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1. Introduction

Consider an entire transcendental function f and let S(f) be its set of singular values

S(f) := {asymptotic values, critical values}.

Then f : C \ f−1(S(f)) → C \ S(f) is an unbranched covering of infinite degree. The 
closure of the orbits of all singular values is called the postsingular set and is denoted by

P(f) :=
⋃

s∈S(f),n>0

fn(s).

A singular value v is non-recurrent if it does not belong to its ω-limit set ω(v), defined 
as the set of accumulation points for the orbit {fn(v)}n∈N .

Many of the intricate patterns that arise in the dynamics of holomorphic maps are 
due to the presence of singular values and to the way in which their orbits interact with 
each other. For example, it is not difficult to show that if the unique singular value 
of a quadratic polynomial is non-recurrent then the Julia set is locally connected [16, 
Exposé X]. Similarly, the presence of non-repelling periodic orbits is entangled with the 
behavior of singular orbits. For example, every immediate attracting or parabolic basin 
needs to contain a singular orbit, and each Cremer point or point in the boundary of a 
Siegel disk needs to be accumulated by points in the postsingular set [19,28].

As a consequence of this deep relationship, it is possible to give an upper bound for 
the number of non-repelling cycles in terms of the number of singular values. This is 
known as the Fatou-Shishikura inequality [34,17], and it states that if an entire map 
(polynomial or transcendental) has q singular values, then

Nnon-repelling ≤ q,

where Nnon-repelling stands for the number of attracting, parabolic, Cremer and Siegel 
cycles. The proof of this celebrated result relies on perturbations in parameter space. 
However, with additional dynamical assumptions on the map (for example, bounded 
postsingular set), a more combinatorial approach in the dynamical plane also associates 
each non-repelling cycle to a singular orbit in a precise mathematical way, and in such 
a way that the latter cannot be associated to any other non-repelling cycle [25,6].

To be somewhat more precise on this extra assumption, we must talk about rays
[16,28,33]. For polynomials, and for many transcendental maps the escaping set, defined 
as

I(f) := {z ∈ C; fn(z) → ∞},

consists of injective, mutually disjoint curves G : (0, ∞) → I(f) tending to infinity as 
t → ∞. These are called external rays for polynomials and dynamic rays (or hairs) for 
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transcendental maps (see Section 2 for a precise definition), although in this paper we 
will often call them just rays. A ray G is periodic if fn(G) ⊂ G for some n ∈ N, and we 
say that it lands at a point z0 ∈ C if G(t) → z0 as t → 0. Periodic rays can only land at 
parabolic or repelling periodic points by the Snail Lemma [19,28].

Polynomial rays foliate the attracting basin of infinity and hence lie in the Fatou 
set. Their landing is tightly related to the topology of the Julia set. Indeed, the Julia 
set is locally connected if and only if all rays land, in which case the Julia set can be 
parametrized by the unit circle. For transcendental maps, the situation is more complex. 
To start with, it is not always true that the escaping set is formed by rays, although this 
is the case for a wide class of entire transcendental functions [33,8]. This class includes 
the class Brays of functions which are finite compositions of functions of finite order with 
bounded set of singular values, and for such functions the escaping set lies entirely in 
the Julia set.

In the case of polynomials or maps in Brays, if the postsingular set is bounded all 
periodic rays land (at repelling or parabolic) periodic points [16,23,28,30,12]. Conversely, 
one may ask whether every repelling or parabolic point is the landing point of a ray 
or, in other words, whether repelling and parabolic points are always accessible from 
the escaping set. The answer to this question is not always positive and motivates the 
following definition.

Definition 1.1 (Rationally invisible periodic orbit). A repelling periodic orbit of an entire 
map (polynomial or transcendental) is called rationally invisible if one of the points in 
the orbit (and hence all of them) is not the landing point of any periodic ray.

The non-existence of rationally invisible periodic orbits, whenever it can be proven, has 
consequences for the study of parameter spaces. In polynomial dynamics, for example, 
it represents the starting point for Yoccoz puzzle and for much of the machinery which 
lead to most of the actual rigidity results. In transcendental dynamics, it is related to 
the non-existence of ghost limbs attached to hyperbolic components. It is therefore of 
interest to understand the situations under which these special orbits may exist.

As it turns out, rationally invisible orbits, despite being repelling, are also tightly 
related to the orbits of the singular values and more precisely, to unbounded singular 
orbits. Indeed, if an entire map (polynomial or transcendental in Brays) has a bounded 
postsingular set, then every repelling or parabolic periodic point is the landing point of 
at least one and at most finitely many periodic rays, and hence there are no rationally 
invisible orbits (see [16,23,28] for polynomials, [4,7,8] for transcendental).

In the absence of this boundness restriction, one would like to give an upper bound 
for the number of rationally invisible periodic orbits in terms of the number of singular 
values, so as to produce a refinement of the Fatou-Shishikura inequality. This is indeed 
the case for polynomials [26, Corollary 1], [10], and also for transcendental maps, as we 
show in the main result of this paper (see also Theorem 5.1 for a stronger statement).
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As usual we say that a singular value escapes along periodic rays if its orbit converges 
to infinity and eventually belongs to a cycle of periodic rays.

Main Theorem. Let f ∈ Brays such that periodic rays land and assume that there are no 
singular values escaping along periodic rays. Suppose that f has at most q < ∞ singular 
orbits which do not belong to attracting or parabolic basins.

Let Nindifferent denote the number of Cremer cycles and cycles of Siegel disks, and 
Ninvisible denote the number of rationally invisible orbits. Then we have

Nindifferent + Ninvisible ≤ q.

In particular, there are at most q rationally invisible repelling periodic orbits.

One may wonder about how strong is the assumption that periodic rays land in the 
transcendental setting. For polynomials, this assumption is equivalent to the assumptions 
that no critical points escape along periodic external rays and is implied by the standard 
assumption of the Julia set being connected. It is expected that also in the transcendental 
case a periodic ray lands unless its forward orbit contains a singular value. This has been 
proven for functions in the exponential family using parameter space based arguments 
[29], which seem to be out of reach even for functions with finitely many singular values. 
The assumption that there are no singular values escaping along periodic rays is evidently 
weaker that the hypothesis that periodic rays do not intersect the postsingular set. In 
fact, the latter hypothesis implies landing of periodic rays [30].

The Main Theorem has the following immediate corollary.

Corollary 1.2. Let f ∈ Brays such that periodic rays land and assume that there are no 
singular values escaping along periodic rays. Suppose that f has at most q singular orbits 
which do not belong to attracting or parabolic cycles. Then there are at most q repelling 
periodic orbits which are rationally invisible.

The only previous known result in the direction of putting a bound on the number of 
rationally invisible periodic orbits of transcendental maps is due to Rempe-Gillen [29], 
and states that for any fc(z) = ez + c there is at most one rationally invisible periodic 
orbit. The proof uses arguments in the parameter space of the exponential family and 
relies crucially on the existence and structure of wakes in the parameter plane.

Instead, the proof that we present in this paper uses the structure of the dynamical 
plane carved by periodic rays [4], and is of a local nature. As a bonus, it also gives more 
information about the accumulation behavior of the singular orbits (see Theorem 5.1).

As a concluding remark, let us note that in exponential dynamics, for parameters for 
which the postsingular set is bounded there are no rationally invisible repelling periodic 
orbits, and this fact implies that such parameters cannot belong to ghost limbs attached 
to hyperbolic components (see Theorem 4, the final conjecture in [29], and the last 
section in [7]). This has also been used for some of the rigidity results in [3]. This 
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type of results increases our current knowledge of parameter spaces. For families of 
transcendental functions with more than one singular value this knowledge is currently 
very limited, but there is no doubt that it will undergo an important development in the 
next decades. We hope that the results and the techniques developed in this paper will 
be a little brick in the implementation of this large project.

The paper is structured as follows. Section 2 contains the background about functions 
in class Brays and their combinatorics and presents the Separation Theorem [4], a key tool 
for the proof of the main result. It describes also fundamental tails, objects introduced 
in [8] which can be seen as intermediate steps in the construction of rays, and which 
despite their intricate combinatorics, have proven to be useful in the proof of several 
recent results. In Section 3 we give a characterization of landing of periodic rays in 
terms of some combinatorics of tails.

Meanwhile, Section 5 contains the statement and the proof Theorem 5.1, from which 
the Main Theorem follows, a relation which is made explicit in Section 5. Section 5
contains also a corollary (see Corollary 5.7) stating that, under our assumptions, the 
union of the dynamical fibers (as in the definition of [31]) of a rationally invisible repelling 
periodic orbit contains either a singular orbit, or infinitely many singular values whose 
orbits belong to the fiber for more and more iterations.

1.1. Notation

Let C denote the complex plane, D the unit disk. The Euclidean disk of center z and 
radius r is denoted by Dr(z). By a (univalent) preimage under fn of an open connected 
set V we mean a connected component U of the set f−n(V ) (such that fn : U → V is 
univalent). Given a set A and k ∈ N we denote by {A}k the set A × . . .× A where the 
product is taken k times.

2. Background

2.1. Tracts, fundamental domains, and dynamic rays

Let f be an entire transcendental function with bounded set of singular values and 
let D be a Euclidean disk containing S(f) and f(0). The connected components of 
f−1(C \D) are called tracts [17] and are unbounded and simply connected. By definition 
for any tract T we have that f : T → C \D is an unbranched covering of infinite degree. 
Let T be the union of all tracts. It is not difficult to find an analytic curve δ ⊂ C\(D∪T )
connecting ∂D to ∞ ([32]; see also [4, Lemma 2.1]). Let Ω := C \(D∪δ). The connected 
components of f−1(Ω) are called fundamental domains. It is easy to see that only finitely 
many fundamental domains intersect D and that for any fundamental domain F we have 
that f : F → Ω is a biholomorphism. We denote by F the collection of all fundamental 
domains, as well as their union.
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The structure of the dynamical plane given by tracts and fundamental domains has 
been useful to construct dynamic rays. The initial idea of finding curves in the escaping 
set of transcendental entire functions goes back to [20], was later developed in [14], [15], 
[13], [2], [1], [33] among others.

Definition 2.1 (Dynamic ray). A (dynamic) ray for f is an injective curve G : (0, ∞) →
I(f) such that:

(a) lim
t→∞

|fn(G(t))| = ∞ ∀n ≥ 0;
(b) lim

n→∞
|fn(G(t))| = ∞ uniformly in [t0, ∞) for all t0 > 0;

(c) fn(G(t)) is not a critical point for any t > 0 and n ≥ 0;

and such that G(0, ∞) is maximal with respect to these properties. If G(0, ∞) is maximal 
with respect to (a) and (b) but not with respect to (c), then we call the ray broken.

Broken rays could therefore be continued if we allowed critical points and their iterated 
preimages to be part of the ray, as it is the case in the definition in [33], where branching 
might occur and several rays might share one same arc. This situation cannot happen in 
our setting, i.e. rays are pairwise disjoint.

A dynamic ray G is periodic if fp(G) = G for some p ≥ 1, and fixed if p = 1. We say 
that a dynamic ray lands at a point z0 ∈ C if it is not broken and limG(t) = z0 as t → 0. 
Observe that dynamic rays are allowed to land at singular values, but that broken rays 
are not considered to land.

Recall that Brays denotes the class of transcendental entire functions which are finite 
compositions of functions of finite order with bounded set of singular values. In [33, 
Theorem 1.2] it is shown that for any f ∈ Brays and for any escaping point z then fn(z)
belongs to a dynamic ray for any n large enough. For this paper we need to take into 
account a combinatorial description of dynamic rays, which is implicitly contained in 
[33] and in several of the aforementioned papers but for which we use the explicit setup 
that has been presented in [4].

We say that a dynamic ray G is asymptotically contained in a fundamental domain 
F if G(t) ∈ F for all t sufficiently large. It is easy to see that this is always the case, as 
stated in the following lemma.

Lemma 2.2 (See e.g. Lemma 2.3 in [4]). Let f ∈ Brays. Then every dynamic ray is 
asymptotically contained in a fundamental domain.

Let us consider the symbolic space formed by all infinite sequences of fundamental 
domains

FN = {s = F0F1F2 . . .}
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endowed with the dynamics of the shift map σ : FN → FN , σF0F1F2 . . . = F1F2F3 . . .. 
For s = F0F1 . . . ∈ FN , the set σ−1s of its preimages is given by all sequences of the 
form Fs := FF0F1 . . . where F ∈ F .

Definition 2.3. We say that a dynamic ray G has address s = F0F1 . . . ∈ FN and we 
denote it by Gs if and only if f j(Gs) is asymptotically contained in Fj for all j.

It follows directly from the construction in [33] that given an address s the ray Gs, if 
it exists, is unique, and that for rays which are not broken we have that

f(Gs) = Gσs

and that

{f−1Gs} = {GFs : F ∈ F}.

This implies that a dynamic ray Gs is periodic if and only if s is periodic. We say that 
Gs has bounded address if s is bounded, i.e. its entries take values over finitely many 
fundamental domains.

The next proposition is [4, Proposition 2.11], where it is proven using results and ideas 
from [14] and [33]. It previously appeared in different formulations in [30], [2].

Proposition 2.4. If f ∈ Brays and s ∈ FN is bounded then there exists a unique dynamic 
ray Gs with address s for f .

Remark 2.5. A generalization of rays for functions with not as beautiful a geometry as 
functions in class Brays can be found in [8]. The unbounded, connected sets which take 
the place of rays are called dreadlocks. Despite not being curves, dreadlocks have the 
same combinatorial structure as rays. The results that are presented for rays in this 
section also hold for dreadlocks.

2.2. The Separation Theorem

Goldberg and Milnor [21] proved that for polynomials with connected Julia set, the 
set of fixed rays together with their landing point separate the set of fixed points which 
are not landing points of fixed rays; such points include all attracting, Siegel and Cremer 
parameters.

Goldberg-Milnor’s theorem has been generalized to entire transcendental maps in class 
Brays, under the assumption that periodic rays land [4]. In order to state the theorem 
we need to introduce the notion of basic regions and interior fixed points, following [21]
and [4]. Fix p and assume that periodic dynamic rays land. Let Γ denote the closed 
graph formed by the rays fixed by fp together with their landing points. The connected 
components of C \ Γ are called the basic regions for fp. An interior fixed point for fp
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is a periodic point for f which is fixed by fp and which is not the landing point of any 
periodic ray which is fixed by fp. Note that attracting, Siegel and Cremer points as well 
as rationally invisible repelling periodic points are interior periodic points for fp for all p, 
while parabolic and repelling periodic points may be interior or not depending on p. For 
example a fixed point which is the landing point of a cycle of periodic rays of period 3
is interior for f but not for f3.

Theorem 2.6 (Separation Theorem Entire [4]). Let f ∈ Brays, p ∈ N and assume that all 
periodic rays for f which are fixed by fp land. Then there are finitely many basic regions 
for fp, and each basic region contains exactly one interior fixed point for fp, or exactly 
one attracting parabolic basin which is invariant under fp.

Theorem 2.6 has many corollaries, including that parabolic points are always landing 
points of periodic dynamic rays (whose period equals the period of the attracting basins), 
and that hidden components of a Siegel disk are preperiodic to the Siegel disk itself (see 
[11], [5] for an application of this fact to the existence of critical points on the boundary 
of Siegel Disks). It has recently been used in [6] to associate non-repelling cycles to 
singular orbits under the hypothesis that periodic rays land.

2.3. A couple of useful lemmas

The following two general lemmas will be used several times in the sequel. The first 
of them is Lemma 2.1 in [8]

Lemma 2.7. Let f : C → C holomorphic, U ⊂ C be a connected set with locally connected 
boundary. Then for any compact set K ∈ C, only finitely many connected components 
of f−1(U) intersect K.

Lemma 2.8 (Forward invariant boundary). Let f be holomorphic, B be a region whose 
boundary is forward invariant, V be an open subset of C which does not intersect the 
boundary of B. Then for any connected component U of f−1(V ) we have that U is either 
contained in B or in C \B.

Proof. Otherwise, U ∩ ∂B �= ∅. Since f(∂B) ⊂ ∂B it follows that V ∩ ∂B �= ∅ contra-
dicting the hypothesis. �
3. Fundamental tails for a repelling periodic orbit

Fundamental tails are relatively new objects introduced in [8] for functions with 
bounded postsingular set. They already found application in [18]. Fundamental tails 
are preimages of fundamental domains under finitely many iterates, and hence are nice 
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Fig. 1. Definition of 
B,r

F when B is a single basic region. The region B is shown together with the disk D
used to define fundamental domains. For simplicity only 3 fundamental domains F1, F2, F3 are shown. The 
circle of radius r and its preimages inside F1, F2, F3 are in red. Shaded in light blue are the tails of level 1 
for the disk DR corresponding to F1, F2, F3. The curve δr is in purple. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

open sets. Loosely speaking they can be thought of as approximation of rays, which 
despite being topologically curves, do not necessarily have nice geometric properties. In 
what follows we give a precise definition of tails under weaker assumptions than in the 
original setting.

Let f ∈ Brays whose periodic rays land. Let z0 be a repelling periodic point of min-
imal period m and let X = {z0, z1 . . . zm−1} be its orbit labeled so that f(zi) = zi+1

with indices taken modulo m. Let p be a multiple of m. Suppose that z0 is an interior 
fixed point for fp, and consider the basic regions B0, . . . Bm−1 for fp which contain the 
elements of X , namely, zi ⊂ Bi for i = 0, . . . , m − 1. The indices of the basic regions 
{Bi} will also be taken modulo m.

Let B denote the union of the Bi. Since there are only finitely many basic regions for 
fp (see Theorem 2.6), the boundary of B contains finitely many pairs of rays which are 
fixed under fp, together with their landing points. Let D, δ as in Section 2. Let FB be 
the collection of fundamental domains intersecting B for D, δ.

Fix r > 0 such that r > |zi| for all i ∈ X and let Dr ⊃ D be the Euclidean disk of 
radius r centered at 0. Let δr ⊂ δ be the unbounded connected component of δ \Dr. For 
any fundamental domain F ∈ FB let 

B,r

F be the unique unbounded connected component 
of F ∩B ∩ f−1(C \ (Dr ∪ δr)). This is the same as saying that we are considering 

B,r

F to 
be the unique unbounded connected component of the fundamental domains obtained 
by using Dr, δr instead of D, δ, intersected with B. (See Fig. 1.)

For any F ∈ FB we have that 
B,r

F does not intersect ∂B, so by Lemma 2.8 for any n

we have that any connected component of f−n(
B,r

F ) is contained in either B or C \B.
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Definition 3.1 (Fundamental tails for z0). Let z0, m be as above. The set of tails of level 
1, that we denote by T1 = T1(r), is the set of 

B,r

F where F ∈ FB and 
B,r

F ⊂ B0. Since 
Dr ⊃ D, we have that f |τ : τ → C \ (Dr ∪ δr) is univalent for any τ ∈ T1. We define 
tails of level n by induction. Suppose that we have defined the set Tn of tails of level n
and let us define the set Tn+1 of tails of level n + 1.

We say that η is a tail of level n + 1 (for z0, r) if it satisfies the following.

• η is a connected component of f−m(τ) for some τ ∈ Tn;
• η ⊂ B0 and fm : η → τ is univalent;
• f i(η) ⊂ Bi for i = 0, . . . , m − 1.

It follows that if η ∈ Tn, fm(n−1) : η → τ is univalent, where τ is some element of T1.
The definition above depends on the choice of z0, p and r. The point z0, its period 

m, and the period p of the basic regions are fixed throughout the section, while r may 
vary. With this definition all tails of all levels are contained in the basic region B0 which 
contains z0, and have the following properties.

Lemma 3.2. Let τ be a fundamental tail of level n for z0, r. Then:

• τ is asymptotically contained in a unique fundamental domain F0 ∈ FB which in-
tersects B0, that is, there is a unique fundamental domain F0 ∈ FB which intersect 
B0 and such that τ ∩ F0 is unbounded.

• For j = 1, . . . , m(n − 1), f j(τ) is asymptotically contained in a fundamental domain 
Fj which intersects Bj, that is, there is a unique fundamental domain Fj which 
intersects Bj and such that τ ∩ Fj is unbounded.

Proof. The proof follows from the definition of fundamental tails. �
Lemma 3.2 gives a way to dynamically associate a finite sequence of fundamental 

domains (called an address) to each tail τ ∈ Tn, similarly to the way in which we 
associate addresses to dynamic rays. Compare with Definition 3.7 and 3.8 in [8].

Definition 3.3 (Addresses of fundamental tails). Let τ be a fundamental tail of level n and 
let s = F0F1 . . . Fm(n−1) be the sequence of fundamental domains given by Lemma 3.2. 
We say that s is the (finite) address of τ . Observe that s has length �n = m(n − 1) + 1. 
When it exists, we define τn(s) to be the unique tail of level n and address s. Uniqueness 
is given by the fact that for each fundamental domain F we have that f : F → C\(D∪δ)
is a homeomorphism.

At first glance one may expect that all sequences whose elements are fundamental 
domains intersecting B should be realized. However, some of these fundamental domains 
are only partially contained in B, and this prevents the existence of some tails. One can 
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Fig. 2. Let s = F0F1 . . . Fn . . . ∈ AB be an infinite address. The fundamental tail τn+1(s) is contained in 
τn(s) for points with large modulus. The fundamental tail τn+1(s) is mapped to τn(σms) under fm.

characterize precisely the set of addresses which are realized but this is not needed for 
our purposes.

The set of addresses of tails of level n is contained in {FB}�n = FB × Fm(n−1)
B . 

Consider infinite sequences in {FB}N . There is a natural projection

πn : {FB}N → {FB}�n

which maps an infinite sequence s to the finite address consisting of its first �n entries. 
In this sense, whenever it exists, we can define the tail of level n and address s ∈ {FB}N
as the tail of level n and address πn(s). We refer to elements in {FB}N as (infinite) 
addresses, despite the fact that not all of them are realized as fundamental tails of 
arbitrarily high levels. See Fig. 2.

The set of admissible addresses is denoted by

AB = AB(z0, p, r) := {s ∈ {FB}N : the tail τn(s) is well defined for all n}. (3.1)

Definition 3.4 (Pullback along an address). Let r > 0 and consider the fundamental tails 
T1 of level 1 for r. Let s = F0F1 . . . F�n−1 ∈ {FB}�n such that the tail τn(s) exists for some 
n. Let ζ ∈ B0. When it exists, we define ζn(s) to be the unique point in f−nm(ζ) ∩τn(s).

Let τn(s) be a tail of level n. The map fm(n−1) : τn(s) → τ1(σm(n−1)s) is univalent, 
hence fmn is a univalent map from τn(s) to C \ (Dr ∪ δr) (not necessarily surjective). 
So, if ζ does have a preimage in τn(s), such a preimage is unique.

Lemma 3.5. A point z ∈ τn(s) for some n ≥ 1 and some s ∈ {FB}�n if and only if 
f jm(z) ∈ τn−j(σmj(s)) ⊂ B0 for all j = 1 . . . n − 1.

Proof. This follows from the definition of fundamental tails. �
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We now show that up to taking r large enough, all possible fundamental tails of all 
levels exist unless B =

⋃
i Bi contains singular orbits which follow the itinerary of z0

with respect to the partition into basic regions for fp.
Recall that indices of the orbit of z0 as well as indices of the basic regions containing 

them are taken modulo m, and that f j(z0) ∈ Bj for all j ≥ 0.
Let SB(f) be the set of singular values which are contained in B, that is

SB(f) = S(f) ∩B.

For every s ∈ SB(f) let i(s) ∈ {0, . . . , m −1} be such that s ∈ Bi(s), and let n(s) maximal 
be such that for all 0 ≤ j ≤ n(s) we have that f j(s) ∈ Bi(s)+j . Let

PB(f) :=
⋃

s∈SB(f)

( ⋃

n≤n(s)

fn(s)
)
. (3.2)

Observe that PB(f) is smaller than P(f) ∩ B, and that it is forward invariant in the 
sense that

f(PB(f) ∩Bi) ∩Bi+1 ⊂ PB(f). (3.3)

Proposition 3.6 (Existence of fundamental tails). Let f ∈ Brays such that periodic rays 
land. Let X = {z0, . . . , zm−1} be a repelling periodic orbit of period m and let p be any 
multiple of m. Suppose that f(zi) = zi+1 mod m. Let {Bi}i=0...m−1 be the basic regions 
for fp containing the elements of X . Then at least one of the following is true.

(1) There exists a singular value s for f such that s ∈
⋃m−1

i=0 Bi, say s ∈ Bi(s), and such 
that for all n ≥ 0 we have that fn(s) ∈ Bi(s)+n.

(2) There are infinitely many singular values sj for f in at least one of the basic regions 
Bi, say B0, and a sequence nj → ∞ as j → ∞ such that for all n ≤ nj we have that 
fn(sj) ∈ Bn.

(3) The set P(f) is bounded, and there exists r > 0 such that all tails of all levels are well 
defined for z0, p, r. More precisely, this means the following. Let τ ∈ T1(r), n ≥ 0, 
and τ̃ a connected component of f−nm(τ) for which f j(τ̃) ⊂ Bj for j ≤ nm. Then 
fmn : τ̃ → τ is univalent.

Proof. We first claim that if neither case (1) nor case (2) occur, the set PB(f) is bounded. 
Indeed we have that

N := sup
s∈SB(f)

n(s) < ∞,

hence
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PB(f) ⊂
⋃
j≤N

f j(SB(f))

and each of the sets f j(SB(f)) is bounded because SB(f) is bounded, and hence a finite 
union thereof is also bounded.

If PB(f) is bounded, let r > 0 be such that the tails of level 1 for Dr do not intersect 
PB(f). This can be done by taking Dr ⊃ (D ∪PB(f) ∪ f(PB(f)) (notice that f(PB(f))
is not contained in B).

We claim that all tails of all levels are defined for such r. Indeed, suppose that this is 
not the case. Then there exists a minimal k > 0, a tail τk(s) ∈ Tk(r), and a connected 
component V ∈ f−m(τk(s)) ∩B0 such that fm : V → τk(s) is not univalent and such that 
f j(V ) ∈ Bj (by definition of tails for z0). Since τk(s) is simply connected, this occurs if 
and only if there exists j ≤ m such that f j(V ) ⊂ Bj contains a singular value s.

By definition of tails, there exists some τ ∈ T1 such that fm(k−1)−j(f j(V )) ⊂ τ ⊂ B0, 
hence fm(k−1)−j(s) ∈ τ . Since the orbit of s follows the orbit of f j(V ) (that is, f �(s) ∈
f �(f j(V )) ⊂ B(�+j)) we have that fm(k−1)−j(s) ∈ PB . This contradicts the fact that by 
choice of r, T1 ∩ PB(f) = ∅. �

Let us point out that P(f) ∩B may well be unbounded even if PB is not.
Given Proposition 3.6, the strategy for proving the Main Theorem will be to show that 

in case (3), that is, in the absence of trapped singular values, every repelling periodic 
point is the landing point of a periodic ray.

4. Definition of landing and shrinking lemma

In the current section we give an abstract definition of landing and we prove a lemma 
that will be used in Section 5 (compare with the abstract characterization of landing in 
[8]).

Let z0 be a repelling periodic point of period m, p be a multiple of m, B and Bi be 
basic regions for fp as in Section 3. In this section we assume that we are in case (3) 
of Proposition 3.6, that is, there exists r > 0 such that all tails of all levels are well 
defined for z0, p, r. In particular, for any τ ∈ T1, for every n ≥ 0, and for every connected 
component τ̃ of f−mn(τ) for which f j(τ̃) ⊂ Bj for j ≤ n, we have that fmn : τ̃ → τ is 
univalent.

Let AB as in (3.1) be the set of addresses for which tails of all levels are well defined 
for z0, p, r.

The following lemma establishes one of the fundamental relations between rays and 
tails of the same address.

Lemma 4.1 (Rays versus tails). Let s = F0F1F2 . . . ∈ AB. Then for every z ∈ Gs(t) there 
exists nz such that the arc connecting z to infinity in Gs is fully contained in τn(s) for 
all n ≥ nz.
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Proof. Let Dr be the Euclidean disk of radius r defined in the proof of Proposition 3.6, 
and consider the curve δr ⊂ δ which starts from the last intersection of δ with Dr. Only 
for the proof of this lemma, let {Fi} be the fundamental domains obtained by taking 
preimages of C \ (Dr ∪ δr) and F be the union of all fundamental domains for f with 
respect to this choice of Dr. By Lemma 2.2, the dynamic rays f i(Gs) are asymptotically 
contained in Fi for all i. Let Gs(t) : (0, ∞) → I(f) be a continuous parametrization of 
Gs such that |Gs(t)| → ∞ as t → ∞. Recall that points in Gs([T, ∞]) escape uniformly 
to infinity for every T > 0. So for each z = Gs(T ) there exists nz such that for all points 
Gs(t) with t > T we have

fn(Gs(t)) ∈ F for every n ≥ nz

(otherwise, fn+1(Gs(t)) would belong to the bounded set Dr, or to the curve δr which 
is mapped to Dr at the next iterate, contradicting the uniform escape to infinity).

Hence we have that fn(Gs(T, ∞)) ⊂ Fn for n ≥ nz and, by definition of tails, 
Gs(T, ∞) ⊂ τn(s) for all n ≥ nz. �

The following Lemma is a Euclidean version of a classical Lemma which holds for the 
spherical metric (see for example [27], Proposition 3. Similar lemmas have been used in 
[7], [8] and in many other papers). For this lemma we do not need the assumption that 
all tails are well defined as long as we restrict to univalent preimages.

Lemma 4.2 (Shrinking Lemma). Let f be holomorphic. Let V ′ ⊂ C be a simply connected 
open set intersecting the Julia set. Fix a compact set K ⊂ C. For each n consider 
all connected components V ′

n,λ of f−n(V ′) which intersect K and which are univalent 
preimages of V ′ under fn, where λ indicates the chosen branch of f−n.

Let V � V ′, and for each n, λ let Vn,λ = f−n(V ) ∩ V ′
n,λ. Then for any ε > 0 there 

exists Nε such that

diameucl Vn,λ < ε for any n > Nε and for any λ such that V ′
n,λ ∩K �= ∅.

The proof is the same as in [27] for the spherical metric, and the statement for the 
Euclidean metric follows from the fact that we are only considering preimages intersecting 
a given compact set K.

Lemma 4.3 (Characterization of landing). Let f ∈ Brays such that periodic rays land, and 
let z0, m, Bi, B, AB as above. Let Gs ⊂ B0 be a periodic ray of period mq with s ∈ AB

and q ≥ 1. Let ζ ∈ B0 \ (Dr ∪ δr) for which ζnq(s) is well defined for all n ∈ N as in 
Definition 3.4. Then Gs lands at z0 ∈ C if and only if ζnq(s) → z0 as n → ∞.

Recall that a dynamic ray Gs lands at a point z ∈ C if Gs(t) → z as t → 0. We 
observe the following. Let z0, m, r, AB be as in the beginning of this section. Let Gs be a 
dynamic ray of period mq for some s ∈ AB , I be an arc in Gs connecting a point z ∈ Gs
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with its image fmq(z). For n ∈ N let In be the unique preimage of I under fmqn which 
is contained in Gs. Then Gs lands at z0 if and only if dist(In, z0) → 0 as n → ∞. Indeed 
consider a sequence Gs(tn) → z0. We have that fkn(Gs(tn)) ∈ I for some kn → ∞ hence 
Gs(tn) ∈ Ikn

.
Moreover if I is chosen such that f j(I) is contained in F for all j, then In ⊂ τnq(s)

for all n ≥ 0. The proof is the same as the proof of Lemma 4.1.

Proof of Lemma 4.3. If Gs lands at z0, by Lemma 4.1 for any point ζ = Gs(t) with t
large enough we have that ζnq(s) exists, and ζnq converges to z0 by definition of landing.

To prove the other direction let ζ ∈ B0\(Dr∪δr) such that ζnq(s) is well defined (such 
a ζ exists because s ∈ AB) and converges to z0 ∈ C. Let ζ ′ = Gs(t) and let I be the arc in 
Gs connecting ζ ′ to fmq(ζ ′). Up to taking t large enough we can assume that f j(I) ⊂ F
for all j. By Lemma 4.1 we have that I ⊂ τj(s) for all j large enough. By assumption, 
we also have that ζnq(s) ∈ τnq(s) for n large enough. Hence (I ∪ ζnq) ⊂ τnq(s) for all n
large enough. For one such n let V ′ ⊂ τnq(s) be a simply connected set containing both 
ζnq(s) and I and let V � V ′ containing both ζnq(s) and I. Note that V intersects the 
Julia set because dynamic rays are subsets of the Julia set.

Let K be a compact connected neighborhood of z0. For j ∈ N let V ′
j (s) be the 

connected component of the preimage of V ′ under fmqj which is contained in τq(j+n)(s); 
observe that the inverse branch ψj : V ′ → V ′

j (s) is univalent because r was chosen so that 
all tails are well defined. Also, V ′

j intersects K for j large enough because ζqn(s) → z0. 
By Lemma 4.2,

diameucl Vj(s) → 0 as j → ∞.

Since we assumed that f j(I) ⊂ F for all j, In ⊂ τnq(s), hence since fnq|τnq(s) is a 
homeomorphism, In ⊂ Vj → z0 and Gs lands at z0. �
5. Rationally invisible orbits and singular orbits

The goal of this section is to prove that if tails are well defined for a given repelling 
periodic orbit with respect to a set of basic regions containing it (case (c) in Proposi-
tion 3.6), then the orbit is not rationally invisible. The Main Theorem will be derived in 
Section 6.

In the following Theorem, as usual, indices are taken modulo m.

Theorem 5.1 (Main theorem for fp). Let f ∈ Brays such that periodic rays land 
and assume that there are no singular values escaping along periodic rays. Let X =
{z0, . . . , zm−1} be a repelling periodic orbit of period m and let p be any multiple of m. 
Suppose that f(zi) = zi+1. Let {Bi}i=0...m−1 be the basic regions for fp containing the 
elements of X , and B = ∪Bi. Then at least one of the following is true.
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(1) There exists a singular value s for f such that s ∈
⋃q−1

i=0 Bi, say s ∈ Bi(s), and such 
that for all n ≥ 0 we have that fn(s) ∈ Bn+i(s).

(2) There are infinitely many singular values sj for f in at least one of the basic regions 
Bi, say s ∈ Bi(s), and a sequence nj → ∞ as j → ∞ such that for all n ≤ nj we 
have that fn(s) ∈ Bn+i(s).

(3) Each point in X is the landing point of at least one and at most finitely many periodic 
dynamic rays, all of which have the same period.

By Lemma 8.2 in [8] (compare to [28], Lemma 18.12 for polynomials), if a repelling 
periodic point is the landing point of a periodic ray then it is the landing point of finitely 
many periodic rays, all of which have the same period. So it is enough to show that at 
least one point in X is the landing point of at least one periodic dynamic ray. This 
implies that the same is true for all elements in X . Indeed, f is a homeomorphism from 
a neighborhood of zi to a neighborhood of zi+1, so a dynamic ray Gs lands at zi if and 
only if f(Gs) = Gσs lands at zi+1.

Let z0 ∈ X . Recall the definition of fundamental tails for z0 from Section 3. By 
Proposition 3.6, if neither case (1) nor case (2) occur, then there is r such that all 
fundamental tails of all level are well defined. Our aim will be to show that under this 
assumption z0 is the landing point of at least one periodic ray.

Recall that �n = m(n − 1) + 1 denotes the length of the address of a tail of level n.

Definition 5.2 (Fundamental pieces). Let n ≥ 1. Let s be an infinite address or an address 
of length at least �n+1 and assume that the tail τn+1(s) is well defined for some r > 0. 
Then we define the fundamental piece of level n and address s, which we denote by Pn(s), 
as

Pn(s) := τn+1(s) \ τn(s).

Fundamental pieces are not necessarily connected, nor exist for all levels and addresses. 
For example, if s is a disjoint-type address (i.e., contains only fundamental domains which 
do not intersect the disk D) then there are no fundamental pieces of address s for any 
level.

The idea of using fundamental pieces was originally suggested by L. Rempe-Gillen as 
a possible way to prove the main theorems in [8].

Recall the definition of PB from Section 3.

Lemma 5.3 (Properties of fundamental pieces). Let f ∈ Brays, such that periodic rays 
land. Let z0, m, B, Bi as usual, and let n ∈ N. Let s be an infinite address or an address 
of length at least �n and assume that the fundamental tail τn(s) is well defined. Then

fm(Pj(s)) = Pj−1(σms) for all j ≤ n− 1 (5.1)

and
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τn(s) ⊂ τN (s) ∪
n−1⋃
j=N

Pj(s) for all N ≤ n− 1. (5.2)

fmn(Pn(s)) = τ1(σmn(s)) ∩D for all n ∈ N. (5.3)

Proof. The first two properties follow from the definition of fundamental pieces and 
tails (recall that fm : τj(s) → τj−1(σms) is a homeomorphism). We now prove (5.3). Let 
ζ ∈ Pn(s). We have that fm(n−1)(ζ) ∈ τ2(σm(n−1)s) \ τ1(σm(n−1)s), and τ1(σm(n−1)s)
is the preimage of C \ Dr. Hence fm(fm(n−1)(ζ)) = fmn(ζ) ∈ D. Since fm(n−1)(ζ) ∈
τ2(σm(n−1)s), fmn(ζ) ∈ τ1(σmns) proving the claim. �

Recall that SB is the set of singular values which are contained in B. Recall also that 
for s ∈ SB the integer i(s) ∈ {0, . . . , m − 1} is such that s ∈ Bi(s), and n(s) is maximal 
such that for all j ≤ n(s) we have that f j(s) ∈ Bi(s)+j . In other words the orbit of s
follows the orbit of X for exactly n(s) iterates with respect to the partition of the plane 
induced by the regions Bi.

Lemma 5.4 (Good neighborhoods of rays). Let f ∈ Brays such that periodic rays land 
and assume that there are no singular values escaping along periodic rays. Let X =
{z0, . . . , zm−1} be a repelling periodic orbit and let p be any multiple of m. Suppose that 
f(zi) = zi+1. Let {Bi}i=0...m−1 be the basic regions for fp containing the elements of X , 
and let B = ∪Bi.

Suppose that cases (1) and (2) in Proposition 3.6 do not hold.
Let G be a ray in ∂B0, which is hence fixed under fp. Let {G0 = G, Gj =

f j(G)}j=0,...p−1 be the orbit of G under f (here, indices are taken modulo p), and let 
ψj : Gj → Gj−1 be the unique the inverse branch of f such that ψ := ψ0 ◦ . . . ◦ ψp−1
fixes G. Since Gj are curves we can write them as Gj(t) : R+ → C, with |Gj(t)| → ∞
as t → ∞. Fix ε, Tj > 0.

Then there exist neighborhoods Uj of Gj((ε, Tj)) which contain Gj((0, Tj)), which do 
not contain singular values for f , and such that:

a. ψj is defined and univalent on Uj;
b. ψj(Uj) ⊂ Uj−1;
c.

⋃
j Uj ∩

⋃
s∈SB

fn(s)+1(s) =
⋃

j Uj ∩ (f(PB) \ PB) = ∅.

Proof. Notice first that we can take neighborhoods of Gj((ε, Tj)) which do not intersect 
S(f). If not there would be a sequence of singular values in S(f) converging to a point 
z ∈ Gj([ε, Tj ]), which would need to be a singular value because S(f) is closed. This 
contradicts the assumption that Gj does not contain singular values. This shows that 
we can take a neighborhood of Gj([ε, Tj ]) for every ε. By taking the union over them, 
we obtain a neighborhood of Gj((0, Tj ]).

Each ψj is defined on compact subsets of Gj containing the landing point, hence 
in particular, it is defined on G([0, Tj]). Since Gj contains no singular values for f by 
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assumption, lands, and ψj(Gj) ⊂ Gj−1, for each j there is a simply connected neighbor-
hood Uj of Gj([ε, Tj ]) which contains Gj((0, Tj)), does not intersect the set S(f) (recall 
that the latter is closed and that periodic rays contain no singular values), and such that 
ψj is well defined on Uj and ψj(Uj) ⊂ Uj−1, with T0 > T .

Let N = maxs∈SB
n(s). Since cases (1) and (2) in Proposition 3.6 do not hold, N < ∞.

Since G contains no points in singular orbits, SB does not intersect any preimage of 
G, and in particular it does not intersect the first N preimages of G, that is the infinitely 
many rays preperiodic to G of preperiod at most N . Since G lands and contains no 
points in singular orbits, they all land and only finitely many of them intersect any given 
compact set.

Let D � S(f) be a closed disk and let K be the compact set given by the first N
preimages of rays in the boundary of B intersected with D (compare with the proof of 
Proposition 3.6).

Since SB does not intersect K and both are compact sets, we can find a neighborhood 
W of K which does not intersect SB, and restrict the sets Ui such that their preimages 
up to level N do not intersect W . �

The condition that periodic rays do not contain points in singular orbits can be relaxed 
by assuming that they do not contain forwards iterates of singular values in SB which 
moreover follow the correct itinerary between the basic regions in B.

Lemma 5.5 (Shrinking of fundamental pieces). Let f ∈ Brays such that periodic rays land 
and assume that there are no singular values escaping along periodic rays. Let z0, m, B, Bi

as in Theorem 5.1. Suppose that case (1) and (2) in Proposition 3.6 do not hold.
Let K be a compact set and consider all fundamental pieces Pn(s) for n ∈ N. Then 

for any ε > 0 there exists Nε such that

diameucl Pn(s) < ε for all n ≥ Nε and all s such that Pn(s) ∩K �= ∅.

Compare with the proof of Lemma 6.3 in [8].

Proof. Since case (1) and (2) in Proposition 3.6 do not hold, PB is bounded, and so 
is its image f(PB) (which is no longer necessarily contained in B). Let Dr � (PB ∪⋃

k≤m fk(PB)) be a disk of radius r centered at 0. Consider the set of tails T1 of level 
1 for r, z0. Notice that PB is forward invariant in the sense of (3.3). It follows that 
τn(s) ∩ PB = ∅ for all n ∈ N.

For each of the finitely many τ ∈ T1 which intersect Dr let γτ be a crosscut of τ such 
that τ \ γτ is made of two connected components, one of which is bounded and contains 
all of the connected components of τ ∩Dr. Call this component ητ . Let

V =
⋃

ητ .

τ∈T1
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Fig. 3. Mapping properties of fundamental pieces (shown in blue).

Since finitely many τ ∈ T1 intersect Dr (see Lemma 2.7) we have that V has finitely 
many connected components. Notice that if two adjacent tails τ, ̃τ both intersect Dr, 
their bounded components ητ , ητ̃ belong to the same connected component of V.

We first claim that any Pn(s) is contained in a connected components of f−n
λ (Vi) for 

some i and some branch λ. This is implied by showing that fmn(Pn(s)) ⊂ ητ for some 
τ ∈ T1. Let ζ ∈ Pn(s) = τn+1(s) \ τn(s). By (5.3) fmn(ζ) ∈ τ ∩Dr for some τ ∈ T1. The 
fact that τ does not depend on the choice of ζ (we have to check this because Pn(s) is not 
necessarily a connected set) follows from the fact that for any U connected component 
of the preimage of ητ under f−mn which is contained in a tail of level n + 1 (which is 
the case for fundamental pieces) we have that fm : U → ητ is a homeomorphism. See 
Fig. 3.

So it is enough to show that, for V which is any of the finitely many connected com-
ponents of V, the diameters of inverse images of V tend to zero uniformly in the family 
of inverse branches used to define fundamental pieces. Let V be such a component. To 
fix notation for the inverse branches let us denote by L the set of inverse branches ϕn

λ of 
fmn which map a component ητ ⊂ V inside another tail τn−1(s), and which are a priori 
defined only on V .

We claim that there is a simply connected neighborhood V ′ of V such that for any 
ϕn
λ ∈ L we have that ϕn

λ can be extended (univalently) to V ′.
The claim is obvious for all V � B0, since by choice of r we can find a simply con-

nected neighborhood V ′ which is contained in B0 \ PB and hence all inverse branches 
ϕn
λ used to define fundamental pieces can be extended.
So let us consider V such that ∂V ∩ ∂B0 �= ∅. Let G on ∂B0 which intersects ∂V , 

and T such that ∂V ∩ G � G(0, T ). In the following we will assume for simplicity that 
G is unique, but if not, there are finitely many rays and the reasoning has to be done 
for each of them.

Let {G0 = G, Gj = f j(G)}j=0,...p be the orbit of G under f and let ψj : Uj → Uj−1

as in Lemma 5.4.
Let V ′ ⊂ (U0∪B0) be a simply connected neighborhood of V which does not intersect 

PB , and let ϕn
λ ∈ L. Choose V ′ so that in addition V ′ ∩B and V ′ ∩ (C \B) are simply 

connected.
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The inverse branch ϕn
λ decomposes (uniquely) as

ϕn
λ = hnm ◦ . . . ◦ h1

where each hi for i = 1 . . . nm is a branch of f−1 that we want to show to be defined 
on hi−1 ◦ . . . ◦ h1(V ′). Notice that ϕn

λ extends to V ′ ∩ B because the latter does not 
intersect PB .

We claim that the inverse branch h1 is well defined and univalent on all of V ′. Let us 
denote by X the connected component of f−1(V ) which contains h1(V ). Either X � B

or X ∩ ∂B �= ∅.
If X � B then the branch h1 is well defined and univalent because by Lemma 5.4

the neighborhoods Uj do not intersect f(SB) ⊂ f(PB). Since they also do not intersect 
f(PB), the set X does not intersect PB. Since the latter is forward invariant in the sense 
of (3.3), the branches hi are well defined also for all i = 2 . . .mn, proving the claim.

Let us consider the case X ∩ ∂B �= ∅. Since h1(V ) ⊂ B, by Lemma 2.8 we have that

f(X ∩B) = V ′ ∩B

f(X ∩ (C \B)) = V ′ ∩ (C \B)

f(X ∩ ∂B) = V ′ ∩ ∂B

It follows that X ∩ ∂B is contained in Gp−1 which is the only preimage of G0 in ∂B.
By univalency of f on Gp−1, h1 extends continuously to G0 ∩ V ′ and coincides with 

ψ0 on this set. Since h1 extends holomorphically to a neighborhood of V ∩G0 (since U0

contains no singular values by choice), by the identity principle h1 equals ψ0 and hence 
h1 extends as a univalent map on all of V ′.

By property b. in Lemma 5.4, h1(V ′ \B) ⊂ Up−1. This last property allows us to re-
peat the reasoning for h2 and show that it is defined on h1(V ′). Proceeding by induction 
this gives the claim.

By Lemma 4.2, diameucl(ϕn
λ(V )) uniformly in λ as n → ∞, provided ϕn

λ(V ) ∩K �= ∅
for some compact set K. For all addresses s such that Pn(s) ∩K �= ∅, the claim of the 
Lemma follows because Pn(s) ⊂ ϕn

λ(V ) for some λ, n, i. �
The last result that we need in order to prove the Main Theorem is Iversen’s Theorem 

[24]. We state it as it is presented in [9]. It is a consequence of Gross Star Theorem [22].

Theorem 5.6 (Iversen’s Theorem). Let f be holomorphic. Let ψ be a holomorphic branch 
of the inverse of f which is defined in a neighborhood of some point z0 and let γ : [0, 1] →
C be a curve with γ(0) = z0. Then for every ε > 0 there exists a curve γ̃ : [0, 1] → C

satisfying γ(0) = z0 and |γ(t) − γ̃(t)| < ε such that ψ has an analytic continuation 
along γ̃.
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5.1. Proof of Theorem 5.1

Let z0, zi, m, p, B, Bi be as in the statement. Recall that indices of zi and Bi are 
taken modulo m. If z0 is not an interior fixed point for fp, there is nothing to show 
because it is the landing point of a periodic ray of period at most p. Otherwise, in view 
of Proposition 3.6 we need to show that, if there exists r > 0 such that for any n ≥ 1 all 
fundamental tails for z0 are well defined, then z0 is the landing point of a periodic ray. 
Without loss of generality up to taking a larger r we can assume that 

⋃
i zi ⊂ Dr and 

that tails are also defined for a slightly smaller r. Let Tn denote the collection of tails of 
level n for these choices.

Let ψ be the inverse branch of f−m fixing z0. Let U0 ⊂ B0 be a simply connected 
neighborhood of z0 such that ψ is well defined on U0, ψ(U0) � U0, and there exists η > 1
such that |(fm)′(z)| ≥ η for all z ∈ U0. Note that f i(ψ(U0)) ⊂ Bi for i ≤ m, and that 
more generally for � ∈ N we have f i(ψ�(U0)) ⊂ Bi for i ≤ m�.

Let

Un := ψn(U0), ε = dist(∂U0, ∂U1).

By choice of U0, fmn : Un → U0 is a homeomorphism.

Claim 1. Tn ∩ U0 �= ∅ for all n large enough.

Proof: Let F be a fundamental domain for f which intersects B0 and choose ζ ∈ F ∩B0
not an exceptional value. Then by Montel’s theorem there exists n large enough so that 
fnm(U0) � ζ. Since f is open, there exists ε′ such that the Euclidean disk Dε′(ζ) ⊂
fnm(U0) ∩B0 ∩ F and contains no exceptional values.

Let γ : [0, 1] → B0 be a curve with γ(0) = z0, γ(1) = ζ. Let ψn be the inverse branch 
of fnm fixing z0. By Iversen’s theorem there exists a curve γ̃ : [0, 1] → B0 such that 
γ̃(0) = z0, γ̃(1) ∈ Dε′(ζ) and such that ψn has an analytic continuation along γ̃. Hence 
γ̃(1) ∈ fnm(U0).

Since ψn has an analytic continuation along γ̃ we can ensure that the same is true for 
ψj for j ≤ n. Since γ̃ ∩ ∂B = ∅ we have that ψj(γ̃) ∩ ∂B = ∅ for j ≤ n (see Lemma 2.8). 
Recall that we have f i(ψ�(U0)) ⊂ Bi for all � ∈ N and all i ≤ m. Hence for any n ∈ N

we have that f jψn(γ̃) ⊂ Bj for j ≤ m. This implies that the point w = ψn(γ̃(1)) belongs 
to some tail τn+1(s) for some s. Since γ̃(1) ∈ fnm(U0), and ψn is a homeomorphism, we 
also have that w ∈ U0, proving the fact that Tn ∩ U0 �= ∅ for n large enough.

Observe that if TN ∩U0 �= ∅ for some N , then Tn ∩U0 �= ∅ for all n ≥ N , because the 
preimage under ψ of a point ζ which belongs to a tail in Tn intersecting Uk is a point 
ψz in a tail in Tn+1 intersecting Uk+1 (see also Lemma 3.5). �

Let N be such that for all n ≥ N we have that Tn ∩ U0 �= ∅ and that diamPn(s) < ε

for all Pn(s) intersecting U0. Such N exists by Lemma 5.5.
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Fig. 4. Illustration of the proof of Claim 2 in Theorem 5.1. The fundamental piece Pn(s̃) and its image under 
fmn are highlighted in blue. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

For n ≥ N let Sn be the set of finite addresses of length �n (see Definition 3.3) for 
which the tail τn(s) intersects Un−N . Observe that Sn is finite for every n by Lemma 2.7.

Observe that dist(∂Un, z0) → 0 as n → ∞ because in U0 the map ψ is contracting 
by a factor η−1 < 1. So by Lemma 4.3 it is enough to find a periodic address s∗ of 
period mq and a point ζ ∈ U0 such that ζi(s∗) is well defined for all i and such that 
ζqn−N (s∗) ∈ Uqn−N in order to ensure that Gs∗ lands at limn→∞ ζqn−N (s∗) = z0.

We now claim that, for some n0 large enough, ψ induces a well defined map Γ from 
the finite set Sn0 into itself, implying that Γ has a periodic point of some period q. We 
do this in several steps.

Let n ≥ N , s ∈ Sn and let τn(s) be a tail in Tn which intersects Un−N . For every 
point ζ ∈ τn(s) ∩Un−N the point ψζ ∈ Un−N+1 is well defined and belongs to some tail 
of level n + 1 and address s̃(ζ) depending on ζ. Indeed, τn(s) ∩ Un−N may have several 
connected components, and it is not clear a priori that ψ maps each of these connected 
components to the same tail of level n + 1. What is clear however is that for each such 
s̃ = s̃(ζ) the tail τn+1(s̃) intersects Un−N+1 and that σms̃ = s (see Lemma 3.5). Recall 
that for an address s̃ we denote by πns̃ its first �n entries.

Claim 2. πns̃ belongs to Sn regardless of the choice of ζ.

Proof: For an illustration of the proof of this claim see Fig. 4. Let ψζ ∈ Un−N+1 ∩
τn+1(s̃). Recall that τn+1(s̃) ⊂ τn(s̃) ∪Pn(s̃) and that it is a connected set. If ψζ ∈ τn(s̃)
it follows directly that the first �n entries of s̃ are in Sn. Otherwise ψζ ∈ Pn(s̃) ∩
Un+1−N hence fm(n−N)ψζ ∈ PN (σm(n−N)s̃) ∩ U1 (see Lemma 5.3). By choice of N , 
diamPN (σm(n−N) < ε, so PN (σm(n−N)s̃) � U0 and hence its m(n − N)-th pullback 
Pn(s̃) � Un−N . Since τn+1(s̃) is connected, τn(s̃) intersects Un−N and hence the first �n
entries of s̃ are in Sn. �
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Claim 3. There exists n0 > 0 such that for n ≥ n0, the map σm : Sn+1 → Sn is injective, 
hence has a well defined inverse ψ∗

n : Sn → Sn+1 on its image σm(Sn+1).

Proof: Observe that z0 does not belong to any tail of level N , and hence there exists 
M > 0 such that TN ∩ UM = ∅. Indeed, otherwise we would have that fmN (z0) = z0 ∈
fmN (TN ) ⊂ C \Dr, contradicting the choice of r. The main point now is to show that 
there exists n0 such that if n ≥ n0 and ̃s ∈ Sn+1 then Pn(s̃) ⊂ U1. Notice that a priori it is 
not even clear whether Pn(s̃) ∩U1 �= ∅, because the intersection τn+1(s̃) ∩Un+1−N may be 
contained in τn(s̃). Once this is proven, let s ∈ Sn and suppose by contradiction that there 
exist s̃1, s̃2 such that ψ(τn(s) ∩U0) intersects both τn+1(s̃1) and τn+1(s̃2). Then we would 
have that Pn(s̃1) and Pn(s̃2) are contained in U1 and are mapped homeomorphically to 
Pn−1(s) by fm (recall Lemma 5.3), contradicting the fact that fm : U1 → U0 is a 
homeomorphism and proving Claim 3. So we now proceed to prove that Pn(s̃) ⊂ U1 if 
s̃ ∈ Sn+1 and n ≥ n0.

Let n ≥ M+N , with M as above such that TN ∩UM = ∅, and consider s ∈ Sn+1, that 
is, τn+1(s) ∩Un+1−N �= ∅. We claim that there exists ñ = ñ(s) ∈ {n −M, . . . , n} maximal 
such that Pñ(s) ∩ Un+1−N �= ∅. This is to ensure that τn+1(s) ∩ Un+1−N intersects a 
fundamental piece of address s and of sufficiently high level, namely whose level tends 
to infinity as fast as n.

Since TN ∩ Un+1−N = ∅ (because n ≥ M + N) and since

∅ �= τn+1(s) ∩ Un+1−N ⊂ (τN (s) ∪
n⋃

j=N

Pj(s)) ∩ Un+1−N

(see Lemma 5.3), there is some ñ ∈ {N, . . . , n} maximal such that Pñ(s) ∩Un+1−N �= ∅. If 
n = M+N this implies that ñ ≥ N = n −M as desired. Now let us proceed by induction 
on n. Suppose that for all s ∈ Sn there exists ñ = ñ(s) ∈ {n −1 −M, . . . , n −1} maximal 
such that Pñ(s) ∩Un−N �= ∅ and let us show that for all s ∈ Sn+1 there exists ñ = ñ(s) ∈
{n −M−1, . . . , n −1} maximal such that Pñ+1(s) ∩Un−N+1 �= ∅. Then this would imply 
the claim for ñ + 1. If s ∈ Sn+1 we have that σms ∈ Sn and hence by the induction 
hypothesis we have that Pñ(σs) ∩Un−N �= ∅ for some ñ = ñ(σms) ∈ {n −1 −M, . . . , n −1}. 
Since fm : Pñ+1(s) → Pñ(σms) is univalent we have that Pñ+1(s) ∩ Un+1−N �= ∅ and 
that ñ(σs) + 1 ≥ n −N as required. Now let n1 such that diamPn(s) < dist(∂U2,∂U1)

M+1 for 
n ≥ n1 and s ∈ Sn (this is possible by Lemma 5.5).

Let n0 = max{n1 + M, N + 2}. Let n > n0 and let s ∈ Sn+1. Then by the previous 
paragraph there is ñ ∈ {n − M, . . . , n} such that Pñ(s) ∩ Un−N+1 �= ∅. By definition 
Pñ(s) ⊂ τñ+1(s), and τn+1(s) ⊂ τñ+1(s) ∪

⋃n
ñ+1 Pj(s). Since τn+1(s) is connected and ⋃n

ñ+1 Pj(s) consists of at most M pieces of diameter at most dist(∂U2,∂U1)
M+1 and τñ+1(s) ∩

U2 �= ∅ we deduce that τn+1(s) \ τñ+1(s) ⊂ U1. �

For n ≥ n0 this induces a map ψ∗
n : Sn → Sn+1, where for s ∈ Sn we define ψ∗

n(s) as 
the unique element in Sn+1 such that σmψ∗

n(s) = s. Recall that FB is the collection of 
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fundamental domains intersecting B and observe that

ψ∗
n(s) =: α(si)si for some α(si) ∈ {FB}m,

since we add m symbols when we go backwards once.
Let

Γ := πn0 ◦ ψ∗
n0

: Sn0 → Sn0 .

Since Sn0 has finitely many elements, there exists q ∈ N and s0 ∈ Sn0 such that Γq(s0) =
s0. Let si = Γi(s) (hence sq = s0). By definition of Γ and of α(si) we have that si+1 =
Γ(si) = πn0(α(si)si). Let

s∗ := α(sq) . . . α(s1).

Notice that s∗ is a periodic address of period qm.

Claim 4. For any n ≥ n0 and for any s ∈ Sn,

ψ∗
ns = α(πn0s)s.

Proof: For n = n0 this is true by definition, so suppose the claim is true for all s ∈ Sn

and let us show the claim for all s ∈ Sn+1. By definition of ψ∗
n+1, for s ∈ Sn+1 we have 

ψ∗
n+1s = F0 . . . Fm−1s ∈ Sn+2 for some F0, . . . , Fm−1 ∈ FB . By Claim 2 we have that 

πn+1(F0 . . . Fm−1s) ∈ Sn+1, hence πn+1(F0 . . . Fm−1s) = ψ∗
ns̃ for some s̃ ∈ Sn. Hence 

we have that s̃ = πn(s). By the induction hypothesis, F0 . . . Fm−1 = α(s̃) = α(πn0 s̃) =
α(πn0s). �

Let ζ ∈ τn0(s∗) ∩ Un0−N . By definition of ψ∗
n and by Claim 4 we have that ψqn(ζ) ∈

τqn+n0(s̃) where

s̃ = ψ∗
nq+n0

. . . ψ∗
n0
s∗ = α(sq) . . . α(s1) . . . α(sq) . . . α(s1)︸ ︷︷ ︸

repeated n times

s∗ = s∗

by Claim 4, so that ψqn(ζ) ∈ τqn+n0(s∗) and hence ψqn(ζ) = ζqn(s∗). Then Gs∗ lands at 
z0 by Lemma 4.3 because ζqn(s∗) = ψqnζ ∈ Uqn−n0 → z0.

We note the following Corollary of Theorem 5.1.

Corollary 5.7. Let f ∈ Brays such that periodic rays land and assume that there are no 
singular values escaping along periodic rays. Let z0 be a rationally invisible repelling 
periodic point for f . Let {z0, . . . , zm−1} be the orbit of z0 and let X be the union of the 
dynamical fibers of z0, . . . , zm−1 as defined in [31]. Then X contains either a singular 
orbit, or infinitely many singular values whose orbits belong to the fiber for more and 
more iterations.
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6. Bound on the number of rationally invisible orbits and generalized Fatou-Shishikura 
inequality

This last section is devoted to the proof of the Main Theorem.
Let us recall the Main Theorem from [6]. As usual indices are taken modulo m.

Theorem 6.1 (Singular orbits trapped in basic regions). Let f be an entire transcendental 
map in class Brays whose periodic rays land. Let X be a cycle of Siegel disks, attracting 
basins, parabolic basins or Cremer points of period m and let p be any multiple of m. 
Let {Bi}i=0...m−1 be the basic regions for fp containing the elements of X . Then, up to 
relabeling the indices, at least one of the following is true.

(1) There exists a singular value s for f such that s ∈
⋃m−1

i=0 Bi, say s ∈ B0, and such 
that fn(s) ∈ Bn for all n ∈ N. The orbit of s accumulates either on the non-repelling 
cycle or on the boundary of the cycle of Siegel disks.

(2) There are infinitely many singular values sj for f in at least one of the basic regions 
Bi, say B0, and a sequence nj −→

j→∞
∞ such that fn(sj) ∈ Bn for all n ≤ nj. The 

orbits {fn(sj)}j∈N,n≤nj
accumulate either on the non-repelling interior cycle, or on 

the boundary of the associated Siegel disk.

The first case always occurs if X is attracting or parabolic or if f has only finitely many 
singular values.

Moreover, in case (1), the orbit of s does not accumulate on any other interior periodic 
cycle or on any point on the boundary of a Siegel disk Δ /∈ X (provided the point is not 
on a periodic ray or a periodic point).

We are now ready to prove the Main Theorem. We remark that Theorems 5.1 and 
Theorem 6.1 are stronger than the Main Theorem in that they do not require finiteness 
of the number of singular orbits which do not belong to attracting or parabolic cycles.

Proof of Main Theorem. Suppose by contradiction that there are at least q + 1 cycles 
of Siegel disks, Cremer points, or rationally invisible repelling periodic orbits (possibly 
infinitely many). Let p be the product of their periods. Each element in each of the q+1
cycles is fixed by fp hence belongs to a different basic region for fp by Theorem 2.6. In 
particular, there are q+1 disjoint collections of basic regions whose interior periodic orbit 
is either a cycle of Cremer point, a cycle of centers of Siegel disks, or a rationally invisible 
repelling periodic orbit. By Theorem 5.1, and since finitely many singular orbits which 
do not belong to attracting or parabolic basins, we have that each collection of basic 
regions which contains a rationally invisible repelling periodic orbit contains a singular 
orbit. By Theorem 6.1, the same is true for collections of basic regions which contain 
either Cremer points or centers of Siegel Disks. This gives q+ 1 singular orbits which do 
not belong to attracting or parabolic basins, a contradiction. �
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