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THE CENTERS AND THEIR CYCLICITY FOR A CLASS OF

POLYNOMIAL DIFFERENTIAL SYSTEMS OF DEGREE 7

REBIHA BENTERKI1 AND JAUME LLIBRE2

Abstract. We classify the global phase portraits in the Poincaré disc of the
generalized Kukles systems

ẋ = −y, ẏ = x+ axy6 + bx3y4 + cx5y2 + dx7,

which are symmetric with respect to both axes of coordinates. Moreover using
the averaging theory up to sixth order, we study the cyclicity of the center
located at the origin of coordinates, i.e. how many limit cycles can bifurcate
from the origin of coordinates of the previous differential system when we
perturb it inside the class of all polynomial differential systems of degree 7.

1. Introduction and statement of the main results

Two classical and difficult problems of the qualitative theory of planar polyno-
mial differential systems are the characterization of their centers, and the study
of their cyclicity, i.e. how many limit cycles can bifurcate from a center when we
perturb it inside a given class of polynomial differential systems. Of course, this
kind of bifurcation is called in the literature a Hopf bifurcation.

In this work we deal with planar polynomial differential systems of the form

(1) ẋ = −y, ẏ = x + Qn(x, y),

having a center at the origin, being Qn(x, y) a homogeneous polynomial of degree
n. As usual the dot in system (1) denotes derivative with respect an independent
variable t usually called the time. Systems of this form were called by Giné [5]
Kukles homogeneous systems.

In 1999 Volokitin and Ivanov [16] conjectured that the systems (1) have a center
at the origin if and only if they are symmetric with respect to one of the coordinate
axes. For n = 2 and n = 3, the authors of the conjecture knew that it holds. Giné
[5] in 2002 proved the conjecture for n = 4 and n = 5. Giné et al. [6, 7] proved the
conjecture for all n under an additional assumption, that the authors believe that
it is redundant.

In this work we consider the class of polynomial differential systems (1) for n = 7
which are symmetric with respect to both coordinate axes, i.e.

(2) ẋ = −y, ẏ = x + axy6 + bx3y4 + cx5y2 + dx7.
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We note that if we look for the systems (1) which are symmetric with respect to
one of the coordinate axes, we obtain that they are symmetric with respect to both
coordinate axes.

The first main objective of this work is to classify the phase portraits of the
polynomial differential systems (2) in the Poincaré disc. For more details on the
Poincaré disc see for instance the Chapter 5 of [4].

The phase portraits of the centers of systems (1) with n = 2, are known because
are known the phase portraits of all the center of quadratic polynomial differential
systems, see Vulpe [17]. The phase portraits of cubic polynomial differential systems
with a symmetry with respect to a straight line are also known and in particular
those of system (1) with n = 3, see Buzzi et al. [3], see also Malkin [13]; Vulpe

Sibirskii [18] and Żo�la̧dek [19, 20]. The phase portraits of systems (1) with n = 4
follows from Benterki and Llibre [2] and Llibre and Salhi [9]. In Llibre and Silva
[10, 11] classified the phase portraits of the systems (1) with n = 5, 6.

In order to present the classification of the phase portraits of systems (2) we
write the homogeneous polynomial axy6 + bx3y4 + cx5y2 + dx7 of degree 7 which
appears in system (2) into the form

p(x, y) = x(dx6 + cx4y2 + bx2y4 + ay6) = x(dX3 + cX2Y + bXY 2 + aY 3),

where X = x2 and Y = y2. Then, according with the different kind of roots
of the polynomial dX3 + cX2Y + bXY 2 + aY 3 we can consider the following 62
cases for the polynomial p(x, y). For the next 14 cases the polynomial p(x, y) is
ax(y2 − r1x

2)(y2 − r2x
2)(y2 − r3x

2) with
(1) a > 0 and 0 < r1 < r2 < r3,
(2) a > 0 and r1 = 0 < r2 < r3,
(3) a > 0 and r1 < 0 < r2 < r3,
(4) a > 0 and r1 < r2 = 0 < r3,
(5) a > 0 and r1 < r2 < 0 < r3,
(6) a > 0 and r1 < r2 < r3 = 0,
(7) a > 0 and r1 < r2 < r3 < 0,
(8) a < 0 and 0 < r1 < r2 < r3,
(9) a < 0 and r1 = 0 < r2 < r3,
(10) a < 0 and r1 < 0 < r2 < r3,
(11) a < 0 and r1 < r2 = 0 < r3,
(12) a < 0 and r1 < r2 < 0 < r3,
(13) a < 0 and r1 < r2 < r3 = 0,
(14) a < 0 and r1 < r2 < r3 < 0.
For the next 10 cases the polynomial p(x, y) is ax(y2 − r1x

2)(y2 − r2x
2)2 with

(15) a > 0 and 0 < r1 < r2,
(16) a > 0 and r1 = 0 < r2,
(17) a > 0 and r1 < 0 < r2,
(18) a > 0 and r1 < r2 = 0,
(19) a > 0 and r1 < r2 < 0,
(20) a < 0 and 0 < r1 < r2,
(21) a < 0 and r1 = 0 < r2,
(22) a < 0 and r1 < 0 < r2,
(23) a < 0 and r1 < r2 = 0,
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(24) a < 0 and r1 < r2 < 0.
For the next 6 cases the polynomial p(x, y) is ax(y2 − r1x

2)3 with
(25) a > 0 and 0 < r1,
(26) a > 0 and r1 = 0,
(27) a > 0 and r1 < 0,
(28) a < 0 and 0 < r1,
(29) a < 0 and r1 = 0,
(30) a < 0 and r1 < 0.
For the next 6 cases the polynomial p(x, y) is ax(y2−r1x

2)(y4−2αx2y2+(α2+β2)x4)
with
(31) a > 0 and 0 < r1,
(32) a > 0 and r1 = 0,
(33) a > 0 and r1 < 0,
(34) a < 0 and 0 < r1,
(35) a < 0 and r1 = 0,
(36) a < 0 and r1 < 0.
For the next 10 cases the polynomial p(x, y) is bx3(y2 − r1x

2)(y2 − r2x
2) with

(37) b > 0 and 0 < r1 < r2,
(38) b > 0 and r1 = 0 < r2,
(39) b > 0 and r1 < 0 < r2,
(40) b > 0 and r1 < r2 = 0,
(41) b > 0 and r1 < r2 < 0,
(42) b < 0 and 0 < r1 < r2,
(43) b < 0 and r1 = 0 < r2,
(44) b < 0 and r1 < 0 < r2,
(45) b < 0 and r1 < r2 = 0,
(46) b < 0 and r1 < r2 < 0.
For the next 6 cases the polynomial p(x, y) is bx3(y2 − r1x

2)2 with
(47) b > 0 and 0 < r1,
(48) b > 0 and r1 = 0,
(49) b > 0 and r1 < 0,
(50) b < 0 and 0 < r1,
(51) b < 0 and r1 = 0,
(52) b < 0 and r1 < 0.
For the next 2 cases the polynomial p(x, y) is bx3(y4 − 2αx2y2 + (α2 + β2)x4) with
(53) b > 0,
(54) b < 0.
For the next 6 cases the polynomial p(x, y) is cx5(y2 − r1x

2) with
(55) c > 0 and 0 < r1,
(56) c > 0 and r1 = 0,
(57) c > 0 and r1 < 0,
(58) c < 0 and 0 < r1,
(59) c < 0 and r1 = 0,
(60) c < 0 and r1 < 0.
For the next 2 cases the polynomial p(x, y) is dx7 with
(61) d > 0,
(62) d < 0.
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For a definition of topological equivalence between two phase portraits in the
Poincaré disc see subsections 2.1 and 2.2.

Theorem 1. The polynomial differential systems (2) have 25 topologically non–
equivalent phase portraits in the Poincaré disc. More precisely, the phase portrait
in the Poincaré disc of Figure

1 is realizable by the case (1);
2 is realizable by the case (2);
3 is realizable by the cases (3) and (37);
4 is realizable by the case (4);
5 is realizable by the cases (5) and (39);
6 is realizable by the cases (6), (18), (26), (32) and (40);
7 is realizable by the cases (7), (19), (27), (33), (41), (49) and (53);
8 is realizable by the case (8);
9 is realizable by the case (9);

10 is realizable by the cases (10) and (42);
11 is realizable by the cases (11) and (43);
12 is realizable by the cases (12), (28), (34), (44), (50) and (58);
13 is realizable by the cases (13), (23), (29), (35), (45), (51) and (59);
14 is realizable by the cases (14), (24), (30), (36), (46), (52), (54), (60) and

(62);
15 is realizable by the case (15);
16 is realizable by the case (16);
17 is realizable by the case (17);
18 is realizable by the case (20);
19 is realizable by the case (21);
20 is realizable by the case (22);
21 is realizable by the cases (25) and (31);
22 is realizable by the case (38);
23 is realizable by the cases (47) and (55);
24 is realizable by the cases (48) and (56);
25 is realizable by the cases (57) and (61).

Figure 1 Figure 2 Figure 3

Theorem 1 is proved in section 3.

The averaging theory described in subsection 2.3 allows to study analytically
the existence of limit cycles of a non–autonomous differential system, by study-
ing the simple zeros of the averaged function fk = fk(r). Here we shall use the
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Figure 4 Figure 5 Figure 6

Figure 7 Figure 8 Figure 9

Figure 10 Figure 11 Figure 12

Figure 13 Figure 14 Figure 15

averaging theory up to sixth order for studying the number of limit cycles which
can bifurcate from the center of system (2) when we perturb it inside the class of
all polynomial differential systems of degree 7. More precisely, we deal with the
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Figure 16 Figure 17 Figure 18

Figure 19 Figure 20 Figure 21

Figure 22 Figure 23 Figure 24

Figure 25

polynomial differential systems

(3)

ẋ = −y +

6∑
s=1

εs
∑

0≤i+j≤7

asijx
iyj ,

ẏ = x + axy6 + bx3y4 + cx5y2 + dx7 +

6∑
s=1

εs
∑

0≤i+j≤7

bsijx
iyj ,

where asij and bsij are real parameters, for 0 ≤ i, j ≤ 7 and 1 ≤ s ≤ 6.
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Theorem 2. For |ε| �= 0 sufficiently small the maximum number of small amplitude
limit cycles of the differential system (3) bifurcating from the periodic solutions of
the center (2) is

(a) 0 if the first order average function f1 is non-zero,
(b) 0 if f1 = 0 and the second order average function f2 is non-zero,
(c) 1 if f1 = f2 = 0 and the third order average function f3 is non-zero,
(d) 1 if f1 = f2 = f3 = 0 and the fourth order average function f4 is non-zero,
(e) 2 if f1 = f2 = f3 = f4 = 0 and the fifth order average function f5 is

non-zero,
(f) 2 if f1 = f2 = f3 = f4 = f5 = 0 and the sixth order average function f6 is

non-zero.

Moreover, assume that fj = 0 for j = 1, . . . , k−1 and fk �= 0. Then if r is a simple
zero of fk, the small amplitude limit cycle (x(t, ε), y(t, ε)) associated to this zero is
of the form (x(t, ε), y(t, ε)) = ε(r cos t, r sin t) + O(ε2).

Theorem 2 is proved in section 4.

2. Preliminaries and basic results

In this section we present some basic results and notations which are necessary
for proving our results.

2.1. Poincaré compactification. Let X = (−y, x+axy6+bx3y4+cx5y2+dy7) be
the planar polynomial vector field associated to system (2). We define the Poincaré
compactified vector field p(X) associated to X as follows (see all the details for
instance [11] or Chapter 5 of [4]).

The Poincaré sphere is defined as S
2 = {y = (y1, y2, y3) ∈ R

3 : y21 + y22 + y23 = 1}
and its tangent space at the point y ∈ S

2 is denoted by TyS
2. We identify the plane

R
2 where we have our vector field X with the plane T(0,0,1)S

2. We define the central

projection f : T(0,0,1)S
2 −→ S

2 as follows: to each point q ∈ T(0,0,1)S
2 the central

projection associates the two intersection points of the straight line which connects
the points q and (0, 0, 0) with the sphere S

2. This central projection gives two
copies of X in S

2, one in each hemisphere. Let X ′ be the vector field Df ◦X , which
is defined in S

2 minus its equator S
1 = {y ∈ S

2 : y3 = 0}. The equator S
1 can be

identified with the infinity of R2. We extend the vector field X ′ on S
2\S1 to a vector

field p(X) on S
2 as follows: p(X) is the unique analytic extension of y73X ′ to S

2. In
summary, we have two symmetric copies of X on S

2\S1, and studying the dynamics
of p(X) near S1, we have the dynamics of X at infinity. The Poincaré disc, denoted
by D

2, is the closed northern hemisphere of {y ∈ S
2 : y3 ≥ 0} projected on y3 = 0

under the projection (y1, y2, y3) �→ (y1, y2).

The infinity S
1 is invariant under the flow of the Poincaré compactifcation p(X).

Here two polynomial vector fields X and Y associated to systems (1) are topo-
logically equivalent if there is a homeomorphism on S

2 preserving the infinity S
1

carrying orbits of the flow of p(X) into orbits of the flow of p(Y ), either reversing
or preserving the sense of all orbits.
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For computing the analytic expression of p(X) we use the fact that S
2 is a

differentiable manifold. Thus we take the six local charts Ui = {y2 ∈ S
2 : yi > 0},

and Vi = {y2 ∈ S
2 : yi < 0} for i = 1, 2, 3; and the associated diffeomorphisms

Fi : Ui −→ R
2 and Gi : Vi −→ R

2 for i = 1, 2, 3 are respectively the inverses of
the central projections from the planes tangent at the points (1, 0, 0); (−1, 0, 0);
(0, 1, 0); (0,−1, 0); (0, 0, 1) and (0, 0,−1). The value of Fi(y) or Gi(y) for some
i = 1, 2, 3 is denoted by z = (z1, z2), consequently according to the local charts
under consideration the same letter z represents different coordinates.

After a rescaling in the independent variable in the local chart (U1, F1) the
expression for p(X) is

u̇ = vn
[
−uP

(
1

v
,
u

v

)
+ Q

(
1

v
,
u

v

)]
, v̇ = −vn+1P

(
1

v
,
u

v

)
;

in the local chart (U2, F2) the expression for p(X) is

u̇ = vn
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
v̇ = −vn+1Q

(
u

v
,

1

v

)
;

and for the local chart (U3, F3) the expression for p(X) is

u̇ = P (u, v), v̇ = Q(u, v).

In the chart (Vi, Gi) the expression for p(X) is the same than in the chart (Ui, Fi)
multiplied by (−1)6 for i = 1, 2, 3. We note that the points at the infinity S

1 in any
chart have coordinates (u, v) = (u, 0).

The equilibrium points of p(X) which come from the equilibrium points of X
are called finite equilibrium points of X , and the equilibrium points of p(X) which
are in S

1 are called infinite equilibrium points of X .

We observe that the unique infinite equilibrium points which cannot be contained
in the charts U1 ∪ V1 are the origins of the local charts U2 and V2. Therefore when
we study the infinite equilibrium points on the charts U2 ∪ V2, we only need to
verify if the origin of these charts are equilibrium points.

2.2. Topological equivalence. Two polynomial vector fields X and Y on R
2 are

topologically equivalent if there is a homeomorphism on the Poincaré sphere S
2

preserving the infinity S
1 carrying trajectories of the flow of p(X) into trajectories

of the flow of p(Y ), either preserving or reversing the sense of all trajectories.

Here a separatrix of the Poincaré compactification p(X) is a trajectory which is
either an equilibrium point, or a limit cycle, or a trajectory which belongs to the
boundary of a hyperbolic sector at an equilibrium point, finite or infinity, or any
trajectory contained at the infinity S

1. We denote by S(p(X)) the set formed by
all separatrices of p(X). It is known that the set S(p(X)) is closed, see for instance
Neumann [14].

A canonical region of p(X) is an open connected component of S
2 \ S(p(X)).

The union of S(p(X)) plus one trajectory chosen from each canonical region is
the separatrix configuration of p(X). Two separatrix configurations S(p(X)) and
S(p(Y )) are equivalent if there is a homeomorphism in S

2 preserving the infinity S
1

carrying trajectories of S(p(X)) into trajectories of S(p(Y )), either preserving or
reversing the sense of all orbits.
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Markus [12], Neumann [14] and Peixoto [15] characterized the topologically
equivalence between two Poincaré compactified vector fields as follows.

Theorem 3. Assume that two Poincaré compactified polynomial vector fields p(X)
and p(Y ) have finitely many separatrices. Then their separatrix configurations are
equivalent if and only if S(p(X)) and S(p(Y )) are topologically equivalent.

Theorem 3 says that essentially we need to determine the α– and the ω–limit
sets of all the separatrices of p(X) for obtaining the phase portrait of a Poincaré
compactified polynomial vector field p(X) with finitely many separatrices.

2.3. The averaging theory up to order 6. In this subsection we present some
results on the averaging theory that we shall need for studying the limit cycles
which bifurcate from the center localized at the origin of coordinates of the systems
(2), when they are perturbed inside the class of all polynomial differential systems
of degree 7.

We deal with a non–autonomous differential system

(4) ẋ(t) =

k∑
i=0

εiFi(t, x) + εk+1R(t, x, ε),

where the functions Fi : R×D → R for i = 0, 1, · · · , k and R : R×D×(−ε0, ε0) → R

are T -periodic in the first variable and continuous functions, D is an open interval
of R, and ε a small parameter. Following the results of [8] we define the functions
yj(t, z) for j = 1, 2, 3, 4, 5 related to system (13) as

y1(t, z) =

∫ t

0

F1(s, z)ds,

y2(t, z) =

∫ t

0

(
2F2(s, z) + 2∂F1(s, z)y1(s, z)

)
ds,

y3(t, z) =

∫ t

0

(
6F3(s, z) + 6∂F2(s, z)y1(t, z)

+3∂2F1(s, z)y1(s, z)2 + 3∂F1(s, z) y2(s, z)
)
ds,

y4(t, z) =

∫ t

0

(
24F4(s, z) + 24∂F3(s, z)y1(s, z)

+12∂2F2(s, z)y1(s, z)2 + 12∂F2(s, z)y2(s, z)
+12∂2F1(s, z)y1(s, z)y2(s, z)

+4∂3F1(s, z)y1(s, z)3 + 4∂F1(s, z)y3(s, z)
)
ds,

y5(t, z) =

∫ t

0

(
120F5(s, z) + 120∂F4(s, z)y1(s, z)

+60∂2F3(s, z)y1(s, z)2 + 60∂F3(s, z)y2(s, z)
+60∂2F2(s, z)y1(s, z)y2(s, z) + 20∂3F2(s, z)y1(s, z)3

+20∂F2(s, z)y3(s, z) + 20∂2F1(s, z)y1(s, z)y3(s, z)
+15∂2F1(s, z)y2(s, z)2 + 30∂3F1(s, z)y1(s, z)2y2(s, z)

+5∂4F1(s, z)y1(s, z)4 + 5∂F1(s, z)y4(s, z)
)
ds,
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where the k–th partial derivative of the function F�(s, z) with respect to the variable
z has been denoted by ∂kF�(s, z). From [8] the functions averaged functions fj(z)
for j = 1, . . . , 6 are

f1(z) =

∫ T

0

F1(t, z)dt,

f2(z) =

∫ T

0

(
F2(t, z) + ∂F1(t, z)y1(t, z)

)
dt,

f3(z) =

∫ T

0

(
F3(t, z) + ∂F2(t, z)y1(t, z)

+
1

2
∂2F1(t, z)y1(t, z)2 +

1

2
∂F1(t, z)y2(t, z)

)
dt,

f4(z) =

∫ T

0

(
F4(t, z) + ∂F3(t, z)y1(t, z)

+
1

2
∂2F2(t, z)y1(t, z)2 +

1

2
∂F2(t, z)y2(t, z)

+
1

2
∂2F1(t, z)y1(t, z)y2(t, z)dt +

1

6
∂3F1(t, z)y1(t, z)3

+
1

6
∂F1(t, z)y3(t, z)

)
dt,

f5(z) =

∫ T

0

(
F5(t, z) + ∂F4(t, z)y1(t, z) +

1

2
∂2F3(t, z)y1(t, z)2

+
1

2
∂F3(t, z)y2(t, z) +

1

2
∂2F2(t, z)y1(t, z)y2(t, z)

+
1

6
∂3F2(t, z)y1(t, z)3 +

1

6
∂F2(t, z)y3(t, z)

+
1

6
∂2F1(t, z)y1(t, z)y3(t, z) +

1

8
∂2F1(t, z)y2(t, z)2

+
1

4
∂3F1(t, z)y1(t, z)2y2(t, z) +

1

24
∂4F1(t, z)y1(t, z)4

+
1

24
∂F1(t, z)y4(t, z)

)
dt,

f6(z) =

∫ T

0

(
F6(t, z) + ∂F5(t, z)y1(t, z) +

1

2
∂F4(t, z)y2(t, z)

+
1

2
∂2F4(t, z)y1(t, z)2 +

1

6
∂F3(t, z)y3(t, z)

+
1

2
∂2F3(t, z)y1(t, z)y2(t, z) +

1

6
∂3F3(t, z)y1(t, z)3

+
1

24
∂F2(t, z)y4(t, z) +

1

6
∂2F2(t, z)y1(t, z)y3(t, z)

+
1

4
∂3F2(t, z)y1(t, z)2y2(t, z) +

1

8
∂2F2(t, z)y2(t, z)2

+
1

24
∂4F2(t, z)y1(t, z)4 +

1

120
∂F1(t, z)y5(t, z)
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+
1

24
∂2F1(t, z)y1(t, z)y4(t, z) +

1

12
∂2F1(t, z)y2(t, z)y3(t, z)

+
1

12
∂3F1(t, z)y1(t, z)2y3(t, z) +

1

12
∂4F2(t, z)y1(t, z)3y2(t, z)

+
1

8
∂3F1(t, z)y1(t, z)y2(t, z)2 +

1

120
∂5F1(t, z)y1(t, z)5

)
dt.

The averaging theory for studying the periodic solutions of a non–autonomous
differential system (13) works as follows, see [8] for more details. Suppose that the
average functions fj(z) = 0 for j = 1, . . . , k − 1 and fk(z) �= 0 for some k ≥ 1, we
assume that f0(z) = 0. By [8] if z is a simple zero of fk(z), then there is a limit
cycle r(θ, ε) of system (13) such that r(0, ε) = z + O(ε).

3. Phase portraits in the Poincaré disc

Now we shall study the phase portraits of the Poincaré compactified polynomial
differential systems (2) with (a, b, c, d) �= (0, 0, 0, 0).

Remark 4. The polynomial differential systems (2) are reversible because they
remain the same under the transformations (x, y, t) → (x,−y,−t) and (x, y, t) →
(−x, y,−t). Therefore their phase portraits are symmetric with respect to the x–axis
and y–axis.

We shall study the phase portrait of a polynomial differential system (2) in the
Poincaré disc as follows. First we shall determine the local phase portrait at all
its finite and infinite equilibrium points. After with the help of the symmetries of
its trajectories with respect to both coordinate axes, we shall determine its phase
portrait in the Poincaré disc.

Here we classify an equilibrium point p as hyperbolic when the eigenvalues of the
linear part of system (2) at p have nonzero real part, as semi–hyperbolic when only
one of these two eigenvalues is zero, as nilpotent when both eigenvalues are zero
but the linear part of system (2) at p is not identically zero, and finally as linearly
zero when the linear part of system (2) at p is identically zero.

The local phase portraits of the hyperbolic, semi–hyperbolic and nilpotent equi-
librium points can be determined using, for instance the Theorems 2.15, 2.19 and
3.5 of the book [4]. In order to determine the local phase portrait of a nilpotent
equilibrium point at infinity it is not sufficient the mentioned Theorem 3.5, and we
must studied it doing the changes of variables called blow–ups. These changes of
variables are also necessary for analyze the local phase portraits of the linearly zero
equilibrium points. For more information about the blow ups see Chapter 3 of [4]
or [1].

3.1. Finite equilibrium points. For a planar polynomial differential system (2)
its finite equilibrium points are characterized in the following result.

Proposition 5. Always the origin of the polynomial differential system (2) is a
center. Furthermore if d < 0 then there are two additional equilibrium points,
namely (±|d|−1/6, 0), which are hyperbolic saddles.
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Proof. Since the eigenvalues of the linear part of system (2) at the origin are ±i
such equilibrium point is either a focus or a center, but due to the fact that the
system is symmetric with respect to both coordinate axes, it is a center.

Clearly when d < 0 the system has the two equilibria (±|d|−1/6, 0), and the

eigenvalues of the linear part at these equilibria are ±√
6. So these equilibria are

hyperbolic, and by Theorem 2.15 of [4] they are saddles. �

3.2. Infinite equilibrium points. We shall use the notations and definitions
given in subsection 2.2, for determining the local phase portraits at the infinite
equilibrium points in the Poincaré disc.

System (2) in the local chart U1. The differential system (2) in the local
chart U1 is

(5) u̇ = d + cu2 + bu4 + au6 + v6 + u2v6, v̇ = uv7.

An infinite equilibrium point of system (5) is a point (u0, 0) such that u0 is a
real root of the polynomial d+ cu2 + bu4 + au6. So the infinite equilibria of system
(2) are (±√

rj , 0) when rj > 0, where the rj ’s are the ones which appear in the
polynomials of the cases (1) to (62) described in section 1.

The Jacobian matrix of system (5) evaluated at (±√
rj , 0) is

(
±(

2cr
1/2
1 − 4br

3/2
1 + 6ar

5/2
1

)
0

0 0

)
.

Then all infinite equilibria of differential system (5) are semi–hyperbolic or linearly
zero.

In the next proposition we only provide the local phase portrait of the infinite
equilibrium point (

√
rj , 0) with rj ≥ 0, because due to the symmetry (x, y, t) →

(x,−y,−t) of system (2) with respect to x–axis the local phase portrait at the
infinite equilibrium point (−√

rj , 0) is the same than at the equilibrium (
√
rj , 0)

after reversing the sense of the trajectories.

Proposition 6. The local phase portraits at the infinite equilibrium points (
√
rj , 0)

with rj ≥ 0 of the local chart U1 ordered from the smallest value of rj to the biggest
one are formed by

(a) a semi–hyperbolic unstable node, a semi–hyperbolic saddle and a semi–
hyperbolic unstable node in case (1);

(b) a linearly zero at the origin of coordinates with two hyperbolic sectors, a
semi–hyperbolic saddle and a semi–hyperbolic unstable node in case (2);

(c) a semi–hyperbolic saddle and a semi–hyperbolic unstable node in cases (3)
and (37);

(d) a linearly zero with six hyperbolic sectors (the infinity line separates them
in two groups of three sectors) at the origin of coordinates and a semi–
hyperbolic unstable node in cases (4) and (38);

(e) a semi–hyperbolic unstable node in cases (5), (39), (47) and (55);
(f) a linearly zero at the origin of coordinates with two hyperbolic sectors in

cases (6), (18), (26), (32), (40), (48) and (56);



CENTERS AND THEIR CYCLICITY 13

(g) no infinite equilibria in the local chart U1 in cases (7), (14), (24), (27),
(30), (33), (36), (41), (46), (49), (52)–(54), (57), (60)–(62);

(h) a semi–hyperbolic saddle, a semi–hyperbolic unstable node and a semi–
hyperbolic saddle in case (8);

(i) a linearly zero with six hyperbolic sectors (the infinity line separates them in
two groups of three sectors) at the origin of coordinates, a semi–hyperbolic
unstable node and a semi–hyperbolic saddle in case (9);

(j) a semi–hyperbolic unstable node and a semi–hyperbolic saddle in cases (10)
and (42);

(k) a linearly zero at the origin of coordinates with two hyperbolic sectors and
a semi–hyperbolic saddle in cases (11) and (43);

(l) a semi–hyperbolic saddle in cases (12), (28), (34), (44), (50) and (58);
(m) a linearly zero at the origin of coordinates with six hyperbolic sectors (the

infinity line separates them in two groups of three sectors) in cases (13),
(23), (29), (35), (45), (51) and (59);

(n) a semi–hyperbolic unstable node and a linearly zero with two hyperbolic
sectors in case (15);

(o) two linearly zero with two hyperbolic sectors, one of this equilibria is located
at the origin of coordinates, in case (16);

(p) a linearly zero with two hyperbolic sectors in case (17);
(q) a semi–hyperbolic saddle and a linearly zero with two hyperbolic sectors and

one parabolic sector, the straight line at infinity separates the two hyperbolic
sectors and divides the parabolic one in case (20);

(r) a linearly zero with six hyperbolic sectors (the infinity line separates them
in two groups of three sectors) at the origin of coordinates, and a linearly
zero with two adjacent hyperbolic sectors separated and with a parabolic
sector, the infinite line separates the two hyperbolic sectors and divides the
parabolic one in case (21);

(s) a linearly zero saddle–node, the infinite line separates the two hyperbolic
sectors and divides the parabolic one in case (22);

(t) a linearly zero unstable node in cases (25) and (31);

Proof. As we have mention near the beginning of this section the phase portraits of
the semi–hyperbolic equilibrium can be determined using the Theorem 2.19 of [4],
and the phase portraits of the linearly zero equilibrium points doing the blow–up
changes of variables. Here we shall prove with all details the statements (a) and
(b), the other statements are proved in a similar way.

In statements (a) and (b) system (1) writes as

(6) ẋ = −y; ẏ = x + ax(y2 − r1x
2)(y2 − r2x

2)(y2 − r3x
2),

with a > 0. This system in the local chart U1 becomes

(7)

u̇ = −ar1r2r3 + a(r1r2 + r1r3 + r2r3)u2

−a(r1 + r2 + r3)u4 + au6 + v6 + u2v6,

v̇ = uv7.

Assume a > 0 and 0 < r1 < r2 < r3. Then the eigenvalues at the infinite

equilibrium point (
√
rj , 0) for j = 1, 2, 3 are 0 and a

(
2r

1/2
j (r1r2 + r1r3 + r2r3) −
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4r
3/2
j (r1+r2+r3)+6r

5/2
j

)
= h′(√rj) �= 0, because the six roots ±√

rj for j = 1, 2, 3

of the polynomial h(u) = u̇|v=0 = −ar1r2r3 + a(r1r2 + r1r3 + r2r3)u2 − a(r1 + r2 +
r3)u4 + au6 are simple. Moreover h′(

√
r1) > 0, h′(

√
r2) < 0 and h′(

√
r3) > 0.

Hence the points (
√
rj , 0) for j = 1, 2, 3 are semi–hyperbolic equilibria.

In what follows we shall apply Theorem 2.19 of [4] for determining the local
phase portraits of the infinite equilibria (

√
rj , 0) for j = 1, 2, 3, and we shall use the

notation of that theorem. First we translate the equilibrium point (
√
rj , 0) to the

origin of coordinates doing the change (u, v) = (Y +
√
rj , X). Thus we obtain the

differential system

(8)
Ẋ = A(X,Y ) = sign(h′(√rj))

(√
rjX

7 + X7Y
)
,

Ẏ = sign(h′(√rj))
(
h′(√rj)Y + B(X,Y )

)
,

where

B(X,Y ) = a(r1r2 + r1r3 + r2r3 − 6r1rj − 6r2rj − 6r3rj + 15r2j )Y 2

−4a(r1 + r2 + r3 − 5rj)
√
rjY

3 − a(r1 + r2 + r3 − 15rj)Y
4

+6a
√
rjY

5 + aY 6 + (1 + rj)X
6 + 2

√
rjY X6 + Y 2X6.

If h′(√rj) < 0 we have changed the sign of the independent variable in the differen-

tial system (8) in order that the coefficient of Y in the expression of Ẏ be positive
as it is necessary in order to apply Theorem 2.19. Now the functions f(X) and
g(X) of that theorem are

f(X) = − 1 + rj
h′(√rj)

X6 + h.o.t.,

g(X) = sign(h′(√rj))
√
rjX

7 + h.o.t.,

where h.o.t. denotes higher order terms. So using the notation of Theorem 2.19 we
have that am = sign(h′(√rj))

√
rj and m = 7. Consequently, by Theorem 2.19 the

equilibria (
√
rj , 0) for j = 1, 3 are unstable nodes, and the equilibrium (

√
r2, 0) is a

saddle. This completes the proof of statement (a).

Assume a > 0 and r1 = 0 < r2 < r3. The proof that the equilibria (
√
r2, 0)

and (
√
r3, 0) are a semi–hyperbolic saddle and a semi–hyperbolic unstable node

respectively, is identical to the proof of statement (a). So in order to complete the
proof of statement (b) we shall show that the local phase portrait of the equilibrium
(
√
r1, 0) = (0, 0) is formed by two hyperbolic sectors.

We do the blow–up change of variables v = wu to system (7) and it becomes

(9)
u̇ = ar2r3u

2 − a(r2 + r3)u4 + au6 + u6w6 + u8w6,

ẇ = −ar2r3uw + ar2u
3w + ar3u

3w − au5w − u5w7.

Now we remove the common factor u of u̇ and ẇ doing to system (9) the rescaling
dτ = udt in the independent variable, we get the differential system

(10)
u′ = ar2r3u− a(r2 + r3)u3 + au5 + u5w6 + u7w6,

w′ = −ar2r3w + ar2u
2w + ar3u

2w − au4w − u4w7,

where the prime denotes derivative with respect to the new independent variable τ .
The unique equilibrium on the w–axis of system (10) is the origin of coordinates,
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which is a saddle whose four separatrices are contained in the two axes. Going back
through the two changes of variables, first the change dτ = udt and after the change
v = wu, and taking into account that in system (7) we have that u̇|u=0 = v6, we
obtain that the local phase portrait at the origin of system (7) is formed by two
hyperbolic sectors. This completes the proof of statement (b). �

System (2) in the local chart U2. The differential system (2) in the local
chart U1 is

u̇ = −au2 − bu4 − cu6 − du8 − v6 − u2v6,
v̇ = −auv − bu3v − cu5v − du7v − uv7.

Therefore the origin (0, 0) always is an infinite equilibrium point, which is linearly
zero. Recall that from subsection 2.1 in this local chart the unique infinite equilib-
rium point that we must study is its origin when it is an equilibrium point, as in
the present case.

Proposition 7. The local phase portrait at the origin of the local chart U2 is formed
by a linearly zero equilibrium point with

(a) two hyperbolic sectors separated by two parabolic sectors and the line of the
infinity is contained into the two parabolic sectors in cases (1)–(7), (15)–
(19), (25)–(27), (31)–(33), (37)–(41) and (53);

(b) two elliptic sectors separated by the infinity in cases (8)–(13), (20)–(23),
(28)–(29), (34)–(35), (42)–(45), (50), (51), (58) and (59);

(c) two elliptic sectors separated by two parabolic sectors and the line of the
infinity is contained into the two parabolic sectors in cases (14), (24), (30),
(36), (46), (52), (54), (60) and (62).

(d) two hyperbolic sectors in cases (47)–(49), (55)–(57) and (61).

Proof. We shall prove statement (a) in the case (1). Statement (a) in the other
cases, and the other statements are proved in a similar way.

In the case (1) system (1) becomes system (6). This last system in the local
chart U2 writes as

(11)

u̇ = −au2 + a(r1 + r2 + r3)u4 − a(r1r2 + r1r3 + r2r3)u6

+ar1r2r3u
8 − v6 − u2v6,

v̇ = −auv + a(r1 + r2 + r3)u3v − a(r1r2 + r1r3 + r2r3)u5v
+ar1r2r3u

7v − uv7.

This system doing the blow–up change of variables v = wu becomes

(12)

u̇ = −au2 + a(r1 + r2 + r3)u4 − a(r1r2 + r1r3 + r2r3)u6

+ar1r2r3u
8 − u6w6 − u8w6,

ẇ = u5w7.

We eliminate the common factor u2 of u̇ and ẇ in system (12) doing the rescaling
of the independent variable dτ = u2dt, and we obtain the differential system

u̇ = −a + a(r1 + r2 + r3)u2 − a(r1r2 + r1r3 + r2r3)u4

+ar1r2r3u
6 − u4w6 − u6w6,

ẇ = u3w7.
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This last system has no equilibria on the w–axis and on it we have that u̇|u=0 =
−a < 0. Then going back through the two changes of variables, first dτ = u2dt and
second v = wu, and taking into account that in system (11) we have u̇|u=0 = −v6,
we obtain that the local phase portrait at the origin of system (11) is formed by
two hyperbolic sectors whose separatrices are tangent to the w–axis, one in v > 0
and the other in v < 0, separated by two parabolic sectors which contain locally
the invariant u–axis, i.e. the infinite line. This completes the proof of case (1) of
statement (a). �

We note that in the proof of statement (b) doing blow–ups changes of variables
we only obtain that the local phase portrait is formed by two elliptic sectors sepa-
rated by two parabolic sectors and the line of the infinity is contained into the two
parabolic sectors, but that when we shall consider the global phase portrait in the
Poincaré disc these two local parabolic sectors are contained in two global elliptic
sectors, for this reason in statement (b) we only said two elliptic sectors instead of
two elliptic sectors separated by two parabolic sectors and the line of the infinity is
contained into the two parabolic sectors.

Proof of Theorem 1. This proof follows taking into account the local phase portraits
of the finite and infinite equilibria described in Propositions 5, 6 and 7, and taking
into account first Theorem 3 (i.e. that for obtaining the global phase portrait
in the Poincaré disc we essentially must determine the α– and ω–limit of all the
separatrices of the system) and after that the global phase portrait of a system (2)
is symmetric with respect both coordinate axes. �

4. Proof of Theorem 2

For studying the limit cycles which bifurcate in a Hopf bifurcation from the
center of the differential system (2) when it is perturbed inside the class of all
polynomial differential systems of degree 7, see (3), we work as follows. First doing
the scaling x = εX, y = εY we introduce a small parameter ε. Thus we obtain
the differential system (Ẋ, Ẏ ). Now performing the polar change of coordinates

X = r cos θ, Y = r sin θ, the differential system (Ẋ, Ẏ ) written in polar coordinates

becomes a differential system (ṙ, θ̇). Taking as independent variable the angle θ the

differential system (ṙ, θ̇) produces the differential equation dr/dθ. Finally doing a
Taylor expansion in the variable r at r = 0 and truncating at 6–th order in ε we
obtain the differential equation

(13) r′ =
dr

dθ
=

6∑
i=0

εiFi(θ, r) + O(ε7).

The functions Fi(θ, r) i = 1, . . . , 6 of the differential system (13) are analytic, and
since the independent variable θ appears through the sinus and cosinus of θ, they are
2π–periodic. Hence the assumptions for applying the averaging theory described in
subsection 2.3 are satisfied.

Now we shall study the limit cycles bifurcating from the center of system (2)
when it is perturbed as in (3) following the steps described in subsection 2.3. We
give only the expressions of functions F1(r, θ) and F2(r, θ). The explicit expressions
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of Fi(r, θ) for i = 3, . . . , 6 are very long, therefore we shall omit them here. Thus
we have

F1(r, θ) = a200 cos θ + b200 sin θ +
1

2
r(b101 + a110 − b101 cos 2θ + a110 cos 2θ

+b110 sin 2θ + a101 sin 2θ).

and

F2(r, θ) =
1

r
(a200 cos θ + a110r cos2 θ + b200 sin θ + b110r cos θ sin θ + a101r cos θ sin θ

+b101r sin2 θ)(−b200 cos θ − b110r cos2 θ + a200 sin θ − b101r cos θ sin θ

+a101r sin2 θ) + (a300 cos θ + a210r cos2 θ + a120r
2 cos3 θ + b300 sin θ

+a201r cos θ sin θ + b120r
2 cos2 θ sin θ + a111r

2 cos2 θ sin θ + b201r sin2 θ

+b111r
2 cos θ sin2 θ + a102r

2 cos θ sin2 θ + b102r
2 sin3 θ + a110r cos θ sin θ

+b210r cos θ sin θ).

Using the formulas given in subsection 2.3 the averaged function of first order is

f1(r) = (b101 + a110)r.

Since the polynomial f1(r) = 0 has no positive roots, the first average function does
not give any information on the limit cycles that bifurcate from the center when
we perturb it as in system (3). This proves statement (a).

Taking b101 = −a110, we obtain f1(r) ≡ 0. Therefore we can apply the averaging
theory of second order. Thus the averaged function of second order is

f2(r) = (b201 + a210)r.

Again the second averaged function does not provide information on the bifurcating
limit cycles. This completes the proof of statement (b).

Now taking b201 = −a210 we get f2(r) ≡ 0, and applying the averaging theory of
third order, we obtain the third averaged function

f3(r) = −(b111b
2
00−b301+2b200a

1
20−2b102a

2
00−a111a

2
00−a310)r+

1

4
(3b103+b121+a112+3a130)r

3.

Since the polynomial f3(r) can have at most one positive real root, statement (c)
of the theorem is proved.

For applying the averaging theory of fourth order we must have f3(r) ≡ 0, so we
take

a310 = b111b
2
00 − b301 + 2b200a

1
20 − 2b102a

2
00 − a111a

2
00, a112 = −3b103 − b121 − 3a130.
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The averaged function of fourth order is

f4(r) = −1

4
r3(b102b

1
11 + b111b

1
20 + b110b

1
21 − 3b203 − b221 + b121a

1
01 − 2b102a

1
02

−2b112a
1
10 − a102a

1
11 + 2b120a

1
20 − a111a

1
20 − 2a110a

1
21 + 3b110a

1
30

+3a101a
1
30 − a212 − 3a230) − r(−b110b

1
11b

2
00 + b200b

2
11 + b111b

3
00

−b401 + 2b102b
2
00a

1
10 + b200a

1
10a

1
11 − 2b110b

2
00a

1
20 + 2b300a

1
20

−2b102a
1
01a

2
00 − b111a

1
10a

2
00 − a101a

1
11a

2
00 − 2a110a

1
20a

2
00 − a200a

2
11

−2b202a
2
00 + 2b200a

2
20 − 2b102a

3
00 − a111a

3
00 − a410).

From the expression of the polynomial f4(r) we get that it has at most one positive
real root. Hence statement (d) of the theorem is proved. Doing

a410 = −b110b
1
11b

2
00 + b200b

2
11 + b111b

3
00 − b401 + 2b102b

2
00a

1
10 + b200a

1
10a

1
11

+2b300a
1
20 − 2b202a

2
00 − 2b102a

1
01a

2
00 − b111a

1
10a

2
00 − a101a

1
11a

2
00

−a200a
2
11 + 2b200a

2
20 − 2b102a

3
00 − a111a

3
00 − 2b110b

2
00a

1
20 − 2a110a

1
20a

2
00.

a212 = b102b
1
11 + b111b

1
20 + b110b

1
21 − 3b203 − b221 + b121a

1
01 − 2b102a

1
02 − 3a230

−2b112a
1
10 − a102a

1
11 + 2b120a

1
20 − a111a

1
20 − 2a110a

1
21 + 3a101a

1
30

+3b110a
1
30,
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we have that f4(r) ≡ 0, and we can apply the averaging theory of order five, and
the fifth averaged function is f5(r) = K3r

5 + K2r
3 + K1r, where

K1 = −((b110)2b111b
2
00 − b121(b200)2 − b111b

2
00b

2
10 − b110b

2
00b

2
11 − b110b

1
11b

3
00 + b211b

3
00

+b200b
3
11 + b111b

4
00 − 2b102b

1
10b

2
00a

1
10 + 2b200b

2
02a

1
10 + 2b102b

3
00a

1
10

+2b102b
2
00a

1
01a

1
10 + b111b

2
00(a110)2 − b110b

2
00a

1
10a

1
11 + b300a

1
10a

1
11

+b200a
1
01a

1
10a

1
11 + 2(b110)2b200a

1
20 − 2b200b

2
10a

1
20 − 2b110b

3
00a

1
20 + 2b400a

1
20

+2b200(a
1
10)2a120 − 3(b200)2a130 + 2b112b

2
00a

2
00 − 2b302a

2
00 − 2b202a

1
01a

2
00

−2b102(a
1
01)2a200 + b110b

1
11a

1
10a

2
00 − b211a

1
10a

2
00 − b111a

1
01a

1
10a

2
00 − a211a

3
00

−(a101)2a111a
2
00 − (a110)2a111a

2
00 + 2b110a

1
10a

1
20a

2
00 − 2a101a

1
10a

1
20a

2
00

+b121(a
2
00)2 + 3a130(a

2
00)2 − 2b102a

2
00a

2
01 − a111a

2
00a

2
01 + 2b102b

2
00a

2
10

−b111a
2
00a

2
10 − 2a120a

2
00a

2
10 + b200a

1
10a

2
11 − a101a

2
00a

2
11 − 2b110b

2
00a

2
20

+2b300a
2
20 − 2a110a

2
00a

2
20 − 2b202a

3
00 − 2b102a

1
01a

3
00 − b111a

1
10a

3
00 − a101a

1
11a

3
00

−a200a
3
11 + 2b200a

3
20 − a510 − 2b102a

4
00 − a111a

4
00 − b501 + b200a

1
11a

2
10

−2b102(a
1
10)2a200 − 2a110a

1
20a

3
00 + 2b200a

1
21a

2
00),

K2 =
−1

4
(−b102b

1
10b

1
11 − 2b110b

1
11b

1
20 − (b110)2b121 + b111b

2
02 + b121b

2
10 + b102b

2
11

+b120b
2
11 + b111b

2
20 + b110b

2
21 − 3b303 − b321 − b111b

1
20a

1
01 − b110b

1
21a

1
01

−2b202a
1
02 − 2b102a

1
01a

1
02 + 2(b102)

2a110 + (b111)2a110 + 2b110b
1
12a

1
10

−2b212a
1
10 − b111a

1
02a

1
10 − a101a

1
02a

1
11 − b102a

1
10a

1
11 + b120a

1
10a

1
11

−4b110b
1
20a

1
20 + 2b220a

1
20 − 2b120a

1
01a

1
20 + b111a

1
10a

1
20 − 2a102a

1
10a

1
20

+b110a
1
11a

1
20 − 2a110(a120)2 + 2b110a

1
10a

1
21 + 2b200a

1
22 − 3(b110)2a130

+3b210a
1
30 − 3b110a

1
01a

1
30 + 12b200a

1
40 − 12b104a

2
00 − 2b122a

2
00 + b121a

2
01

3a130a
2
01 − 2b102a

2
02 − a111a

2
02 − 2b112a

2
10 − 2a121a

2
10 − a102a

2
11

−a120a
2
11 + 2b120a

2
20 − a111a

2
20 − 2a110a

2
21 + 3b110a

2
30 − a110(a111)2

3a101a
2
30 − a312 − 3a330 + b221a

1
01 + 2b102b

1
20a

1
10),

K3 =
1

8
(5b105 + b123 + a132 + 5a150).

The rank of the Jacobian matrix of the function K = (K1,K2,K3) with respect
to the coefficient asij and bsij which appear in their expressions is maximal, i.e. it
is 3. Then the coefficients Ki for i = 1, 2, 3 which appear in th expression of f5(r)
are linearly independent. By the roots of a quadratic polynomial in the variable r2

it follows that f5(r) can have at most two positive real roots. Therefore statement
(e) of the theorem is proved.

Imposing that K1 = 0, K2 = 0 and K3 = 0 we obtain that f5(r) ≡ 0, and
applying the averaging theory of order six we obtain the sixth average function
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f6(r) = r(C1 + C2r
2 + C3r

4), where

C1 =
1

2
(2(b110)3b111b

2
00 − 4b102b

1
11(b200)2 − 2b111b

1
20(b200)2 − 4b110b

1
21(b200)2 − 4b110b

1
11b

2
00b

2
10

−2(b110)2b200b
2
11 + 2b200b

2
10b

2
11 + 2(b200)

2b221 − 2(b110)2b111b
3
00 + 4b121b

2
00b

3
00

+2b110b
2
11b

3
00 + 4b102b

2
00b

3
01 + 2b111b

2
00b

3
10 + 2b110b

2
00b

3
11 − 2b300b

3
11 + 2b110b

1
11b

4
00

−2b200e11 + 2b601 − 4b102(b
1
10)2b200a

1
10 + 4(b112)2a110 + 4b110b

2
00b

2
02a

1
10 + 2b111b

2
10b

3
00

+4b102b
2
00b

2
10a

1
10 + 4b102b

1
10b

3
00a

1
10 − 4b202b

3
00a

1
10 − 4b200b

3
02a

1
10 − 4b102b

4
00a

1
10

+4b102b
1
10b

2
00a

1
01a

1
10 − 4b200b

2
02a

1
01a

1
10 − 4b102b

3
00a

1
01a

1
10 − 4b102b

2
00(a

1
01)2a110

+4b110b
1
11b

2
00(a110)2 − 2b200b

2
11(a110)2 − 2b111b

3
00(a110)2 − 2b111b

2
00a

1
01(a110)2 − 2b211b

4
00

−4b102b
2
00(a110)3 − 2b111(b

2
00)2a111 + 2b200b

3
01a

1
11 − 2(b110)2b200a

1
10a

1
11 + 2b200b

2
10a

1
10a

1
11

+2b110b
3
00a

1
10a

1
11 − 2b400a

1
10a

1
11 + 2b110b

2
00a

1
01a

1
10a

1
11 − 2b300a

1
01a

1
10a

1
11 − 4b120(b

2
00)2a120

−2b200(a
1
01)2a110a

1
11 − 2b200(a110)3a111 + 4(b110)

3b200a
1
20 − 4b102(b

2
00)2a120 + 4(b200)

2a110a
1
21

−8b110b
2
00b

2
10a

1
20 − 4(b110)2b300a

1
20 + 4b210b

3
00a

1
20 + 4b200b

3
10a

1
20 + 4b110b

4
00a

1
20

+8b110b
2
00(a110)2a120 − 4b300(a110)2a120 − 4b200a

1
01(a110)2a120 − 2(b200)2a111a

1
20

−12b110(b
2
00)2a130 + 12b200b

3
00a

1
30 + 8(b102)2b200a

2
00 + 2(b111)2b200a

2
00 + 4b110b

1
12b

2
00a

2
00

−4b200b
2
12a

2
00 − 4b112b

3
00a

2
00 − 2b111b

3
01a

2
00 + 4b402a

2
00 − 4b112b

2
00a

1
01a

2
00 + 4b302a

1
01a

2
00

+4b202(a
1
01)2a200 + 4b102(a101)3a200 + 2(b110)2b111a

1
10a

2
00 − 2b111b

2
10a

1
10a

2
00

−2b110b
2
11a

1
10a

2
00 + 2b311a

1
10a

2
00 − 2b110b

1
11a

1
01a

1
10a

2
00 + 2b211a

1
01a

1
10a

2
00

+2b111(a
1
01)2a110a

2
00 − 4b102b

1
10(a110)2a200 + 4b202(a

1
10)2a200 + 8b102a

1
01(a110)2a200

+2b111(a
1
10)3a200 + 4b102b

2
00a

1
11a

2
00 + 2(a101)3a111a

2
00 − 2b110(a

1
10)2a111a

2
00

+4b111b
2
00a

1
20a

2
00 − 4b301a

1
20a

2
00 + 4(b110)

2a110a
1
20a

2
00 − 4b210a

1
10a

1
20a

2
00

−4b110a
1
01a

1
10a

1
20a

2
00 + 4(a101)2a110a

1
20a

2
00 + 4(a110)3a120a

2
00 + 4b110b

2
00a

1
21a

2
00

−4b300a
1
21a

2
00 − 4b200a

1
01a

1
21a

2
00 + 2b111(b

1
20a

2
00)2 + 2b110b

1
21(a200)2 − 2b221(a

2
00)2

−2b121a
1
01(a200)2 − 4b102a

1
20(a200)2 + 4b120a

1
20(a200)2 − 2a111a

1
20(a200)2 + 6b110a

1
30(a200)2

−6a101a
1
30(a200)2 − 4b102b

2
00a

1
10a

2
01 − 2b200a

1
10a

1
11a

2
01 + 4b202a

2
00a

2
01 + 8b102a

1
01a

2
00a

2
01

+2b111a
1
10a

2
00a

2
01 + 4a101a

1
11a

2
00a

2
01 + 4a110a

1
20a

2
00a

2
01 + 4b102b

1
10b

2
00a

2
10 + 4b110b

3
00a

2
20

−4b200b
2
02a

2
10 − 4b102b

3
00a

2
10 − 4b102b

2
00a

1
01a

2
10 − 4b111b

2
00a

1
10a

2
10 + 4b102(a

1
01)2a300

+2b110b
2
00a

1
11a

2
10 − 2b300a

1
11a

2
10 − 2b200a

1
01a

1
11a

2
10 − 8b200a

1
10a

1
20a

2
10 − 2b110b

1
11a

2
00a

2
10

+2b211a
2
00a

2
10 + 2b111a

1
01a

2
00a

2
10 + 8b102a

1
10a

2
00a

2
10 + 4a110a

1
11a

2
00a

2
10 − 4b110a

1
20a

2
00a

2
10

+4a101a
1
20a

2
00a

2
10 + 2b110b

2
00a

1
10a

2
11 − 2b300a

1
10a

2
11 − 2b200a

1
01a

1
10a

2
11 + 2(a101)2a200a

2
11

+2(a110)2a200a
2
11 + 2a200a

2
01a

2
11 − 2b200a

2
10a

2
11 − 4(b110)2b200a

2
20 + 4b200b

2
10a

2
20

−4b400a
2
20 − 4b200(a110)2a220 − 4b110a

1
10a

2
00a

2
20 + 4a101a

1
10a

2
00a

2
20 + 4a200a

2
10a

2
20

−4b200a
2
00a

2
21 + 6(b200)2a230 − 6(a200)2a230 − 4b112b

2
00a

3
00 + 4b302a

3
00 + 4b202a

1
01a

3
00

−2b110b
1
11a

1
10a

3
00 + 2b211a

1
10a

3
00 + 2b111a

1
01a

1
10a

3
00 + 4b102(a110)2a300 + 2(a101)2a111a

3
00
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+2(a110)2a111a
3
00 − 4b110a

1
10a

1
20a

3
00 + 4a101a

1
10a

1
20a

3
00 − 4b200a

1
21a

3
00 − 4b121a

2
00a

3
00

−12a130a
2
00a

3
00 + 4b102a

2
01a

3
00 + 2a111a

2
01a

3
00 + 2b111a

2
10a

3
00 + 4a120a

2
10a

3
00

+2a101a
2
11a

3
00 + 4a110a

2
20a

3
00 + 4b102a

2
00a

3
01 + 2a111a

2
00a

3
01 − 2b200a

1
10a

3
11 + 2a111a

5
00

+2a101a
2
00a

3
11 + 2a300a

3
11 + 4b110b

2
00a

3
20 − 4b300a

3
20 + 4a110a

2
00a

3
20 + 4b102a

5
00

+2a610 + 4b2002a400 + 4b102a
1
01a

4
00 + 2b111a

1
10a

4
00 + 2a101a

1
11a

4
00 + 4a110a

1
20a

4
00

+2a200v11 − 4b200v20 − 2b111b
5
00 − 4a120b

5
00 + 4a101(a

1
10)2a111a

2
00 + 2a211a

4
00).

C2 =
1

8
(−2b102(b

1
10)2b111 − 6(b110)2b111b

1
20 − 2(b110)3b121 + 12b102b

1
03b

2
00 + 6b111b

1
12b

2
00

+8b102b
1
21b

2
00 + 8b120b

1
21b

2
00 + 6b111b

1
30b

2
00 + 2b110b

1
11b

2
002 + 2b102b

1
11b

2
10

+4b111b
1
20b

2
10 + 4b110b

1
21b

2
10 + 2b102b

1
10b

2
11 + 4b110b

1
20b

2
11 − 2b2002b

2
11

+4b110b
1
11b

2
20 − 2b211b

2
20 + 2(b110)2b221 − 2b210b

2
21 − 4b112b

3
01 − 2b111b

3
02

−2b121b
3
10 − 2b102b

3
11 − 2b120b

3
11 − 2b111b

3
20 − 2b110b

3
21 + 6b403 + 2b421

−4b110b
1
11b

1
20a

1
01 − 2(b110)2b121a

1
01 + 2b121b

2
10a

1
01 + 2b120b

2
11a

1
01 + 4b302a

1
02

+4b102a
1
01a

1
02 + 4b102(a101)2a102 + 4(b102)

2b110a
1
10 + 4b110(b

1
11)2a110 + 2a412

+4(b110)2b112a
1
10 + 8b102b

1
10b

1
20a

1
10 − 24b104b

2
00a

1
10 − 12b122b

2
00a

1
10 − 2b321a

1
01

−8b102b
1
02a

1
10 − 4b120b

1
02a

1
10 − 4b112b

2
10a

1
10 − 4b111b

2
11a

1
10 − 4b110b

2
12a

1
10

−4b102b
2
20a

1
10 + 4b312a

1
10 − 4(b102)2a101a

1
10 − 2b110b

1
11a

1
02a

1
10 + 2b111b

2
20a

1
01

+2b211a
1
02a

1
10 + 2b111a

1
01a

1
02a

1
10 − 6b102b

1
11(a110)2 − 2b111b

1
20(a110)2 − 4b112b

2
00a

1
02

+4b102a
1
02(a110)2 + 6b103b

2
00a

1
11 + 4b121b

2
00a

1
11 + 2(a101)2a102a

1
11 + 2b110b

2
21a

1
01

−2b102b
1
10a

1
10a

1
11 + 4b110b

1
20a

1
10a

1
11 + 2b102a

1
10a

1
11 − 2b220a

1
10a

1
11 + 2b102a

1
01a

1
10a

1
11

+2a102(a110)2a111 − 2b110a
1
10(a111)2 + 2a101a

1
10(a111)2 − 12(b110)

2b120a
1
20

+12b130b
2
00a

1
20 + 8b120b

2
10a

1
20 + 8b110b

2
20a

1
20 − 4b320a

1
20 − 8b110b

1
20a

1
01a

1
20

+4b220a
1
01a

1
20 + 4b110b

1
11a

1
10a

1
20 − 2b211a

1
10a

1
20 − 4b110a

1
02a

1
10a

1
20 − 4b110b

1
22a

2
00

+4a101a
1
02a

1
10a

1
20 − 4b120(a

1
10)2a120 + 2(b110)2a111a

1
20 − 2b210a

1
11a

1
20

+6(a110)2a111a
1
20 − 8b110a

1
10(a120)2 + 4b111b

2
00a

1
21 − 4b301a

1
21 − 4b200a

1
02a

1
21

+4(b110)2a110a
1
21 − 4b210a

1
10a

1
21 − 4b200a

1
20a

1
21 + 4b110b

2
00a

1
22 − 4b300a

1
22

−6(b110)3a130 + 12b102b
2
00a

1
30 + 24b120b

2
00a

1
30 + 12b110b

2
10a

1
30 − 6b310a

1
30

−6(b110)2a101a
1
30 + 6b210a

1
01a

1
30 + 6b200a

1
11a

1
30 + 48b110b

2
00a

1
40 − 24b300a

1
40

+24b200a
1
01a

1
40 − 6b103b

1
11a

2
00 − 12b102b

1
12a

2
00 − 4b112b

1
20a

2
00 − 4b111b

1
21a

2
00

+24b2004a
2
00 + 4c22a200 + 24b104a

1
01a

2
00 − 8b121a

1
02a

2
00 + 12b102a

1
03a

2
00

+6a103a
1
11a

2
00 − 12b103a

1
20a

2
00 − 8b121a

1
20a

2
00 − 8b102a

1
21a

2
00 − 4b120a

1
21a

2
00

+2a111a
1
21a

2
00 + 12a110a

1
22a

2
00 − 6b111a

1
30a

2
00 − 24a102a

1
30a

2
00 − 12a120a

1
30a

2
00

+24a110a
1
40a

2
00 + 2b111b

1
20a

2
01 + 2b110b

1
21a

2
01 − 2b221a

2
01 + 4b102a

1
02a

2
01

+2a102a
1
11a

2
01 + 4b120a

1
20a

2
01 + 6b110a

1
30a

2
01 + 4b2002a202 + 4b102a

1
01a

2
02

+2b111a
1
10a

2
02 + 2a101a

1
11a

2
02 + 4a110a

1
20a

2
02 − 4(b102)

2a210 − 2(b111)
2a210
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−4b110b
1
12a

2
10 − 4b102b

1
20a

2
10 + 4b212a

2
10 + 2b111a

1
02a

2
10 + 2b102a

1
11a

2
10 − 6b110a

3
30

−2b120a
1
11a

2
10 + 2(a111)2a210 − 2b111a

1
20a

2
10 + 4a102a

1
20a

2
10 + 4(a120)2a210

−4b110a
1
21a

2
10 + 2a101a

1
02a

2
11 + 2b102a

1
10a

2
11 − 2b120a

1
10a

2
11 + 4a110a

1
11a

2
11

−2b110a
1
20a

2
11 + 2a202a

2
11 + 8b110b

1
20a

2
20 − 4b220a

2
20 + 4b120a

1
01a

2
20 − 6a101a

3
30

−2b111a
1
10a

2
20 + 4a102a

1
10a

2
20 − 2b110a

1
11a

2
20 + 8a110a

1
20a

2
20 + 2a211a

2
20 + 2a111a

3
20

−4b110a
1
10a

2
21 + 4a210a

2
21 − 4b200a

2
22 + 6(b110)2a230 − 6b210a

2
30 + 6a430

+6b110a
1
01a

2
30 − 6a201a

2
30 − 24b200a

2
40 + 24b104a

3
00 + 4b122a

3
00 − 2b121a

3
01

−6a130a
3
01 + 4b102a

3
02 + 2a111a

3
02 + 2a102a

3
11 + 2a120a

3
11 − 4b120a

3
20 + 4a110a

3
21).

C3 =
1

24
(−6b103b

1
12 − 3b112b

1
21 − b111b

1
22 − 3b121b

1
30 − 3b111b

1
40 + 15b105 − 15b110a

1
50

+3b223 + 15b105(b
1
10 + a101) + 2b122a

1
02 − 3b121a

1
03 + 15a250 − 5a111a

1
40

+6b102a
1
04 + 6b132a

1
10 + 3a104a

1
11 + 4b122a

1
20 − 6b140a

1
20 + 3a232

+b104(5b111 + 20a102 + 22a120) − 6b103a
1
21 − 3b121a

1
21 − 4b102a

1
22

−2b120a
1
22 + a111a

1
22 + 6a110a

1
23 − 3b112a

1
30 − 9b130a

1
30 − 15a101a

1
50

−9a103a
1
30 − 3a121a

1
30 − 22b102a

1
40 − 20b120a

1
40).

Since the rank of the Jacobian matrix of the function C = (C1, C2, C3) with
respect to the coefficients asij and bsij which appear in their expressions is 3, the

three coefficients Ci for i = 1, 2, 3 of the polynomial f6(r) are linearly independent.
Therefore il follows that the polynomial f6(r) can have at most 2 positive real
roots. Consequently, by subsection 2.3 for |ε| > 0 sufficiently small the differential

equation (ṙ, θ̇) has at most 2 limit cycles surrounding the origin, going back through
the changes of variables we obtain that there are at most 2 limit cycles bifurcating
from the center of system (2) when we perturb it as in system (3) if fk = 0 for
k = 1, 2, 3, 4, 5 and f6 �= 0. So statement (e) of the theorem is proved for the
averaged function of order 6.
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[6] J. Giné, J. LLibre and C. Valls, Centers for the Kukles homogeneous systems with odd
degree, Bull. London Math. Soc. 47 (2015), 315–324.
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[19] H. Żo�la̧dek, The classification of reversible cubic systems with center, Topol. Methods Non-
linear Anal. 4 (1994), 79–136.
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