these sectors we have a hyperbolic sector. If the homogeneous Hamiltonian has no real
linear factors, then the origin of coordinates is a center.

3. Proof of Theorem 1 for n = 1

Without loss of generality we assume that all the homogeneous Hamiltonian systems that we consider
have their infinite singularities in the local chart U1, if this is not the case doing a rotation we are in the
case.

We consider the linear homogeneous Hamiltonian system

(2) ẋ = −bx− 2cy, ẏ = 2ax+ by,

where a, b, c and d are real parameters. This system has the Hamiltonian function H2(x, y) = ax2 +
bxy + cy2.

We know that the singular points at infinity for any polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y),

occur at the points (x, y, 0) on the equator of the Poincaré sphere satisfying xQn(x, y) − yPn(x, y) = 0,
see chapter 5 of [8]. In particular for the homogeneous Hamiltonian system (2) of degree 1 they occur at

x(2ax+ by)− y(−bx− 2cy) = 2H2(x, y).

Then to study the infinite equilibrium points of such differential system we have to compute the real
linear factors of the homogeneous Hamiltonian polynomial H2(x, y), which has three different kind of
linear factors summarized in the following cases.

In the proof of Theorem 1 for all the degrees we shall assume that the values ri ̸= 0, βk ̸= 0, ri ̸= rj ,
with i = 1 . . . , 6, i ̸= j, and k = 1, 2, 3.

I. If H2(x, y) has two real linear factors (x−r1y)(x−r2y) with r1 < r2, so H2(x, y) = a(x−r1y)(x−
r2y) and system (2) becomes

(3) ẋ = x(ar1 + ar2)− 2ar1r2y, ẏ = −ay(r1 + r2) + 2ax,

it is clear that this system has a hyperbolic saddle at (0, 0) with eigenvalues ±a(r1 − r2).
In the chart U1 system (3) becomes

u̇ = 2a(r1u− 1)(r2u− 1), v̇ = −a(r1 + r2 − 2r1r2u)v.
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This system has a stable and an unstable hyperbolic node at (1/r1, 0) and (1/r2, 0), with eigen-
values 2a(r1 − r2), a(r1 − r2) and 2a(r2 − r1), a(r2 − r1), respectively. Then its phase portrait is
given in Figure 1(a).

II. If H2(x, y) has two linear complex factors x2 − 2αxy + (α2 + β2)y2, so H(x, y) = a(x2 − 2αxy +
(α2 + β2)y2), and system (2) written as

(4) ẋ = 2aαx− ay
(
2α2 + 2β2

)
, ẏ = 2ax− 2aαy.

This system has a center at (0, 0) with eigenvalues ±2aβi. In the chart U1 system (4) becomes

u̇ = 2a
(
(α2 + β2)u2 − 2αu+ 1

)
, v̇ = 2av

(
−α+ (α2 + β2)u

)
.

This system has no singularities, and its phase portrait is given in Figure 1(b).

III. If H2(x, y) has a double real linear factor x− r1y, so H(x, y) = a(x− r1y)
2. In this case system

(2) becomes

ẋ = 2r1(x− r1y), ẏ = 2(x− r1y).

This system has the straight line x − r1y = 0 filled of singularities, so it is not the subject of
study of our paper.

This completes the proof of Theorem 1 for n = 1.

4. Proof of Theorem 1 for n = 2

In this section we are interested in studying the quadratic homogeneous Hamiltonian systems with
finitely many equilibria that can be written as

(5) ẋ = −bx2 − 2cxy − 3dy2, ẏ = 3ax2 + 2bxy + cy2,

with a, b, c and d real parameters. Its corresponding Hamiltonian function is H3(x, y) = ax3 + bx2y +
cxy2 + dy3.

The infinite singularities of this system are determined by the real linear factors of xẏ − yẋ =
−3H3(x, y), which can have four different kinds of linear factors. Where we shall see that in the next
cases I and II the system has a finitely many equilibria, while in the last cases III and IV it has infinitely
many equilibria and we do not study them.

I. If H3(x, y) has three simple real linear factors (x− r1y)(x− r2y)(x− r3y) with r1 < r2 < r3, so
H3(x, y) = a(x− r1y)(x− r2y)(x− r3y). In this case system (5) becomes

(6)
ẋ = (r1 + r2 + r3)x

2 + 2(−r1r2 − r1r3 − r2r3)xy + 3r1r2r3y
2,

ẏ = 3x2 − 2(r1 + r2 + r3)xy − (−r1r2 − r1r3 − r2r3)y
2,

which has one finite singularity at the origin of coordinates. In the chart U1 system (6) writes

u̇ = −3(−1 + r1u)(−1 + r2u)(−1 + r3u),
v̇ = −v

(
r1 + r2 + r3 − 2(r1r2 + 2r1r3 + 2r2r3)u+ 3r1r2r3u

2
)
.

This system has three hyperbolic nodes at (1/r1, 0), (1/r2, 0) and (1/r3, 0) with alternative kind of
stability because their corresponding eigenvalues are 3(r2−r1)(r1−r3)/r1 and (r2−r1)(r1−r3)/r1,
3(r1−r2)(r2−r3)/r2 and (r2−r1)(r2−r3)/r1, and 3(r1−r3)(r3−r2)/r3 and (r3−r1)(r3−r2)/r1
respectively. Then the phase portrait is given in Figure 2(a).

II. If H3(x, y) has one simple real linear factor x− r1y and two complex linear factors x2 − 2αxy +
y2

(
α2 + β2

)
, so H3(x, y) = a(x− r1y)(x

2 − 2αxy + y2
(
α2 + β2

)
), and system (5) becomes

(7)
ẋ = x2(2α+ r1)− 2xy

(
α2 + β2 + 2αr1

)
+ 3y2

(
α2 + β2

)
r1,

ẏ = −2xy(2α+ r1) + y2
(
α2 + β2 + 2αr1

)
+ 3x2,



6 R. BENTERKI AND J. LLIBRE

which has one singular point at the origin of coordinates that we can determine its local phase
portrait by determining the local phase portrait of the infinite singularities. In the chart U1

system (7) written as

u̇ = −3(−1 + r1u)(1− 2uα+ (α2 + β2)u2),
v̇ = −v

(
2α+ 3r1

(
α2 + β2

)
u2 − 2

(
α2 + β2 + 2αr1

)
u+ r1

)
.

The only singularity of this system is (1/r1, 0) which is a node with eigenvalues −3(α2 + β2 +
r21 − 2αr1)/r1, and −(α2 + β2 + r21 − 2αr1)/r1. So its phase portrait in Figure 2(b).

III. If H3(x, y) has one double real linear factor x− r1y and one simple real linear factor x− r2y with
r1 < r2, then H3(x, y) = a(x− r1y)

2(x− r2y), and system (5) can be written as

ẋ = (x− r1y)((2r1 + r2)x− 3r1r2y),
ẏ = (x− r1y)(3x− (r1 + 2r2)y).

In this case the system has infinitely many singularities on the straight line x− r1y = 0.

IV. If H3(x, y) has one triple real linear factor (x − r1y)
3, so H3(x, y) = a(x − r1y)

3. In this case
system (5) can be written as

ẋ = 3r1(x− r1y)
2, ẏ = 3(x− r1y)

2.

As in the previous case this system has the straight line x−r1y = 0 filled with equilibrium points,
so we ignore it.

This completes the proof of Theorem 1 for n = 2.

5. Proof of Theorem 1 for n = 3

In this section we are interested in studying the cubic homogeneous Hamiltonian systems with finitely
many equilibria given by

(8) ẋ = −2bx2y − 3cxy2 − dx3 − 4ey3, ẏ = 4ax3 + 2cxy2 + by3 + 3dx2y,

where a, b, c, d and e are real parameters. Its corresponding Hamiltonian function is H4(x, y) = ax4 +
bxy3 + cx2y2 + dx3y + ey4.

The infinite singularities of this system are the real linear factors of xẏ− yẋ = −4H4(x, y), which can
have nine different kinds of linear factors.

I. If H4(x, y) has four simple real linear factors (x− r1y)(x− r2y)(x− r3y)(x− r4y) with r1 < r2 <
r3 < r4, so H3(x, y) = a(x− r1y)(x− r2y)(x− r3y)(x− r4y). In this case system (8) becomes

(9)

ẋ = x3(r1 + r2 + r3 + r4) + 2x2y(−r1r2 − r1r3 − r1r4 − r2r3 − r2r4 − r3r4)
+3xy2(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4)− 4r1r2r3r4y

3,
ẏ = −3x2y(r1 + r2 + r3 + r4)− 2xy2(−r1r2 − r1r3 − r1r4 − r2r3 − r2r4 − r3r4)

−y3(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4) + 4x3,

this system has one finite singularity at the origin of coordinates. In the chart U1 system (9)
written as

u̇ = 4(−1 + r1u)(−1 + r2u)(−1 + r3u)(−1 + r4u),
v̇ = −v(−r1 − r2 − r3 − r4 + (2r1r2 + 2r1r3 + 2r2r3 + 2r1r4 + 2r2r4 + 2r3r4)u

+(−3r1r2r3 − 3r1r2r4 − 3r1r3r4 − 3r2r3r4)u
2 + 4r1r2r3r4u

3).

This system has four hyperbolic nodes (1/r1, 0), (1/r2, 0), (1/r3, 0) and (1/r4, 0) with eigenvalues
(4(r2−r1)(r1−r3)(r1−r4))/r21 and (r2−r1)r1−r3r1−r4)/r21, (4(r1−r2)(r2−r3)(r2−r4))/r22 and
(r1− r2)(r2− r3)(r2− r4)/r22, (4(r1− r3)(r3− r2)(r3− r4))/r23 and ((r1− r3)(r3− r2)(r3− r4))/r23,
and (4(r1 − r4)(r4 − r2)(r4 − r3))/r

2
4 and (r1 − r4)r4 − r2r4 − r3)/r

2
4, respectively, and these

singularities have alternate kind of stability. The phase portrait is given of Figure 3 (a) .
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II. If H4(x, y) has two simple real linear factors (x − r1y)(x − r2y) with r1 < r2 and two complex
linear factors x2 − 2αxy + y2

(
α2 + β2

)
, so

H4(x, y) = a(x− r1y)(x− r2y)
(
x2 − 2αxy + y2

(
α2 + β2

))
, and system (8) takes the form

(10)

ẋ = x3(2α+ r1 + r2) + 2x2y
(
−α2 − β2 − 2αr1 − r1r2 − 2αr2

)
+ 3xy2

(
α2r1 + β2r1

+2αr1r2 + α2r2 + β2r2
)
+ 4y3

(
α2(−r1)r2 − β2r1r2

)
,

ẏ = −3x2y(2α+ r1 + r2)− 2xy2
(
−α2 − β2 − 2αr1 − r1r2 − 2αr2

)
− y3

(
α2r1 + β2r1

+2αr1r2 + α2r2 + β2r2
)
+ 4x3.

This system has one finite singularity at the origin of coordinates. In the chart U1 system (10)
writes

u̇ = 4(r1u− 1)(r2u− 1)
(
α2u2 + β2u2 − 2αu+ 1

)
,

v̇ = v(−2α+ u3
(
4α2r1r2 + 4β2r1r2

)
− u2

(
3α2r1 + 3β2r1 + 6αr1r2 + 3α2r2 + 3β2r2

)
+u

(
2α2 + 2β2 + 4αr1 + 2r1r2 + 4αr2

)
− r1 − r2).

It is easy to show that this system has two nodes with alternate kind of stability at (1/r1, 0) and
(1/r2, 0) with eigenvalues (4(r2−r1)

(
α2 + β2 + r21 − 2αr1

)
)/r21 and ((r2−r1)

(
α2 + β2 + r21 − 2αr1

)
)/r21,

and (4(r1− r2)
(
α2 + β2 + r22 − 2αr2

)
)/r22 and ((r1− r2)

(
α2 + β2 + r22 − 2αr2

)
)/r22, respectively.

See its phase portrait in Figure 3(b).

III. IfH4(x, y) has four complex linear factors
(
x2 − 2α1xy + y2(α2

1 + β2
1)
) (
x2 − 2α2xy + y2(α2

2 + β2
2)
)
,

so

H4(x, y) = a
(
x2 − 2α1xy + y2(α2

1 + β2
1)
) (
x2 − 2α2xy + y2(α2

2 + β2
2)
)
.

In this case system (8) becomes

(11)
ẋ = −a

(
2y

(
α2
1 + β2

1

)
− 2α1x

) (
(x− α2y)

2 + β2
2y

2
)
− a

(
(x− α1y)

2 + β2
1y

2
)(

2y
(
α2
2 + β2

2

)
− 2α2x

)
,

ẏ = 2a
(
(x− α2y)

(
(x− α1y)

2 + β2
1y

2
)
+ (x− α1y)

(
(x− α2y)

2 + β2
2y

2
))
.

This system has one finite singularity at the origin of coordinates. In the chart U1 system (11)
has no singularities. Thus the phase portrait is given in Figure 3(c).

IV. If H4(x, y) has two double complex linear factors
(
x2 − 2αxy + y2(α2 + β2)

)2
, so H3(x, y) =

a
(
x2 − 2αxy + y2(α2 + β2)

)2
, and its corresponding Hamiltonian system also has the phase por-

trait given in Figure 3(c).
In the following cases V, VI, VII, VIII, and IX we will see that system (8) has infinitely many

singularities, which are not the subject of our work.

V. If H4(x, y) has two double real linear factors (x − r1y)
2(x − r2y)

2, so the Hamiltonian has two
straight lines x− r1y = 0 and x− r2y = 0 filled of singularities.

VI. If H4(x, y) has one double real linear factor (x−r1y)2 and two simple linear factors (x−r2y)(x−
r3y), then the Hamiltonian system has the line x− r1y = 0 filled of singularities.

VII. If H4(x, y) has one triple real linear factor (x− r1y)
3 and one simple real factor (x− r2y), then

the Hamiltonian system has infinitely many singularities at x− r1y = 0.

VIII. If H4(x, y) has one real linear factor of multiplicity four (x− r1y)
4, then the Hamiltonian system

has the straight line x− r1y = 0 filled up with singularities.

IX. If H4(x, y) has one double linear factor (x − r1y)
2 and two complex linear factors x2 − 2αxy +

y2
(
α2 + β2

)
, then the Hamiltonian system has a straight line of singularities x− r1y = 0.

This completes the proof of Theorem 1 for n = 3.
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6. Proof of Theorem 1 for n = 4

In this section we are interested in studying the quartic homogeneous Hamiltonian systems with finitely
many equilibria given by

(12)
ẋ = −bx4 − 2cx3y − 3dx2y2 − 4exy3 − 5fy4,
ẏ = 5ax4 + 4bx3y + 3cx2y2 + 2dxy3 + ey4,

where a, b, c, d, e and f are real parameters. Its corresponding Hamiltonian function is
H5(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + fy5.

The infinite singularities of this system (12) are determined by the real linear factors of xẏ − yẋ =
−5H5(x, y) that can have twelve different kinds of linear factors. Where we shall see that only the three
cases I, II, III and IV of system (12) have finitely many equilibria, and the remaining cases have infinitely
many singular points.

I. If H5(x, y) has five simple real linear factors (x− r1y)(x− r2y)(x− r3y)(x− r4y)(x− r5y), with
r1 < r2 < r3 < r4 < r5, so H3(x, y) = a(x− r1y)(x− r2y)(x− r3y)(x− r4y)(x− r5y), and system
(12) becomes

(13)

ẋ = r1 + r2 + r3 + r4 + r5)x
4 + 2x3y(−r1r2 − r1r3 − r1r4 − r1r5 − r2r3 − r2r4 − r2r5

−r3r4 − r3r5 − r4r5) + 3x2y2(r1r2r3 + r1r2r4 + r1r2r5 + r1r3r4 + r1r3r5 + r1r4r5
+r2r3r4 + r2r3r5 + r2r4r5 + r3r4r5) + 4xy3(−r1r2r3r4 − r1r2r3r5 − r1r2r4r5 − r1r3r4r5
−r2r3r4r5) + 5r1r2r3r4r5y

4,
ẏ = −4x3y(r1 + r2 + r3 + r4 + r5) + 3x2y2(r1r2 + r1r3 + r1r4 + r1r5 + r2r3 + r2r4 + r2r5

−r3r4 + r3r5 + r4r5)− 2xy3(r1r2r3 + r1r2r4 + r1r2r5 + r1r3r4 + r1r3r5 + r1r4r5 + r2r3r4
+r2r3r5 + r2r4r5 + r3r4r5)− y4(−r1r2r3r4 − r1r2r3r5 − r1r2r4r5 − r1r3r4r5
−r2r3r4r5) + 5x4,

This system has one finite singularity at the origin of coordinates. In the chart U1 system (13)
writes

u̇ = −5(r1u− 1)(r2u− 1)(r3u− 1)(r4u− 1)(r5u− 1),
v̇ = −(r1 + r2 + r3 + r4 + r5)v + (2r1r2 + 2r1r3 + 2r2r3 + 2r1r4 + 2r2r4 + 2r3r4 + 2r1r5

+2r2r5 + 2r3r5 + 2r4r5)uv + (−3r1r2r3 − 3r1r2r4 − 3r1r3r4 − 3r2r3r4 − 3r1r2r5
−3r1r3r5 − 3r2r3r5 − 3r1r4r5 − 3r2r4r5 − 3r3r4r5)u

2v + (4r1r2r3r4 + 4r1r2r3r5
+4r1r2r4r5 + 4r1r3r4r5 + 4r2r3r4r5)u

3v − 5r1r2r3r4r5u
4v.

It is easy to check that this system has five hyperbolic nodes at (1/r1, 0), (1/r2, 0), (1/r3, 0),
(1/r4, 0) and (1/r5, 0) with alternative kind of stability. See its phase portrait in Figure 4(a).

II. If H5(x, y) has three simple linear factors (x− r1y)(x− r2y)(x− r3y), with r1 < r2 < r3 and two
complex linear factors (x2 − 2αβxy + (α2 + β2)y2), so

H3(x, y) = a(x− r1y)(x− r2y)(x− r3y)(x
2 − 2αβxy + (α2 + β2)y2).

System (12) becomes

(14)

ẋ = x4(2α+ r1 + r2 + r3) + 2x3y
(
− α2 − β2 − 2αr1 − r1r2 − r1r3 − 2αr2 − r2r3 − 2αr3

)
+3x2y2

(
α2r1 + β2r1 + 2αr1r2 + r1r2r3 + 2αr1r3 + α2r2 + β2r2 + 2αr2r3 + α2r3 + β2r3

)
−4xy3

(
α2r1r2 + β2r1r2 + 2αr1r2r3 + α2r1r3 + β2r1r3 + α2r2r3 + β2r2r3

)
+5y4

(
α2r1r2r3 + β2r1r2r3

)
,

ẏ = −4x3y(2α+ r1 + r2 + r3) + 3x2y2
(
α2 + β2 + 2αr1 + r1r2 + r1r3 + 2αr2 + r2r3 + 2αr3

)
−2xy3

(
α2r1 + β2r1 + 2αr1r2 + r1r2r3 + 2αr1r3 + α2r2 + β2r2 + 2αr2r3 + α2r3 + β2r3

)
−y4

(
α2(−r1)r2 − β2r1r2 − 2αr1r2r3 − α2r1r3 − β2r1r3 − α2r2r3 − β2r2r3

)
+ 5x4.
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System (14) has one finite singularity at the origin of coordinates. In the chart U1 system (14)
written as

u̇ = −5(r1u− 1)(r2u− 1)(r3u− 1)
(
α2u2 + β2u2 − 2αu+ 1

)
,

v̇ = 2α+ 5r1r2r3u
4
(
α2 + β2

)
− 4u3

(
α2r1r2 + β2r1r2 + 2αr1r2r3 + α2r1r3

+β2r1r3 + α2r2r3 + β2r2r3
)
+ 3u2

(
α2r1 + β2r1 + 2αr1r2 + r1r2r3 + 2αr1r3

+α2r2 + β2r2 + 2αr2r3 + α2r3 + β2r3
)
− 2u

(
α2 + β2 + 2αr1 + r1r2 + r1r3

+2αr2 + r2r3 + 2αr3
)
+ r1 + r2 + r3.

We can easily verify that this system has three hyperbolic nodes at (1/r1, 0), (1/r2, 0) and (1/r3, 0)
with alternative kind of stability. Consequently its phase portrait is given in Figure 4(b).

III. If H5(x, y) has one simple real linear factor (x − r1y) and four complex factors (x2 − 2α1xy +
y2(α2

1+β
2
1))(x

2−2α2xy+ y
2(α2

2+β
2
2)), so H5(x, y) = a(x− r1y)(x2−2α1xy+ y

2(α2
1+β

2
1))(x

2−
2α2xy + y2(α2

2 + β2
2)), and system (12) becomes

(15)

ẋ = −a(x− r1y)(2y(α
2
1 + β2

1)− 2α1x)((x− α2y)
2 + β2

2y
2)− (x− r1y)((x− α1y)

2 + β2
1y

2)
(2y(α2

2 + β2
2)− 2α2x) + r1((x− α1y)

2 + β2
1y

2)((x− α2y)
2 + β2

2y
2)),

ẏ = a(2(x− r1y)(x− α2y)(x
2 − 2α1xy + y2(α2

1 + β2
1)) + 2(x− r1y)(x− α1y)(x

2 − 2α2xy
+y2(α2

2 + β2
2)) + (x2 − 2α1xy + y2(α2

1 + β2
1))(x

2 − 2α2xy + y2(α2
2 + β2

2))).

This system has one finite singularity at the origin of coordinates. In the chart U1 system (15)
has one infinite hyperbolic node at (1/r1, 0). So its phase portrait is given in Figure 4(c).

IV. If H5(x, y) has one simple real linear factor (x − r1y) and double complex linear factors (x2 −
2αxy + y2(α2 + β2))2, so H5(x, y) = (x− r1y)(x

2 − 2αxy + y2(α2 + β2))2, and its corresponding
Hamiltonian system also has the phase portrait given in Figure 4(c).

In the following cases of the Hamiltonian H5(x, y) the corresponding Hamiltonian system has
infinitely many singular points, and we do not consider them.

V. H5(x, y) has one double real linear factor and three simple real linear factors.

VI. H5(x, y) has two double real linear factors and one simple real linear factor.

VII. H5(x, y) has one triple real linear factor and two simple real linear factors.

VIII. H5(x, y) has one triple real linear factor and one double real linear factor.

IX. H5(x, y) has one real linear factor of multiplicity four and one simple real linear factor.

X. H5(x, y) has one real linear factor of multiplicity five.

XI. H5(x, y) has one double real linear factor, one simple real linear factor and two complex linear
factors.

XII. H5(x, y) has one triple real linear factor and two complex linear factors.

This completes the proof of Theorem 1 for n = 4.

7. Proof of Theorem 1 for n = 5

In this section we are interested in studying the quintic homogeneous Hamiltonian systems with finitely
many equilibria given by

(16)
ẋ = −bx5 − 2cx4y − 3dx3y2 − 4ex2y3 − 5fxy4 − 6gy5,
ẏ = 6ax5 + 5bx4y + 4cx3y2 + 3dx2y3 + 2exy4 + fy5,

where a, b, c, d, e, f and g are real parameters. Its corresponding Hamiltonian function is
H6(x, y) = ax6 + bx5y + cx4y2 + dx3y3 + ex2y4 + fxy5 + gy6.

The infinite singularities of this system (16) are determined by the real linear factors of xẏ − yẋ =
−6H6(x, y) that can have sixteen different kinds of linear factors. Where we shall see that only the four
cases I, II, III and IV system (16) has finitely many equilibria, and the remaining cases have infinitely
many singular points.
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I. If H6(x, y) has six simple non zero real linear factors (x − r1y)(x − r2y)(x − r3y)(x − r4y)(x −
r5y)(x− r6y), with r1 < r2 < r3 < r4 < r5 < r6, so H6(x, y) = a(x− r1y)(x− r2y)(x− r3y)(x−
r4y)(x− r5y)(x− r6y), and system (16) becomes

(17)

ẋ = x5(r1 + r2 + r3 + r4 + r5 + r6) + 2x4y(−r1r2 − r1r3 − r1r4 − r1r5 − r1r6 − r2r3
−r2r4 − r2r5 − r2r6 − r3r4 − r3r5 − r3r6 − r4r5 − r4r6 − r5r6) + 3x3y2(r1r2r3
+r1r2r4 + r1r2r5 + r1r2r6 + r1r3r4 + r1r3r5 + r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6
+r2r3r4 + r2r3r5 + r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5 + r3r4r6 + r3r5r6
+r4r5r6) + 4x2y3(−r1r2r3r4 − r1r2r3r5 − r1r2r3r6 − r1r2r4r5 − r1r2r4r6 − r1r2r5r6
−r1r3r4r5 − r1r3r4r6 − r1r3r5r6 − r1r4r5r6 − r2r3r4r5 − r2r3r4r6 − r2r3r5r6
−r2r4r5r6 − r3r4r5r6) + 5xy4(r1r2r3r4r5 + r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5r6
+r1r3r4r5r6 + r2r3r4r5r6)− 6r1r2r3r4r5r6y

5,
ẏ = −5x4y(r1 + r2 + r3 + r4 + r5 + r6)− 4x3y2(−r1r2 − r1r3 − r1r4 − r1r5 − r1r6

−r2r3 − r2r4 − r2r5 − r2r6 − r3r4 − r3r5 − r3r6 − r4r5 − r4r6 − r5r6)
−3x2y3(r1r2r3 + r1r2r4 + r1r2r5 + r1r2r6 + r1r3r4 + r1r3r5 + r1r3r6 + r1r4r5
+r1r4r6 + r1r5r6 + r2r3r4 + r2r3r5 + r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5
+r3r4r6 + r3r5r6 + r4r5r6)− 2xy4(−r1r2r3r4 − r1r2r3r5 − r1r2r3r6 − r1r2r4r5
−r1r2r4r6 − r1r2r5r6 − r1r3r4r5 − r1r3r4r6 − r1r3r5r6 − r1r4r5r6 − r2r3r4r5
−r2r3r4r6 − r2r3r5r6 − r2r4r5r6 − r3r4r5r6)− y5(r1r2r3r4r5 + r1r2r3r4r6
+r1r2r3r5r6 + r1r2r4r5r6 + r1r3r4r5r6 + r2r3r4r5r6) + 6x5.

This system has one finite singularity at the origin of coordinates. In the chart U1 system (17)
writes

u̇ = 6(r1u− 1)(r2u− 1)(r3u− 1)(r4u− 1)(r5u− 1)(r6u− 1),
v̇ = v(6r1r2r3r4r5r6u

5 − 5u4(r1r2r3r4r5 + r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5r6 + r1r3r4r5r6
+r2r3r4r5r6) + 4u3(r1r2r3r4 + r1r2r3r5 + r1r2r3r6 + r1r2r4r5 + r1r2r4r6 + r1r2r5r6
+r1r3r4r5 + r1r3r4r6 + r1r3r5r6 + r1r4r5r6 + r2r3r4r5 + r2r3r4r6 + r2r3r5r6 + r2r4r5r6
+r3r4r5r6)− 3u2(r1r2r3 + r1r2r4 + r1r2r5 + r1r2r6 + r1r3r4 + r1r3r5 + r1r3r6 + r1r4r5
+r1r4r6 + r1r5r6 + r2r3r4 + r2r3r5 + r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5 + r3r4r6
+r3r5r6 + r4r5r6) + 2u(r1r2 + r1r3 + r1r4 + r1r5 + r1r6 + r2r3 + r2r4 + r2r5 + r2r6 + r3r4
+r3r5 + r3r6 + r4r5 + r4r6 + r5r6)− r1 − r2 − r3 − r4 − r5 − r6).

It is easy to check that this system has six hyperbolic nodes at (1/r1, 0), (1/r2, 0), (1/r3, 0),
(1/r4, 0), (1/r5, 0) and (1/r6, 0) with alternative kind of stability. Then its phase portrait is
given in Figure 5 (a).

II. If H6(x, y) has four simple real linear factors (x − r1y)(x − r2y)(x − r3y)(x − r4y), with r1 <
r2 < r3 < r4 and two complex (x2 − 2αxy + y2(α2 + β2)), so H6(x, y) = a(x− r1y)(x− r2y)(x−
r3y)(x− r4y)(x

2 − 2αxy + y2
(
α2 + β2

)
), and system (16) becomes

(18)

ẋ = x5(2α+ r1 + r2 + r3 + r4) + 2x4y
(
− α2 − β2 − 2αr1 − r1r2 − r1r3 − r1r4 − 2αr2 − r2r3

−r2r4 − 2αr3 − r3r4 − 2αr4
)
+ 3x3y2

(
α2r1 + β2r1 + 2αr1r2 + r1r2r3 + r1r2r4 + 2αr1r3

+r1r3r4 + 2αr1r4 + α2r2 + β2r2 + 2αr2r3 + r2r3r4 + 2αr2r4 + α2r3 + β2r3 + 2αr3r4
+α2r4 + β2r4

)
+ 4x2y3

(
α2(−r1)r2 − β2r1r2 − 2αr1r2r3 − r1r2r3r4 − 2αr1r2r4 − α2r1r3

−β2r1r3 − 2αr1r3r4 − α2r1r4 − β2r1r4 − α2r2r3 − β2r2r3 − 2αr2r3r4 − α2r2r4 − β2r2r4
−α2r3r4 − β2r3r4

)
+ 5xy4

(
α2r1r2r3 + β2r1r2r3 + 2αr1r2r3r4 + α2r1r2r4 + β2r1r2r4

+α2r1r3r4 + β2r1r3r4 + α2r2r3r4 + β2r2r3r4
)
+ 6y5

(
α2(−r1)r2r3r4 − β2r1r2r3r4

)
,

ẏ = −5x4y(r1 + r2 + r3 + r4 + r5 + r6)− 4x3y2(−r1r2 − r1r3 − r1r4 − r1r5 − r1r6 − r2r3
−r2r4 − r2r5 − r2r6 − r3r4 − r3r5 − r3r6 − r4r5 − r4r6 − r5r6)− 3x2y3(r1r2r3 + r1r2r4
+r1r2r5 + r1r2r6 + r1r3r4 + r1r3r5 + r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6 + r2r3r4 + r2r3r5
+r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5 + r3r4r6 + r3r5r6 + r4r5r6)
−2xy4(−r1r2r3r4 − r1r2r3r5 − r1r2r3r6 − r1r2r4r5 − r1r2r4r6 − r1r2r5r6 − r1r3r4r5
−r1r3r4r6 − r1r3r5r6 − r1r4r5r6 − r2r3r4r5 − r2r3r4r6 − r2r3r5r6 − r2r4r5r6 − r3r4r5r6)
−y5(r1r2r3r4r5 + r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5r6 + r1r3r4r5r6 + r2r3r4r5r6) + 6x5.
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System (18) has one singular point at the origin of coordinates. In the chart U1 system (18)
writes

u̇ = 6(r1u− 1)(r2u− 1)(r3u− 1)(r4u− 1)
(
α2u2 + β2u2 − 2αu+ 1

)
,

v̇ = v(−2α+ 6r1r2r3r4u
5
(
α2 + β2

)
− 5u4

(
α2r1r2r3 + β2r1r2r3 + 2αr1r2r3r4 + α2r1r2r4

+β2r1r2r4 + α2r1r3r4 + β2r1r3r4 + α2r2r3r4 + β2r2r3r4
)
+ 4u3

(
α2r1r2 + β2r1r2 + β2r2r4

+r1r2r3r4 + 2αr1r2r4 + α2r1r3 + β2r1r3 + 2αr1r3r4 + α2r1r4 + β2r1r4 + α2r2r3 + β2r2r3
+2αr2r3r4 + α2r2r4 + 2αr1r2r3 + α2r3r4 + β2r3r4

)
− 3u2

(
α2r1 + β2r1 + 2αr1r2 + r1r2r3

+r1r2r4 + 2αr1r3 + r1r3r4 + 2αr1r4 + α2r2 + β2r2 + 2αr2r3 + r2r3r4 + 2αr2r4 + α2r3
+β2r3 + 2αr3r4 + α2r4 + β2r4

)
+ 2u

(
α2 + β2 + 2αr1 + r1r2 + r1r3 + r1r4 + 2αr2 + r2r3

+r2r4 + 2αr3 + r3r4 + 2αr4
)
− r1 − r1 − r3 − r4).

It is clear that this system has four hyperbolic nodes at (1/r1, 0), (1/r2, 0), (1/r3, 0) and (1/r4, 0)
with alternative kind of stability. Its phase portrait is given in Figure 5(b).

III. If H6(x, y) has two simple real linear factors (x − r1y)(x − r2y), with r1 < r2 and four complex
linear factors (x2−2α1xy+y

2(α2
1+β

2
1))(x

2−2α2xy+y
2(α2

2+β
2
2)), so H6(x, y) = a(x− r1y)(x−

r2y)(x
2 − 2α1xy + y2(α2

1 + β2
1))(x

2 − 2α2xy + y2(α2
2 + β2

2)). In this case system (16) becomes

(19)

ẋ = −a(x− r1y)(x− r2y)(2y(α
2
1 + β2

1)− 2α1x)((x− α2y)
2 + β2

2y
2)− (x− r1y)(x− r2y)

((x− α1y)
2 + β2

1y
2)(2y(α2

2 + β2
2)− 2α2x) + r2(x− r1y)((x− α1y)

2 + β2
1y

2)((x− α2y)
2

+β2
2y

2) + r1(x− r2y)((x− α1y)
2 + β2

1y
2)((x− α2y)

2 + β2
2y

2)),
ẏ = a(2(x− r1y)(x− r2y)(x− α2y)(x

2 − 2α1xy + y2(α2
1 + β2

1)) + 2(x− r1y)(x− r2y)
(x− α1y)(x

2 − 2α2xy + y2(α2
2 + β2

2)) + (x− r1y)(x
2 − 2α1xy + y2(α2

1 + β2
1))(x

2 − 2α2xy
+y2(α2

2 + β2
2)) + (x− r2y)(x

2 − 2α1xy + y2(α2
1 + β2

1))(x
2 − 2α2xy + y2(α2

2 + β2
2))).

This system has one finite singularity at the origin of coordinates. In the chart U1 system (19)
has two hyperbolic nodes at (1/r1, 0) and (1/r2, 0) with an alternative kind of stability. Its phase
portrait is given in Figure 5(c).

IV. If H6(x, y) has two simple real linear factors and two double complex linear factors, in a similar
way to III we obtain the phase portrait of Figure 5(c).

VI. If all the linear factors of H6(x, y) are complex, then its phase portrait is given in Figure 5(d).

In all the other cases different from the cases I to V the homogeneous polynomial H6(x, y)
has at least one double real linear factor and consequently the Hamiltonian system has infinitely
many singularities.

In summary Theorem 1 is proved for n = 5.
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Email address: r.benterki@univ-bba.dz
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