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Abstract. In the qualitative theory of the planar discontinuous piecewise

linear differential systems one of the main problems is the study of the number
of crossing limit cycles that these systems can have. We study the number

of crossing limit cycles of discontinuous piecewise linear differential systems
formed by centers and separated by an irreducible algebraic cubic curve. We

prove that these differential systems only can exhibit 0, 1, 2 or 3 crossing limit

cycles having two intersection points with the cubic of separation.

1. Introduction

One of the first works studying the discontinuous piecewise linear differential
systems in the plane is due to Andronov, Vitt and Khaikin in [1]. Later on these
systems became a topic of great interest in the mathematical community due to
their applications for modeling real phenomena, see for instance the books [3, 19]
and references there quoted.

To determine the non–existence, the existence of limit cycles and their number is
one of the big problems in the qualitative theory of the planar differential systems,
and in particular of the planar discontinuous piecewise linear differential systems
separated by a curve Σ. In this work we are considering that a crossing limit cycle
is a periodic orbit isolated in the set of all periodic orbits of the system which has
exactly two points on the discontinuity curve Σ.

The problem of finding the best upper bound for the maximum number of limit
cycles that a family of piecewise linear differential systems in the plane separated
by a straight line can have, has been studied by many authors recently, see for
instance [2, 5, 7, 18]. Lum and Chua[16, 17] in 1990 conjectured that the continuous
(but non–smooth) piecewise linear systems in the plane separated by one straight
line have at most one limit cycle. This conjecture was proved by Freire et al
[6] in 1998, for a shorter proof see [11]. Han and Zhang [8] in 2010 conjectured
that discontinuous piecewise linear differential systems in the plane separated by
a straight line have at most two crossing limit cycles. Huan and Yang [9] in 2012
provided a negative answer to this conjecture exhibiting a numerical example with
three crossing limit cycles. Llibre and Ponce in [12] proved the existence of these
three limit cycles analytically. Nowadays it remains as an open problem to know
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if three is the maximum number of crossing limit cycles that this class of systems
can have.

In the paper [10] the authors considered the problem of Lum and Chua restricted
to the class of discontinuous piecewise linear differential centers in the plane sepa-
rated by a straight line, and they proved that those systems has no crossing limit
cycles. But in [14, 15] were studied planar discontinuous piecewise linear differential
centers with a curve of discontinuity different from a straight line, and then those
systems can exhibit crossing limit cycles. For this reason it is interesting to study
the role which plays the shape of the discontinuity curve in the number of crossing
limit cycles that planar discontinuous piecewise linear differential centers can have.

The objective of this paper is to study the maximum number N of crossing limit
cycles of the discontinuous piecewise linear differential centers in R2 separated by
an irreducible algebraic cubic curve.

1.1. Classification of the irreducible cubic polynomials. An algebraic cubic
curve or simple a cubic curve is the set of points (x, y) ∈ R2 satisfying P (x, y) = 0 for
some polynomial P (x, y) of degree three. This real cubic is irreducible (respectively
reducible) if the polynomial P (x, y) is irreducible (respectively reducible) in the ring
of all real polynomials in the variables x and y.

A point (x0, y0) of a cubic P (x, y) = 0 is singular if Px(x0, y0) = 0 and Py(x0, y0) =
0. A cubic curve is singular if it has some singular point.

A flex of an algebraic curve C is a point p of C such that C is nonsingular at p
and the tangent at p of the curve C intersects C at least three times.

Theorem 1. The following statements classify all the irreducible cubic algebraic
curves.

(a) A cubic curve is nonsingular and irreducible if and only if it can be trans-
formed with affine transformations into one of the following two curves;

c1(x, y) = y2 − x(x2 + bx+ 1) = 0 with b ∈ (−2, 2), or

c2(x, y) = y2 − x(x− 1)(x− r) = 0 with r > 1.

(b) A cubic curve is singular and irreducible if and only if it can be transformed
with affine transformations into one of the following three curves:

c3(x, y) = y2 − x3 = 0, or

c4(x, y) = y2 − x2(x− 1) = 0, or

c5(x, y) = y2 − x2(x+ 1) = 0.

See the graphics of the irreducible cubic curves ci = 0 for i = 1, . . . , 5 in Figures
1 to 5, respectively.

Statement (a) of Theorem 1 is proved in Theorem 8.3 of the book [4] under the
additional assumption that the cubic has a flex, but in section 12 of that book it is
shown that every nonsingular irreducible cubic curve has a flex. While statement
(b) of Theorem 1 follows directly from Theorem 8.4 of [4].
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Figure 1. c1(x, y) = 0. Figure 2. c2(x, y) = 0.

Figure 3. c3(x, y) = 0. Figure 4. c4(x, y) = 0.

1.2. Statement of the main results. For k = 1, . . . , 5 let Ck be the five classes
of planar discontinuous piecewise linear differential systems formed by centers and
separated by the irreducible cubic curve ck(x, y) = 0.

We recall that a limit cycle is a periodic solution of the discontinuous piecewise
linear differential system isolated in the set of all periodic solutions of the system.

In this paper we study the crossing limit cycles having exactly two points on the
discontinuous cubic curve ck(x, y) = 0.

Our first result provides the number of crossing limit cycles of the discontinuous
piecewise linear differential systems formed by centers and separated by the irre-
ducible cubic curves c1, c3 and c4. We note that such piecewise systems are formed
by two pieces in each one there is a linear differential center.

Theorem 2. The following statements hold.

(a) There are systems of the classes C1, C3 and C4 without crossing limit cycles.
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Figure 5. c5(x, y) = 0.

(b) There are systems of the classes C1, C3 and C4 exhibiting exactly one cross-
ing limit cycle, see Figures 6, 7 and 8, respectively.

(c) There are systems of the classes C1, C3 and C4 exhibiting exactly two cross-
ing limit cycles, see Figures 9, 10 and 11, respectively. These classes can’t
exhibit the configurations 12, 13 and 14, respectively, because the ellipses of
every center are concentric.

(d) There are systems of the classes C1, C3 and C4 exhibiting exactly three
crossing limit cycles, see Figures 15, 16 and 17, respectively.

(e) Every system of the class Ck for k = 1, 3, 5 can exhibit at most three crossing
limit cycles.

Theorem 2 is proved in section 2.

Now we give our second main result which provides the number of crossing limit
cycles of the discontinuous piecewise linear differential systems formed by centers
and separated by the irreducible cubic curves c2 and c5. We note that such piecewise
systems are formed by three pieces in each one there is a linear differential center.

Theorem 3. The following statements hold.

(a) There are systems of the classes C2 and C5 without crossing limit cycles.

(b) There are systems of classes C2 and C5 exhibiting exactly one crossing
limit cycle. Each class has three possible different configurations for the
limit cycle, see Figures 18, 19 and 20 for the class C2, and Figures 21, 22
and 23 for the class C5.

(c) There are systems of classes C2 and C5 exhibiting exactly two crossing
limit cycles. We get six possible configurations for the class C2, see Figures
24, 25, 26, 27, 28 and 29. And six possible configurations for the class
C5, see Figures 30, 31, 32, 33, 34 and 35. The class C2 can’t exhibit the
configurations 36 and 37, and the class C5 can’t exhibit the configurations
38 and 39, because the ellipses of every center are concentric.

(d) There are systems of the classes C2 and C5 exhibiting exactly three crossing
limit cycles, see Figures 40 and 41, respectively.
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(e) The systems of the classes C2 and C5 can exhibit at most three crossing
limit cycles.

Theorem 3 is proved in section 3.

Figure 6. The unique limit cycle of the discontinuous piecewise linear
differential system (1)–(2).

Figure 7. The unique limit cycle of the discontinuous piecewise linear
differential system (4)–(5).

2. Proof of Theorem 2

We separate the proof of Theorem 2 by its statements. We remark that since
the proofs of statements (a) and (e) of Theorems 2 and 3 are the same, we provide
them in this section.

Proof of statement (a) of Theorems 2 and 3. It is sufficient to take in each piece
the same linear differential center, for instance the center ẋ = −y, ẏ = x. Then
the discontinuous piecewise linear differential system (in this case continuous but
separated by the cubic ck(x, y) = 0) has a continuum of periodic orbits and no limit
cycles. �
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Figure 8. The unique limit cycle of the discontinuous piecewise linear
differential system (7)–(8).

Figure 9. Two limit cycles of the discontinuous piecewise linear dif-
ferential system (10)–(11).

Proof of statement (b) of Theorem 2. First we prove the statement for class C1

when b = 1. We consider the first linear differential center

(1) ẋ = −x
2
− y

2
+ 1 +

3

2
√

14
, ẏ = x+

y

2
− 2,

in the region c1(x, y) > 0. This system has the first integral

H1(x, y) = 4
(
x+

y

2

)2
+ 8

(
−2x−

(
6 + 4

√
14
)
y

4
√

14

)
+ y2.

Now we consider the second linear differential center

(2) ẋ = −x
2
− y

2
+ 1 +

13

2
√

14
, ẏ = x+

y

2
+

1

2
,

in the region c1(x, y) < 0. This differential system has the first integral

H2(x, y) = 4(x+
y

2
)2 + 8(

x

2
− (1 +

13

2
√

14
)y) + y2.
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Figure 10. Two limit cycles of the discontinuous piecewise linear dif-
ferential system (12)–(13).

Figure 11. Two limit cycles of the discontinuous piecewise linear dif-
ferential system (14)–(15).

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (1)–(2) has exactly one crossing limit cycle, because the system of
equations

(3)

Hl(α, β)−Hl(γ, δ) = 0,
Hk(α, β)−Hk(γ, δ) = 0,
β2 − α(α2 + α+ 1) = 0,
δ2 − γ(γ2 + γ + 1) = 0,

when l = 1 and k = 2, has a unique real solution (α, β, γ, δ) = (0, 0, 2,
√

14).

We prove the statement for the class of discontinuous piecewise linear differential
systems C3. We define two different linear differential centers, the first one is

(4) ẋ =
1

288

(
−72x− 90y + 295

√
3 + 216

)
, ẏ = x+

y

4
+

1

6
,
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Figure 12 Figure 13

Figure 14

Figure 15. Three limit cycles of the discontinuous piecewise linear
differential system (16)–(17).
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Figure 16. Three limit cycles of the discontinuous piecewise linear
differential system (18)–(19).

Figure 17. Three limit cycles of the discontinuous piecewise linear
differential system (20)–(21).

in the region c3(x, y) > 0. It has the first integral

H1(x, y) = 4
(
x− y

2

)2
+ 8

(
x

2
+

(
36
√

3− 78
)
y

24
√

3

)
+
y2

9
.

The second linear differential center is

(5) ẋ =
1

288

(
−72x− 90y + 295

√
3 + 216

)
, ẏ = x+

y

4
+

1

6
,

in the region c3(x, y) < 0. It has the first integral

H2(x, y) = 4
(
x+

y

4

)2
+ 8

(
x

6
+

1

24
√

3

(
−295

4
− 18

√
3

)
y

)
+ y2.
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For the discontinuous piecewise linear differential system (4)–(5) the unique solution
of the system of equations

(6)

Hl(α, β)−Hl(γ, δ) = 0,
Hk(α, β)−Hk(γ, δ) = 0,
β2 − α3 = 0,
δ2 − γ3 = 0,

when l = 1 and k = 2, is (α, β, γ, δ) = (0, 0, 3, 3
√

3). This proves the statement for
the class C3.

Finally we prove the statement for the class C4 and we define two different linear
differential centers, the first one is

(7) ẋ = −3 + x− (37y)/36, ẏ = 1 + x− y
in the region c4(x, y) < 0. It has the first integral

H1(x, y) = 4(x− y)2 + 8(x+ 3y) +
y2

9
.

The second linear differential center is

(8) ẋ = −x
2
− 5y

4
+

3

2
, ẏ = x+

y

2
− 1,

in the region c4(x, y) > 0. It has the first integral

H2(x, y) = 4
(
x+

y

2

)2
+ 8

(
−x− 3y

2

)
+ 4y2.

For the piecewise linear differential system (7)–(8) the unique real solution of the
system of equations

(9)

Hl(α, β)−Hl(γ, δ) = 0,
Hk(α, β)−Hk(γ, δ) = 0,
β2 − α2(α− 1) = 0,
δ2 − γ2(γ − 1) = 0,

when l = 1 and k = 2, is (α, β, γ, δ) = (3, 3
√

2, 3,−3
√

2). This completes the proof
of the statement (b) of Theorem 2. �

Proof of statement (c) of Theorem 2. For the class C1 we consider the linear dif-
ferential center

(10) ẋ = −x− 5y

4
+ 3, ẏ = x+ y +

1

16

(
8
√

14− 86
)
,

in the region c1(x, y) > 0. This differential system has the first integral

H3(x, y) = 4(x+ y)2 + 8

(
1

16

(
8
√

14− 86
)
x− 3y

)
+ y2.

The other linear differential center is

(11) ẋ = −x
2
− 5y

16
+

3

2
, ẏ = x+

y

2
+

1

16

(
4
√

14− 67

2

)
,

in the region c1(x, y) < 0. It has the first integral

H4(x, y) = 4
(
x+

y

2

)2
+ 8

(
1

16

(
4
√

14− 67

2

)
x− 3y

2

)
+
y2

4
.
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This discontinuous piecewise differential system formed by the linear differential
centers (10)–(11) has exactly two crossing limit cycles, because the real solutions

of the system (3), when l = 3 and k = 4 are (3,−
√

39, 3,
√

39) and (0, 0, 2,
√

14).

For the class C3 we define the linear differential center

(12) ẋ =
1

52

(
−52x− 65y − 55

√
3 + 376

)
, ẏ = x+ y +

55
√

3

13
− 1071

104
,

in the region c3(x, y) < 0, which has the first integral

H3(x, y) = 4(x+ y)2 + 8

(
1

104

(
440
√

3− 1071
)
x+

1

52

(
55
√

3− 376
)
y

)
+ y2.

The second linear differential center is

(13) ẋ =
1

26

(
13x− 13y − 5

√
3− 19

)
, ẏ = x− y

2
+

5

52

(
8
√

3− 45
)
,

in the region c3(x, y) > 0, which has the first integral

H4(x, y) = 4
(
x− y

2

)2
+ 8

(
5

52

(
8
√

3− 45
)
x+

1

26

(
19 + 5

√
3
)
y

)
+ y2.

This discontinuous piecewise differential system formed by the linear differential
centers (12)–(13) has exactly two crossing limit cycles, because the system of equa-

tions (6), when l = 3 and k = 4 has exactly two real different solutions (0, 0, 3, 3
√

3)

and (3,−3
√

3, 4, 8). Hence, the statement holds for this class.

Now we prove the statement for the class C4.

We define the linear differential center

(14)
ẋ =

x

10
− 41y

1600
+
−72096 + 6009

√
2 + 17224

√
7 + 3072

√
14

150400
,

ẏ = x− y

10
+
−444982 + 18657

√
2 + 35592

√
7 + 2892

√
14

75200
,

in the region c4(x, y) < 0, which has the first integral

H3(x, y) = 4
(
x− y

10

)2
+
−444982 + 18657

√
2 + 35592

√
7 + 2892

√
14

9400
x

+
−72096 + 6009

√
2 + 17224

√
7 + 3072

√
14

18800
.

The second linear differential center is

(15)

ẋ =
x

8
− 5y

64
+

9475− 216
√

2− 3584
√

7

64
(
−160 + 9

√
2 + 56

√
7
) ,

ẏ = x− y

8
+

51355− 3417
√

2− 18548
√

7 + 480
√

14

32
(
−160 + 9

√
2 + 56

√
7
) ,
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in the region c4(x, y) > 0, which has the first integral

H4(x, y) = 4
(
x− y

8

)2
+ 8

(
(51355− 3417

√
2− 18548

√
7 + 480

√
14)x

32(−160 + 9
√

2 + 56
√

7)

− (9475− 216
√

2− 3584
√

7)y

64(−160 + 9
√

2 + 56
√

7)

)
+
y2

4
.

The discontinuous piecewise linear differential system formed by the linear differ-
ential centers (14)–(15) has exactly two crossing limit cycles, because the system
of equations (9), when l = 3 and k = 4 has exactly two real different solutions

(3, 3
√

2, 10, 30) and (5, 10, 8, 8
√

7). This completes the proof of statement (c) of
Theorem 2. �

Proof of statement (d) of Theorem 2. For the class C1 we consider in the region
c1(x, y) > 0 the linear differential center
(16)

ẋ =
x

14
+

(14
√

3− 18
√

7− 14
√

14 + 28
√

21− 14
√

39 +
√

42 + 6
√

91 +
√

546)y

140
√

3− 98
√

14 + 196
√

21− 140
√

39
+

+
A

7
√

3(
√

13− 1)(
√

3 +
√

14)(10
√

3− 7
√

14 + 14
√

21− 10
√

39)
,

ẏ = x− y

14
+

B

14
√

3
(√

13− 1
)

(10
√

3− 7
√

14 + 14
√

21− 10
√

39)

+
−420

√
91 + 21

√
182− 258

√
273 + 28

√
546

14
√

3
(√

13− 1
)

(10
√

3− 7
√

14 + 14
√

21− 10
√

39)
,

where A = 63 + 588
√

2 + 502
√

3− 63
√

13 + 579
√

14 + 84
√

21− 588
√

26 + 38
√

39 +
21
√

42 − 39
√

182 − 84
√

273 − 21
√

546 and B = 63 + 588
√

2 + 502
√

3 − 63
√

13 +
579
√

14 + 84
√

21− 588
√

26 + 38
√

39 + 21
√

42− 39
√

182− 84
√

273− 21
√

546. This
differential system has the first integral H5(x, y) equal to

C

420 + 42
√

7− 60
√

13− 7
√

42− 42
√

91 + 7
√

546

+
y((−42− 6

√
7 + 6

√
13 +

√
42 + 6

√
91−

√
546)y − 6

√
3(
√

13− 1))

420 + 42
√

7− 60
√

13− 7
√

42− 42
√

91 + 7
√

546

+
8x((−294

√
2− 322

√
3− 399

√
14− 42

√
21 + 294

√
26− 38

√
39 + 39

√
182 + 42

√
273)y

14
√

3(
√

13− 1)(
√

3 +
√

14)(−10
√

3 + 7
√

14− 14
√

21 + 10
√

39)

+
−3(3286 + 1722

√
6 + 1046

√
7 + 439

√
42) + 3

√
13(−38 + 798

√
6 + 650

√
7 + 13

√
42))

14
√

3(
√

13− 1)(
√

3 +
√

14)(−10
√

3 + 7
√

14− 14
√

21 + 10
√

39)

+
+16y(3(42 + 56

√
6 + 24

√
7 + 3

√
42− 14

√
78− 6

√
91)y − 84

√
273− 39

√
182 + 38

√
39

14
√

3(
√

13− 1)(
√

3 +
√

14)(−10
√

3 + 7
√

14− 14
√

21 + 10
√

39)

+
−588

√
26 + 84

√
21 + 579

√
14 + 502

√
3 + 588

√
2)

14
√

3(
√

13− 1)(
√

3 +
√

14)(−10
√

3 + 7
√

14− 14
√

21 + 10
√

39)
,
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where C = 4((420+42
√

7−60
√

13−7
√

42−42
√

91+7
√

546)x2 +4(−204−15
√

7+

33
√

13 +
√

42 + 15
√

91−
√

546)x. The other linear differential center in the region
c1(x, y) < 0 is
(17)

ẋ =
x

6
+

(
6
√

3− 18
√

7− 6
√

14 + 12
√

21− 6
√

39 +
√

42 + 6
√

91 +
√

546
)
y

60
√

3− 42
√

14 + 84
√

21− 60
√

39

+
D

3(−322− 98
√

6− 42
√

7− 38
√

13− 133
√

42 + 98
√

78 + 42
√

91 + 13
√

546)
,

ẏ = x− y

6
+

E

2
√

3(
√

13− 1)(10
√

3− 7
√

14 + 14
√

21− 10
√

39)

+
−60
√

91 + 7
√

182− 86
√

273 + 4
√

546

2
√

3(
√

13− 1)(10
√

3− 7
√

14 + 14
√

21− 10
√

39)
,

where D = 502 + 9
√

3 + 196
√

6 + 84
√

7 + 38
√

13 + 9
√

14 − 9
√

39 + 193
√

42 −
196
√

78 − 84
√

91 − 9
√

182 − 13
√

546 and E = 816 + 196
√

2 + 260
√

3 + 60
√

7 −
132
√

13 + 179
√

14 + 218
√

21 − 196
√

26 − 20
√

39 − 4
√

42. It has the first integral
H6(x, y) equal to

1

F
(12(−47421− 44394

√
6 + 3612

√
7− 31207

√
42 + 7

√
13(−531 + 3066

√
6

+852
√

7 + 703
√

42))x2) + 4x((47421 + 44394
√

6− 3612
√

7 + 3717
√

13

+31207
√

42− 21462
√

78− 5964
√

91− 4921
√

546)y − 3(−98442− 264782
√

2

−330296
√

3− 89628
√

6− 15774
√

7 + 5562
√

13− 170752
√

14− 46296
√

21

+122066
√

26 + 45578
√

39− 53461
√

42 + 37968
√

78 + 13038
√

91 + 28726
√

182

+30528
√

273 + 9697
√

546) + 4y(−3(−5643 + 15162
√

2 + 7791
√

3− 5082
√

6

+1056
√

7− 567
√

13 + 5481
√

14 + 1088
√

21− 4326
√

26− 1743
√

39− 3751
√

42

+2562
√

78 + 636
√

91− 1413
√

182− 464
√

273 + 559
√

546)y + 15128
√

546

+378
√

273 + 1971
√

182 + 21672
√

91 + 73206
√

78− 103196
√

42 + 1278
√

39

+2646
√

26− 2646
√

21− 4077
√

14 + 1494
√

13 + 7056
√

7− 142002
√

6

+774
√

3− 18522
√

2− 210258),

where F = 816+196
√

2+260
√

3+60
√

7−132
√

13+179
√

14+218
√

21−196
√

26−
20
√

39 − 4
√

42. This discontinuous piecewise differential system formed by the
linear differential centers (16)–(17) has exactly three crossing limit cycles, because
the real solutions of the system (3), when l = 5 and k = 6 has exactly three real

different solutions (1,−
√

3, 2,
√

14), (2,−
√

14, 3,
√

39) and (3,−
√

39, 4,
√

84). See
this configuration in Figure 15.
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For the class C3 we consider the linear differential center
(18)

ẋ =
−2153 + 2068

√
2 + 2283

√
3 + 1704

√
6

7430
+
x

5
−
(
61 + 4

√
2 + 9

√
3 + 6

√
6
)
y

45
(
−9 + 4

√
2 + 3

√
3
) ,

ẏ = x− y

5
+
−46751 + 11159

√
2 + 14823

√
3 + 10803

√
6

66870
, ,

in the region c3(x, y) > 0. This differential system has the first integral H5(x, y)
equal to

4

45(26− 11
√

2− 15
√

3 + 9
√

6)
(45(26− 11

√
2− 15

√
3 + 9

√
6)x2 + (−2079 + 967

√
2

+1413
√

3− 633
√

6)x− 18(26− 11
√

2− 15
√

3 + 9
√

6)xy + (18 + 86
√

2

+99
√

3 + 12
√

6)y2 + 9(151− 74
√

2− 108
√

3 + 42
√

6− 5
√

35 + 12
√

6)y).

The other linear differential center is
(19)

ẋ = x−
(
−7 + 28

√
2 + 21

√
3 + 6

√
6
)
y

9
(
−9 + 4

√
2 + 3

√
3
) +

−2549 + 1460
√

2 + 1767
√

3 + 1272
√

6

1486
,

ẏ = x− y +
−26171 + 7723

√
2 + 11379

√
3 + 8127

√
6

13374
,

in the region c3(x, y) < 0. It has the first integral H6(x, y) equal to

4

9(26− 11
√

2− 15
√

3 + 9
√

6)
(9(26− 11

√
2− 15

√
3 + 9

√
6)x2 + (−1243

+579
√

2 + 873
√

3− 357
√

6)x− 18(26− 11
√

2− 15
√

3 + 9
√

6)xy + (154

+6
√

2− 9
√

3 + 60
√

6)y2 + 9(147− 74
√

2− 108
√

3 + 42
√

6−
√

35 + 12
√

6)y).

This discontinuous piecewise differential system formed by the linear differential
centers (18)–(19) has exactly three crossing limit cycles, because the real solutions
of the system (6), when l = 5 and k = 6, has exactly three real different solutions

are (0, 0, 1, 1), (2,−2
√

2, 3, 3
√

3) and (3,−3
√

3, 4, 8). See Figure 16.

For the class C4 we consider the linear differential center

(20)

ẋ =
2x

9
+

1

963
(33− 114

√
2 + 32

√
3)y − 4

9
,

ẏ = x− 2y

9
+
−5751− 2136

√
2 + 4384

√
3

1926
,

in the region c4(x, y) > 0. This differential system has the first integral

H5(x, y) =
4

107
(x(107x− 539)− 7y2)− 8

963
(2x(107y − 1096

√
3 + 534

√
2 + 225)

−y((15 + 57
√

2− 16
√

3)y + 428)).



15

The other linear differential center is

(21)

ẋ =
x

7
+

1

749
(34− 57

√
2 + 16

√
3)y − 2

7
,

ẏ = x− y

7
+
−4223− 1068

√
2 + 2192

√
3

1498
,

in the region c4(x, y) < 0. It has the first integral H6(x, y) equal to

4

107
(x(107x− 539)− 7y2)− 4

749
(2x(107y − 1096

√
3 + 534

√
2 + 225)

−y((15 + 57
√

2− 16
√

3)y + 428)).

This discontinuous piecewise differential system formed by the linear differential
centers (20)–(21) has exactly three crossing limit cycles, because the system of
equations 9, when l = 5 and k = 6, has exactly three real different solutions
(2,−2, 2,−2), (3,−3

√
2, 4, 4

√
3) and (5,−10, 9, 18

√
2). See Figure 17. �

Proof of statement (e) of Theorems 2 and 3. We note that for the irreducible cubic
curves with c2(x, y) = 0 and c5(x, y) = 0 which separated the plane into three
connected components, the crossing limit cycles having only two points on the
cubic curve only can be contained in two of these connected components, so in
their definition only appear two linear differential centers. Therefore the proof of
statement (e) is the same for all classes of discontinuous piecewise linear differential
systems Ci for i = 1, . . . , 5.

Due to Lemma 1 of [13] any linear differential center in R2 can be written into
the form

(22) ẋ = −bx− 1

4
y
(
4b2 + ω2

)
+ d, ẏ = x+ by + c,

with ω > 0. This differential system has the first integral

H7(x, y) = 4(by + x)2 + 8(cx− dy) + ω2y2.

We consider a second arbitrary linear differential center

(23) ẋ = −Bx− 1

4
y
(
4B2 + Ω2

)
+D, ẏ = x+By + C,

with Ω > 0. This differential system has the first integral

H8(x, y) = 4(By + x)2 + 8(Cx−Dy) + Ω2y2.

In order that the discontinuous piecewise linear differential system formed by the
linear differential centers (22)–(23), separated by some irreducible cubic curve
ck(x, y) = 0 with k ∈ {1, 2, 3, 4, 5}, has three crossing limit cycles intersecting
the curve ck(x, y) = 0 in two different points (αi, βi) and (γi, δi), for i = 1, 2, 3,
these points must satisfy the system of equations

(24)

H7(α, β) = H7(γ, δ),
H8(α, β) = H8(γ, δ),
ck(α, β) = 0,
ck(γ, δ) = 0.
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From the fact that the points (α1, β1) and (γ1, δ1) satisfy system (24), we can
obtain the following values for the parameters d and D:

d =
4α2

1 + 4b2β2
1 − 4b2δ21 + 8α1bβ1 − 8bγ1δ1 + β2

1ω
2 + 8α1c− 8cγ1 − 4γ21 − δ21ω2

8(β1 − δ1)
,

and we get the same expression for D by changing (b, c, ω) in the expression of d
by (B,C,Ω).

Now since the points (α2, β2) and (γ2, δ2) also satisfy the system (24) we get the
following values for the parameters c and C:

c =
−1

8(−α1β2 + α1δ2 + α2β1 − α2δ1 − β1γ2 + β2γ1 − γ1δ2 + γ2δ1)

(−4α2
1β2 + 4α2

1δ2 + 4α2
2β1 − 4α2

2δ1 − 4b2β2
1β2 + 4b2β2

1δ2 + 4b2β1β
2
2

−4b2β1δ
2
2 − 4b2β2

2δ1 + 4b2β2δ
2
1 − 4b2δ21δ2 + 4b2δ1δ

2
2 − 8α1bβ1β2

+8α1bβ1δ2 + 8α2bβ1β2 − 8α2bβ2δ1 − 8bβ1γ2δ2 + 8bβ2γ1δ1

−8bγ1δ1δ2 + 8bγ2δ1δ2 − β2
1β2ω

2 + β2
1δ2ω

2 + β1β
2
2ω

2 − 4β1γ
2
2

−β1δ22ω2 − β2
2δ1ω

2 + 4β2γ
2
1 + β2δ

2
1ω

2 − 4γ21δ2 + 4γ22δ1

d− δ21δ2ω2 + δ1δ
2
2ω

2).

If instead of (ω, b) in the expression of c we replace them by (Ω, B), then we get
the expression of C.

The last step is to use that (α3, β3) and (γ3, δ3) satisfy system (24), then we
obtain the expressions of ω2 = G/H and Ω2, where

G = −4(b2β3α2β
2
1 − b2δ3α2β

2
1 − b2β2α3β

2
1 + b2δ2α3β

2
1 − b2β3γ2β2

1

+b2δ3γ2β
2
1 + b2β2γ3β

2
1 − b2δ2γ3β2

1 − a2α2α
2
3β1 − 2abδ2α3γ2β1

+a2α2γ
2
3β1 − a2γ2γ23β1 − b2β2

3α2β1 + b2δ23α2β1 + 2abβ3α1α2β1
−2abδ3α1α2β1 + b2β2

2α3β1 − b2δ22α3β1 + a2α2
2α3β1 − 2abβ2α1α3β1

+2abδ2α1α3β1 + 2abβ2α2α3β1 − 2abβ3α2α3β1 + b2β2
3γ2β1 − b2δ23γ2β1

+a2α2
3γ2β1 − 2abβ3α1γ2β1 + 2abδ3α1γ2β1 + 2abβ3α3γ2β1 − a2α3γ

2
2β1

−b2β2
2γ3β1 + b2δ22γ3β1 − a2α2

2γ3β1 + a2γ22γ3β1 + 2abβ2α1γ3β1
−2abδ2α1γ3β1 − 2abβ2α2γ3β1 + 2abδ3α2γ3β1 + 2abδ2γ2γ3β1
−a2β3α1α

2
2 + a2δ3α1α

2
2 + a2β2α1α

2
3 − a2δ2α1α

2
3 + a2δ1α2α

2
3

−a2β3α2γ
2
1 + a2δ3α2γ

2
1 + a2β2α3γ

2
1 − a2δ2α3γ

2
1 + 2abβ2δ3α1α2

−a2δ3α1γ
2
2 + a2δ1α3γ

2
2 − a2β3γ1γ22 + a2δ3γ1γ

2
2 − a2β2α1γ

2
3 + a2β3α1γ

2
2
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+a2δ2α1γ
2
3 − a2δ1α2γ

2
3 + a2β2γ1γ

2
3 − a2δ2γ1γ23 + a2δ1γ2γ

2
3 + 2abβ2δ1α3γ1

+b2β2β
2
3α1 + b2β3δ

2
2α1 − b2β2δ23α1 + b2δ2δ

2
3α1 − 2abδ3γ2γ3β1

−b2β2
3δ2α1 + b2β2

2δ3α1 − b2δ22δ3α1 − b2β3δ21α2 − b2δ1δ23α2 − b2β2
2β3α1

+a2β3α
2
1α2 − a2δ3α2

1α2 + b2β2
3δ1α2 + b2δ21δ3α2 − 2abβ2β3α1α2

+b2β2δ
2
1α3 + b2δ1δ

2
2α3 − a2β2α2

1α3 + a2δ2α
2
1α3 − a2δ1α2

2α3 − a2δ3α2
2γ1

−b2β2
2δ1α3 − b2δ21δ2α3 + 2abβ2β3α1α3 − 2abβ3δ2α1α3 − 2abβ2δ1α2α3

−b2β2β2
3γ1 − b2β3δ22γ1 + b2β2δ

2
3γ1 − b2δ2δ23γ1 + a2β3α

2
2γ1 + 2abβ3δ1α2α3

−a2β2α2
3γ1 + a2δ2α

2
3γ1 + b2β2

2β3γ1 + b2β2
3δ2γ1 − b2β2

2δ3γ1 + b2δ22δ3γ1
+2abβ2β3α2γ1 − 2abβ3δ1α2γ1 − 2abβ2δ3α2γ1 + 2abδ1δ3α2γ1 − 2abβ2β3α3γ1
+2abβ3δ2α3γ1 − 2abδ1δ2α3γ1 + b2β3δ

2
1γ2 + b2δ1δ

2
3γ2 − a2β3α2

1γ2 + a2δ3α
2
1γ2

−a2δ1α2
3γ2 + a2β3γ

2
1γ2 − a2δ3γ21γ2 − b2β2

3δ1γ2 − b2δ21δ3γ2 + 2abβ3δ2α1γ2
−2abδ2δ3α1γ2 − 2abβ3δ1α3γ2 + 2abδ1δ2α3γ2 + 2abβ3δ1γ1γ2 − 2abβ3δ2γ1γ2
+2abδ2δ3γ1γ2 − b2β2δ21γ3 − b2δ1δ22γ3 + a2β2α

2
1γ3 − a2δ2α2

1γ3 + a2δ1α
2
2γ3

−a2β2γ21γ3 + a2δ2γ
2
1γ3 − a2δ1γ22γ3 + b2β2

2δ1γ3 + b2δ21δ2γ3 − 2abβ2δ3α1γ3
+2abδ2δ3α1γ3 + 2abβ2δ1α2γ3 − 2abδ1δ3α2γ3 − 2abβ2δ1γ1γ3 + 2abδ1δ2γ1γ3
+2abβ2δ3γ1γ3 − 2abδ2δ3γ1γ3 − 2abδ1δ2γ2γ3 + 2abδ1δ3γ2γ3 − 2abδ1δ3γ1γ2)

and

H = −α3β
2
1β2 + γ3β

2
1β2 + α2β

2
1β3 − γ2β2

1β3 + α3β
2
1δ2 − γ3β2

1δ2 − α2β
2
1δ3

+γ3β1δ
2
2 + γ2β

2
1δ3 + α3β1β

2
2 − γ3β1β2

2 − α2β1β
2
3 + γ2β1β

2
3 − α3β1δ

2
2

+α2β1δ
2
3 − γ2β1δ23 − α1β

2
2β3 + γ1β

2
2β3 − α3β

2
2δ1 + γ3β

2
2δ1 + α1β

2
2δ3

−γ1β2
2δ3 + α1β2β

2
3 − γ1β2β2

3 + α3β2δ
2
1 − γ3β2δ21 − α1β2δ

2
3 + γ1β2δ

2
3

−γ2β2
3δ1 − α1β

2
3δ2 + γ1β

2
3δ2 − α2β3δ

2
1 + γ2β3δ

2
1 + α1β3δ

2
2 + α2β

2
3δ1

−γ1β3δ22 − α3δ
2
1δ2 + γ3δ

2
1δ2 + α2δ

2
1δ3 − γ2δ21δ3 + α3δ1δ

2
2 − γ3δ1δ22

−α2δ1δ
2
3 + γ2δ1δ

2
3 − α1δ

2
2δ3 + γ1δ

2
2δ3 + α1δ2δ

2
3 − γ1δ2δ23 .

Again we get Ω2 to changing b by B in the expression of ω2.

Substituting the obtained values of d, c and ω into the first integral H7(x, y) it
takes the form

H7(x, y) = f(x, y, α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3)
+bg(x, y, α1, α2, α3, β1, β2, β3, γ1, γ2, γ3, δ1, δ2, δ3).

The expression of the first integral H8(x, y) is the same than the expression of
H7(x, y) changing b by B.

Now assume that we have a fourth limit cycle which intersect the cubic in the
points (α4, β4) and (γ4, δ4). Then we must have

(25) H7(α4, β4) = H7(γ4, δ4), and H8(α4, β4) = H8(γ4, δ4).

From the expressions of H7, H8 and the equations (25) it follows that b = B, and
consequently the first integrals H7 and H8 are equal. Then the two linear centers
defining the piecewise linear differential system are the same, and consequently the
system is linear and has no limit cycles in contradiction, that we are assuming that
it has four limit cycles. So the piecewise linear differential systems here studied
have at most three limit cycles. �

3. Proof of Theorem 3

This section is dedicated to prove statements (b), (c) and (d) of Theorem 3.
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Figure 18. The unique limit cycle of the discontinuous piecewise lin-
ear differential system (26)–(27).

Figure 19. The unique limit cycle of the discontinuous piecewise lin-
ear differential system (29)–(30).

Figure 20. The unique limit cycle of the discontinuous piecewise lin-
ear differential system (31)–(32).

Proof of statement (b) of Theorem 3. First we prove the existence of three different
configurations of one crossing limit cycle for the class C2.
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Figure 21. The unique limit cycle of the discontinuous piecewise lin-
ear differential system (33)–(34).

Figure 22. The unique limit cycle of the discontinuous piecewise lin-
ear differential system (36)–(37).

Figure 23. The unique limit cycle of the discontinuous piecewise lin-
ear differential system (38)–(39).

For the first possible configuration we consider the linear differential center

(26) ẋ = −x
2
− y

2
+

1

80
(20 +

√
10), ẏ = x+

y

2
− 1

2
,
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in the region c2(x, y) > 0, with its first integral

H1(x, y) = 4x2 + 4x(y − 1) + y(2y − 1√
10
− 2).

In the region c2(x, y) < 0 we consider the linear center

(27) ẋ = x− 2y +

√
5

2
− 1

2
, ẏ = 1 + x− y,

with its first integral

H2(x, y) = −4(2x+
√

10− 1)y + 4x(x+ 2) + 8y2.

For the discontinuous piecewise linear differential system (26)–(27) the unique so-
lution of the system of equations

(28)

Hl(α, β)−Hl(γ, δ) = 0,
Hk(α, β)−Hk(γ, δ) = 0,
β2 − α(α− 1)(α− 3) = 0,
δ2 − γ(γ − 1)(γ − 3) = 0,

when l = 1 and k = 2, is (α, β, γ, δ) = (0, 0, 1/2,
√

5/(2
√

2)). This proves the
uniqueness of the crossing limit cycle. See this configuration in Figure 18.

For the second possible configuration for the class C2 we consider in the region
c2(x, y) > 0 the linear differential center

(29) ẋ =
1

80

(
−20x− 25y + 9

√
10 + 100

)
, ẏ = x+

y

4
− 6,

with its first integral

H1(x, y) = 4
(
x+

y

4

)2
+ 8

((
−18− 20

√
10
)
y

16
√

10
− 6x

)
+ y2.

In the region c2(x, y) < 0 we consider the linear differential center

(30) ẋ =
1

25

(
5x− 26y + 36

√
10− 25

)
, ẏ = x− y

5
,

with its first integral

H2(x, y) = 4
(
x− y

5

)2
+ 4y2 +

(
16
√

10− 1152

5

)
2
√

10
y.

For this case the unique real solution of system (28), when l = 1 and k = 2, is

(α, β, γ, δ) = (3, 0, 5, 2
√

10). Hence the discontinuous piecewise linear differential
system (29)–(30) has a unique crossing limit cycle, see Figure 19.

Finally we prove the statement for the last configuration of the class C2. We
consider the linear differential center

(31) ẋ =
x

5
− 29y

100
− 4

5
, ẏ = x− y

5
+ 1,

in the region c2(x, y) < 0, with its first integral

H1(x, y) = 4(x− y

5
)2 + 8(x+

4y

5
) + y2.
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The second linear differential center is

(32) ẋ = −x− 13y

4
+ 4, ẏ = −2 + x+ y,

in the region c2(x, y) > 0, with its first integral

H2(x, y) = 8(−2x− 4y) + 9y2 + 4(x+ y)2.

Since system (28), when l = 1 and k = 2, has the unique real solution (α, β, γ, δ) =

(4,−2
√

3, 4, 2
√

3), the discontinuous piecewise linear differential system (31)–(32)
has a unique crossing limit cycle, see it in Figure 20.

The piecewise linear differential systems of the class C2 having one crossing limit
cycle can exhibit this limit cycle in three different configurations, see Figures 18,
19 and 20.

In short statement (b) is proved for the class C2.

Now we prove the statement for the first configuration of the class C5. In the
region c5(x, y) < 0 we consider the linear center

(33) ẋ = −x
2
− 5y

4
+

1

136
(770 + 117

√
2), ẏ = x+

y

2
− 1,

which has the first integral

H1(x, y) = 4(x+
y

2
)2 + 8(−x− 1

136
(770 + 117

√
2)y) + 4y2.

In the region c5(x, y) > 0 we consider the linear center

(34) ẋ = −x
4
− 5y

16
+

1

544
(934 + 133

√
2), ẏ = x+

y

4
− 2,

with its first integral

H2(x, y) = 4
(
x+

y

4

)2
+ 8

(
−2x− 1

544

(
934 + 133

√
2
)
y

)
+ y2.

The discontinuous piecewise linear differential system (33)–(34) has exactly one
crossing limit cycle, because the system

(35)

Hl(α, β)−Hl(γ, δ) = 0,
Hk(α, β)−Hk(γ, δ) = 0,
β2 − α2(α+ 1) = 0,
δ2 − γ2(γ + 1) = 0,

when l = 1 and k = 2, has the unique real solution (α, β, γ, δ) = (1,
√

2, 3, 6). This
proves the statement for the first configuration, see Figure 21.

Now we prove the statement for the second configuration of the class C5.

In the region c5(x, y) > 0 we consider the linear differential center

(36) ẋ = −y, ẏ = 1 + x,

with its first integral

H1(x, y) = 4x2 + 8x+ 4y2.

In the region c5(x, y) < 0 we consider the linear differential center

(37) ẋ = −x
4
− 17y

16
− 1

8
, ẏ = x+

y

4
− 1,
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with its first integral

H2(x, y) = 4
(
x+

y

4

)2
+ 8

(y
8
− x
)

+ 4y2.

The discontinuous piecewise linear differential system (36)–(37) has exactly one
crossing limit cycle, because the system of equations (35), when l = 1 and k = 2, has

exactly one real solution (−1/2, 1/(2
√

2),−1/2,−1/(2
√

2)). See this configuration
in Figure 22.

Finally we prove the statement for the last possible configuration for the class
C5. We consider the differential center

(38) ẋ = −3 + x− 5y, ẏ = −4 + x− y,
in the region c5(x, y) > 0, with the first integral

H1(x, y) = 4(x− y)2 + 16y2 + 8(−4x+ 3y).

For the second differential linear center we consider

(39) ẋ = −y, ẏ = x+ 3,

in the region c5(x, y) < 0, with its first integral

H2(x, y) = 24x+ 4x2 + 4y2.

Since the unique intersection point between the three curvesH1(x, y) = 0, H2(x, y) =
0 and c5(x, y) = 0 are the two points (3,−6) and (3, 6), the discontinuous piecewise
linear differential system (38)–(39) has exactly one crossing limit cycle, the one of
Figure 23.

This completes the proof of statement (b) of Theorem 3. �

Figure 24. Two crossing limit cycles of the discontinuous piecewise
linear differential system (40)–(41).

Proof of statement (c) of Theorem 3. First we prove this statement for the six pos-
sible configurations of two crossing limit cycles of the class C2. For the first config-
uration for the class C2, we consider the differential linear center

(40) ẋ =
x

2
− 13y

36
− 2, ẏ = x− y

2
+ 4
√

10− 523

36
,
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Figure 25. Two crossing limit cycles of the discontinuous piecewise
linear differential system (42)–(43).

Figure 26. Two crossing limit cycles of the discontinuous piecewise
linear differential system (44)–(45).

Figure 27. Two crossing limit cycles of the discontinuous piecewise
linear differential system (46)–(47).

in the region c2(x, y) > 0. A first integral of this system is

H3(x, y) = 4x2 + x

(
−4y + 32

√
10− 1046

9

)
+

1

9
y(13y + 144).
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Figure 28. Two crossing limit cycles of the discontinuous piecewise
linear differential system (48)–(49).

Figure 29. Two crossing limit cycles of the discontinuous piecewise
linear differential system (50)–(51).

Figure 30. Two crossing limit cycles of the discontinuous piecewise
linear differential system (52)–(53).

The second linear center is

(41) ẋ = −x− 37y

36
+ 4, ẏ = x+ y − 8

√
10− 1123

36
,
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Figure 31. Two crossing limit cycles of the discontinuous piecewise
linear differential system (54)–(55).

Figure 32. Two crossing limit cycles of the discontinuous piecewise
linear differential system (56)–(57).

Figure 33. Two crossing limit cycles of the discontinuous piecewise
linear differential system (58)–(59).

in the region c2(x, y) < 0. Its first integral is

H4(x, y) = 4x2 + x

(
8y − 64

√
10− 2246

9

)
+

1

9
y(37y − 288).
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Figure 34. Two crossing limit cycles of the discontinuous piecewise
linear differential system (60)–(61).

Figure 35. Two crossing limit cycles of the discontinuous piecewise
linear differential system (62)–(63).

Figure 36 Figure 37

The real solutions of the system of equations (28) when l = 3 and k = 4, for the

discontinuous piecewise linear differential system (40)–(41) are (4,−2
√

3, 4, 2
√

3)

and (5, −2
√

10, 6, 3
√

10), producing the two crossing limit cycles of Figure 24.
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Figure 38 Figure 39

For the second configuration in the class C2 we consider the differential linear
center

(42) ẋ =
x

9
− 85y

324
+

1

45

(
10 +

√
154
)
, ẏ = x− y

9
− 194

405
,

in the region c2(x, y) > 0. Its first integral is

H3(x, y) =
1

405

(
−72

(
5x+

√
154 + 10

)
y + 4x(405x− 388) + 425y2

)
.

The second linear center is

(43) ẋ = −2x− 17y

4
− 2
√

154

5
− 4, ẏ = x+ 2y − 4

25
,

in the region c2(x, y) < 0. Its first integral is

H4(x, y) = 4x2 +
16

5

(
5x+

√
154 + 10

)
y − 32x

25
+ 17y2.

The real solutions of the system of equations (28) when l = 3 and k = 4, for the

discontinuous piecewise linear differential system (42)–(43) are (1/5, 2
√

14/5/5,

4/5, 2
√

11/5/5) and (1/5,−2
√

14/5/5, 4/5,−2
√

11/5/5), given place to the two
crossing limit cycles of Figure 25.

Now we prove the statement for the third configuration. In the region c2(x, y) > 0
we consider the linear differential center

(44)
ẋ =

1

200

(
20x− 52y + 27

√
10− 115

)
,

ẏ = x+
1

40

(
−4y − 3

(
70 +

√
10
))
,

which has the first integral

H3(x, y) = 4x2 − 1

5
x
(

4y + 3
(

70 +
√

10
))

+
1

25
y
(

26y − 27
√

10 + 115
)
.

In the region c2(x, y) < 0 we consider the linear differential center

(45)
ẋ =

−640x− 328y + 243
√

10 + 3680

3200
,

ẏ = x+
y

5
+

3

2
√

10
− 273

64
,
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with its first integral

H4(x, y) = 4x2 + x

(
8y

5
+ 6

√
2

5
− 273

8

)
+

1

400
y
(

164y − 243
√

10− 3680
)
.

The real solutions of the system of equations (28) when l = 3 and k = 4, for the

discontinuous piecewise linear differential system (44)–(45) are (5,−2
√

10, 6, 3
√

10)

and (3, 0, 5, 2
√

10), producing the two crossing limit cycles of Figure 26.

We prove the statement for the forth configuration. In the region c2(x, y) > 0
we consider the linear differential center

(46)

ẋ =
x

6
− 13y

144
+

1

864

(
691
√

10
(√

7− 2
)

+ 288
(
3
√

7− 13
))
,

ẏ = x− y

6
− 4

√
7

5

(
8− 3

√
7
)

+
1

216

(
3103− 1382

√
7
)
,

which has the first integral

H3(x, y) = 4
(
x− y

6

)2
+

1

27

(
3103− 1382

√
7− 864

√
7

5

(
8− 3

√
7
))

x+
y2

4

+
1

108

(
3744− 864

√
7− 691

√
10
(√

7− 2
))
y.

In the region c2(x, y) < 0 we consider the linear differential center

(47)

ẋ =
9x

70
− 977y

22050
+

74387
√

10
(
2 + 3

√
7
)
− 11340

(
157 + 29

√
7
)

44100
(
25 + 8

√
7
) ,

ẏ = x− 9y

70
+

85075− 297548√
7
− 5832

√
35
(
8− 3

√
7
)

9450
,

with its first integral

H4(x, y) = 4

(
x− 9y

70

)2

+

4

(
85075− 297548√

7
− 5832

√
35
(
8− 3

√
7
))

x

4725
+
y2

9

+
2
(
11340

(
157 + 29

√
7
)
− 74387

√
10
(
2 + 3

√
7
))
y

11025
(
25 + 8

√
7
) .

The real solutions of the system of equations (28) when l = 3 and k = 4, are

(5,−2
√

10, 10, 3
√

70) and (3, 0, 8, 2
√

70), therefore the discontinuous piecewise lin-
ear differential system (46)–(47) has the two crossing limit cycles of Figure 27.

For the fifth configuration. In the region c2(x, y) > 0 we consider the linear
differential center

(48)
ẋ =

x

9
− 85y

324
+

1

45

(
10 +

√
154
)
,

ẏ = x− y

9
− 194

405
,

which has the first integral

H3(x, y) = 4
(
x− y

9

)2
− 8

405

(
194x+ 9

(
10 +

√
154
)
y
)

+ y2.
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In the region c2(x, y) < 0 we consider the linear differential center

(49)
ẋ =

1

100

(
−20x− 29y − 4

(
10 +

√
154
))
,

ẏ = x+
y

5
− 298

625
,

with its first integral

H4(x, y) = 4
(
x+

y

5

)2
+

8

625

(
25
(

10 +
√

154
)
y − 298x

)
+ y2.

The real solutions of the system of equations (28) when l = 3 and k = 4, are

(1/5, 2
√

14/5/5, 4/5, 2
√

11/5/5) and (1/5,−2
√

14/5/5, 4/5,−2
√

11/5/5), then the
discontinuous piecewise linear differential system (48)–(49) has the two crossing
limit cycles of Figure 28.

For the sixth configuration we consider the linear differential center

(50)
ẋ =

1

900

(
300x− 181y + 496

√
10− 1500

)
,

ẏ = x− y

3
− 1

2
,

in the region c2(x, y) > 0, this system has the first integral

H3(x, y) = 4x2 − 4

3
x(2y + 3) +

1

225
y
(

181y − 992
√

10 + 3000
)
.

The second linear differential center is

(51)
ẋ =

1

980

(
140x− 265y + 608

√
10− 700

)
,

ẏ = x− y

7
− 1

2
,

in the region c2(x, y) < 0, this system has the following first integral

H4(x, y) = − 8

245

(
35x+ 152

√
10− 175

)
y + 4(x− 1)x+

53y2

49
.

The real solutions of the system of equations (28) when l = 3 and k = 4, are

(3, 0, 5, 2
√

10) and (0, 0, 1, 0), so the discontinuous piecewise linear differential sys-
tem (50)–(51) has the two crossing limit cycles of Figure 29.

The second part of this proof analyze all the possible configurations of two cross-
ing limit cycles of the class C5. For the first configuration we consider the linear
differential center

(52) ẋ =
x

4
− y

8
+

1

3

(√
7− 2

)
, ẏ = x− y

4
+
√

7− 9

2
,

in the region c5(x, y) > 0, with its first integral

H5(x, y) = 4x2 + x
(
−2y + 8

√
7− 36

)
+

1

6
y
(

3y − 16
√

7 + 32
)
.

The second linear differential center is

(53) ẋ =
x

4
− y

8
+

1

3

(√
7− 2

)
, ẏ = x− y

4
+
√

7− 9

2
,
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in the region c5(x, y) < 0, with its first integral

H6(x, y) = −x
6
− 17y

450
+

1

6

(
11 + 2

√
7
)
.

For this case the real solutions of the system of equations (35) when l = 5 and k = 6,
for the discontinuous piecewise linear differential system (52)–(53) are (0, 0, 8, 24)

and (3, 6, 6, 6
√

7). So the discontinuous piecewise linear differential system (52)–
(53) has two crossing limit cycles, see them in Figure 30.

For the second possible configuration we consider the first linear differential
center

(54) ẋ = −x
6
− 85y

144
− 7

30
, ẏ = x+

y

6
+

197

360
,

in the region c5(x, y) > 0, with its first integral

H5(x, y) = 4x2 +
1

45
x(60y + 197) +

1

180
y(425y + 336).

In the region c5(x, y) < 0 we consider the linear differential center

(55) ẋ = x− 17y

16
+

7

5
, ẏ = x− y +

117

200
,

with its first integral

H6(x, y) = 4x2 + x

(
117

25
− 8y

)
+

1

20
y(85y − 224).

The real solutions of the system of equations (35) when l = 5 and k = 6, for the dis-

continuous piecewise linear differential system (54)–(55) are (−1/5, 2/(5
√

5),−4/5, 4/(5
√

5))

and (−1/5,−2/(5
√

5),−4/5,−4/(5
√

5)), producing the two crossing limit cycles of
Figure 31.

For the third possible configuration for the class C5 we consider in the region
c5(x, y) > 0 the linear differential center

(56) ẋ =
x

5
− 29y

100
− 1

5
, ẏ = x− y

5
+ 4
√

6 +
12√

5
− 293

20
,

with its first integral

H5(x, y) = 4x2 +
2

5
x
(
−4y + 80

√
6 + 48

√
5− 293

)
+

1

25
y(29y + 40).

In the region c5(x, y) < 0 we consider the linear differential center

(57) ẋ = −x
8
− 17y

64
+

1

8
, ẏ = x+

1

64

(
8y − 160

√
6− 96

√
5− 883

)
,

with its first integral

H6(x, y) = 4x2 + x

(
y − 20

√
6− 12

√
5− 883

8

)
+

17y2

16
− y.

In this case the real solutions of the system of equations (35) when l = 5 and k = 6,

are (1,−
√

2, 1,
√

2) and (4,−4
√

5, 5, 5
√

6). So the discontinuous piecewise linear
differential system (56)–(57) has the two crossing limit cycles of Figure 32.
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For the fourth possible configuration of the class C5 we consider in the region
c5(x, y) < 0 the linear differential center

(58) ẋ =
1

100
(−10x− 26y − 7), ẏ = x+

1440y + 704
√

6 + 972
√

3 + 4811

14400
,

with its first integral

H5(x, y) =
7200x2 + x(1440y + 704

√
6 + 972

√
3 + 4811) + 144y(13y + 7)

1800
.

In the region c5(x, y) > 0 we consider the linear differential center

(59) ẋ = −x
3
− 37y

9
− 7

30
, ẏ = x+

y

3
+

9
√

3

40
+

22
√

2/3

45
+

2495

2592
,

with its first integral

H6(x, y) = 4x2 + x(
8y

3
+

9
√

3

5
+

176
√

2/3

45
+

2495

324
) +

4

45
y(185y + 21).

In this case the real solutions of the system of equations (35) when l = 5 and k = 6,

are (−7/10, (7/10)
√

3/10, 7/10, (7/10)
√

3/10) and (−1/3, (1/3)
√

2/3,−1/4,−
√

3/8).
So the discontinuous piecewise linear differential system (58)–(59) has the two cross-
ing limit cycles of Figure 33.

For the fifth possible configuration of the class C5 we consider in the region
c5(x, y) < 0 the linear differential center

(60) ẋ = −x
6
− 113y

18
+

1

4
, ẏ = x+

y

6
− 19

5
√

15
− 5

3
√

2
+

4897

3600
,

with its first integral

H5(x, y) = 4x2 − 1

450
x
(
−600y + 912

√
15 + 3000

√
2− 4897

)
+

2

9
y(113y − 9).

In the region c5(x, y) > 0 we consider the linear differential center

(61) ẋ =
x

10
− 401y

100
− 3

20
, ẏ = x− y

10
+

1√
2

+
19

√
3

5
25

+
20629

20000
,

with its first integral

H6(x, y) = 4x2 + x(−4y

5
+ 4
√

2 +
152

√
3

5
25

+
20629

2500
) +

1

25
y(401y + 30).

The real solutions of the system of equations (35) when l = 5 and k = 6, are

(−1/2, 1/(2
√

2), −2/5, (3/2)
√

5/2) and (3/2, (3/2)
√

5/2, 3/2, (−3/2)
√

5/2). So the
discontinuous piecewise linear differential system (60)–(61) has the two crossing
limit cycles of Figure 34.

For the sixth and last possible configuration of the class C5 we consider in the
region c5(x, y) > 0 the linear differential center

(62) ẋ = −x
3
− 10y

9
+

1

3
, ẏ = x+

y

3
+

1

12
(
√

6− 8),
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with its first integral

H5(x, y) = 4x2 +
2

3
x(4y +

√
6− 8) +

8

9
y(5y − 3).

In the region c5(x, y) < 0 we consider the linear differential center

(63) ẋ = −x
6
− 5y

18
+

1

6
, ẏ = x+

y

3
+

1

2
√

6
− 457

1536
,

with its first integral

H6(x, y) = 4x2 + x(
8y

3
+ 2

√
2

3
− 457

192
) +

1

144
y(73y − 384).

The real solutions of the system of equations (35) when l = 5 and k = 6, are

(3, 6, 3,−6) and (0, 0, 1,
√

2). So the discontinuous piecewise linear differential sys-
tem (62)–(63) has the two crossing limit cycles of Figure 35.

This completes the proof of statement (c) of Theorem 3. �

Figure 40. Three limit cycles of the discontinuous piecewise linear
differential system (64)–(65).

Figure 41. Three limit cycles of the discontinuous piecewise linear
differential system (66)–(67).
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Proof of statement (d) of Theorem 3. First we prove the statement for the class C2.
For this class we consider the linear differential center
(64)

ẋ =
x

5
+

1

180
(10− 28

√
6− 5

√
10− 20

√
15)y +

1

36
(−12 + 2

√
6 + 6

√
10 +

√
15),

ẏ = x− y

5
−
√

6

5
− 2,

in the region c2(x, y) > 0. This differential system has the first integral

H7(x, y) = −−8x((
√

15− 2
√

6)y + 3(
√

10− 4))− 4y(
√

10y + y − 10
√

15 + 15
√

6)

5
√

39− 12
√

10

12
√

39− 12
√

10(x− 4)x+ y(2
√

15y − 3
√

6y − 6)

6
√

6− 3
√

15
.

The other linear differential center is
(65)

ẋ = x+
1

36
(2− 28

√
6−
√

10− 20
√

15)y +
1

36
(−60 + 2

√
6 + 30

√
10 +

√
15),

ẏ = x− y −
√

6− 2,

in the region c2(x, y) < 0. It has the first integral

H8(x, y) = −−8x((
√

15− 2
√

6)y + 3(
√

10− 4))− 4y(
√

10y + y − 10
√

15 + 15
√

6)√
39− 12

√
10

+
12
√

39− 12
√

10(x− 4)x+ y(2
√

15y − 3
√

6y − 6)

6
√

6− 3
√

15
.

This discontinuous piecewise differential system formed by the linear differential
centers (64)–(65) has exactly three crossing limit cycles, because the real solutions

of the system (28) when l = 7 and k = 8, are (2, 0, 3,
√

6), (3,−
√

6, 4, 2
√

6) and

(4,−2
√

6, 5, 2
√

15). See Figure 40.

Second we prove the statement for the class C5. For this class we consider the
linear differential center

(66)

ẋ =
x

6
− 37y

36
+

1

24
,

ẏ = x− y

6
+

4697 + 1056
√

5 + 378
√

30

7200
,

in the region c5(x, y) > 0. This differential system has the first integral

H7(x, y) = 4
(
x− y

6

)2
+ 8

((
4697 + 1056

√
5 + 378

√
30
)
x

7200
− y

24

)
+ 4y2.

The other linear differential center is

(67)

ẋ = −x
6
− 5y

18
− 1

24
,

ẏ = x+
y

6
+

2605− 528
√

5− 189
√

30

3600
,
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in the region c5(x, y) < 0. It has the first integral

H8(x, y) =
1

450

(
1800x2 + x

(
600y − 189

√
30− 528

√
5 + 2605

)
+ 50y(10y + 3)

)
.

This discontinuous piecewise differential system formed by the linear differential
centers (66)–(67) has exactly three crossing limit cycles, because the real solu-

tions of the system (35) when l = 7 and k = 8, are (−1/4,
√

3/8,−1/4,−
√

3/8),

(−4/5, 4/(5
√

5),−7/10, (−7/10)
√

3/10) and

(−0.9063569280622145544995606620..,−0.2773556931549898416488535525..,
−0.9742505235096835971802596877.., 0.1563345074809235486186539264..).

See Figure 41. �
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