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Abstract

Let f be a map with bounded set of singular values for which periodic dynamic rays
exist and land. We prove that each non-repelling cycle is associated to a singular orbit
which cannot accumulate on any other non-repelling cycle. When f has finitely many
singular values this implies a refinement of the Fatou-Shishikura inequality. Our approach
is combinatorial in the spirit of the approach used by [Kiw00], [BCL+16] for polynomials.

1 Introduction

Consider the iteration of an entire transcendental map f : C → C. The map f fails to
be a covering due to the presence of singular values, that is the set S(f) of points near
which not all inverse branches of f−1 are well defined and univalent. While the singular
values of rational maps are always critical values (images of zeros of f ′ or critical points),
transcendental functions may have also asymptotic values, and we have that

S(f) = {critical and asymptotic values for f}.

Recall that s ∈ C is an asymptotic value if there exists a curve γ : [0,∞)→ C such that
|γ(t)| → ∞ as t→∞ and f(γ(t))→ s as t→∞ (for example, s = 0 is an asymptotic value
for the map z 7→ exp(z), and the curve γ can be taken to be the negative real axis).

Special classes of maps are singled out in terms of their set of singular values and will be
important for our discusion. More precisely define

S = {f : C→ C entire | #S(f) <∞}
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and

B = {f : C→ C entire | S(f) is bounded},

Class S and class B are known as the Speiser class and the Eremenko Lyubich class respec-
tively. The elements in S are called finite type maps while those in B are of bounded type.

Singular values play a crucial role to understand the dynamics of f . Indeed, using local
dynamics it is possible to investigate the relation between singular orbits and non-repelling
cycles. For example it is well known that each cycle of parabolic and attracting basins contains
a singular value [Fat20, Mil06]. Using normal families arguments one can also see that Cremer
points and all points in the boundary of Siegel disks are contained in the accumulation set
of the orbits of the singular values [Fat20, Mil06]. While the orbit of a singular value which
belongs to an attracting or parabolic basin is fully contained in the basin and only accumulates
on the attracting or parabolic point associated to the basin, it is not clear using only local
theory that a unique singular orbit cannot accumulate, for example, on many Cremer cycles
or cycles of boundaries of Siegel disks.

Nevertheless, using perturbation arguments in the finite dimensional space of rational
maps of degree d ≥ 2, Fatou [Fat20] was able to show that the number of non-repelling cycles
of a rational map of degree d ≥ 2 is bounded by 4d − 2, that is twice the number of its
critical points counted with multiplicity. Afterwards he conjectured that the optimal bound
should be 2d− 1. With this goal in mind, Shishikura [Shi87] used quasiconformal surgery to
perturb simultaneously all indifferent cycles to attracting ones, proving Fatou’s conjecture,
known nowadays as the Fatou-Shishikura inequality. A simpler proof for polynomials using
perturbation in the class of weakly polynomial-like maps can be found in [DH85], while a
different approach using quadratic differentials is in [Eps99]. Later on, it was proven in [EL92,
Theorem 5] and [GK86] that for an entire transcendental map of finite type, the number of
non-repelling cycles is also bounded by the number of singular values of the map, proving
the Fatou-Shishikura inequality for this class S of functions.

All these results, like those on the non-existence of wandering domains for these finite-
dimensional families, are based on arguments in parameter space, and, despite giving a sharp
bound, they do not provide dynamical information on how exactly the orbits of the singular
values relate to the non -repelling cycles. For example, a priori if the function has q singular
values and q Cremer cycles there could be a unique singular value whose orbit accumulates
on the q Cremer cycles while the remaining q − 1 singular values do not accumulate on any
Cremer point.

A different combinatorial approach for polynomials with connected Julia sets was sug-
gested by Kiwi [Kiw00]. Kiwi’s approach is dynamical and associates to each non-repelling
cycle a specific singular orbit. Observe that for polynomials the Julia set fails to be con-
nected only when singular values are escaping. This is a well understood case and Kiwi’s
approach can be extended to the case in which the Julia set is not connected (compare with
[BCL+16]). Very recently another dynamical approach involving laminations and fibers was
used in [BCL+16] to prove a more general version of the Fatou-Shishikura inequality for poly-
nomials, which takes into account also wandering branch continua. These new approaches
prove among others the following statement, which is slightly stronger than the classical
Fatou-Shishikura inequality.
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Proposition 1.1 ([BCL+16]). Let P be a polynomial. Then any non-repelling cycle is asso-
ciated to a weakly recurrent critical point, and distinct non-repelling cycles are associated to
distinct critical points.

It is a natural question whether these stronger versions for polynomials hold also for their
transcendental analogues, that is for entire transcendental maps of finite type. And even
further, whether or how far they can be pushed when dealing with maps with an infinite
number of singular values. This approach is inlaid in the frame of understanding whether
these relationships between singular values and non-repelling cycles are intrinsically of local
nature or instead rely on the global structure of the families of maps under consideration.

In this paper we combine the main results in [BF15] with classical normal families argu-
ments and some combinatorics to give some answers to both of these questions. Our main
result (Theorem 1.3) applies to maps in class B with some additional conditions and, when
applied to functions of finite type gives the transcendental version of Proposition 1.1.

More precisely let B̂ ⊂ B be the class of entire transcendental functions defined in
[RRRS11] for which the escaping set consists of curves, known as dynamic rays (see Sec-
tion 2). Class B̂ contains all functions in B which are either of finite order or composition of
functions of finite order in class B. A dynamic ray G is periodic if fn(G) = G for some n ∈ N
and we say that a ray lands if G \ G = {z0} ⊂ C. Finally a rationally invisible repelling
point is a repelling periodic point which is not the landing point of any periodic ray (see
Remark 3.4).

Proposition 1.2 (Fatou-Shishikura inequality). Let f be an entire transcendental map in
class B̂ with N < ∞ singular values, whose periodic rays land. Then f has at most N
non-repelling cycles.

Moreover for each non-repelling cycle X there exists at least one singular orbit {fn(s)}n∈N
with s ∈ S(f) which is associated to X in the sense that

(1) {fn(s)}n∈N accumulates on every element of X (or, the boundaries of the Siegel disks
containing X );

(2) {fn(s)}n∈N does not accumulate on any other non-repelling cycle, nor on any rationally
invisible repelling point, nor on any point on the boundary of a Siegel disk ∆ /∈ X
(provided the point is not on a periodic ray or a periodic point).

Let us make some comments on the statement above. For functions of finite type, Propo-
sition 1.2 gives more information than the classical Fatou-Shishikura inequality in [EL92],
since it associates individual singular orbits to individual non-repelling cycles rather than
relying on a global counting of the number of singular values and the number of non-repelling
cycles. However our proof requires the existence of dynamic rays (which is ensured by assum-
ing that f is a composition of functions of finite order in class B), and that periodic dynamic
rays land. Although it is expected that all periodic rays land except those whose forward
orbit hits a singular value (as it is the case for polynomials), so far this has only been proven
for the family ez + c [Rem06]. The hypothesis of landing of periodic rays is implied by the
requirement that the postsingular set
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P(f) :=
⋃

n∈N,s∈S(f)

fn(s).

is bounded, but the latter is in general a much stronger hypothesis. For example, when
the map is f(z) = ez + c, having bounded postsingular set implies non-recurrence of the
asymptotic value.

Observe also that the statement is most meaningful when thinking of the interplay be-
tween singular orbits and irrationally indifferent cycles. Indeed, if X is an attracting or
parabolic cycle, the cycle of its attracting basins contains a singular value [Mil06], so to
each attracting or parabolic cycle is associated trivially a singular orbit in the sense Propo-
sition 1.2. Conversely, it is obvious that the singular orbits accumulating on a Cremer cycle
or a cycle of boundaries of Siegel disks cannot intersect any attracting or parabolic basin.

Finally we remark that it is not known whether it is possible for boundaries of Siegel
disks to contain periodic points or points belonging to periodic rays. If this were never the
case, the special case at the end of (2) could be removed.

Since our methods are dynamical and do not rely on perturbations in finite-dimensional
parameter spaces, we also obtain results for functions with infinitely many singular values. In
order to be able to state such results we need some additional understanding of the structure
of the dynamical plane for a function f ∈ B̂ whose periodic rays land.

We say that a periodic dynamic ray G (of period p) lands alone if its landing point is
not the landing point of any other dynamic ray (of period p). By recent results in [BRG17],
the concept of landing alone is independent of the period, so we will omit it. For any p ≥ 1,
consider the closed graph Γp formed by rays which are fixed under fp and which do not land
alone, together with their landing points. The graph Γp disconnects C into open unbounded
regions, called basic regions (for fp).

The Separation Theorem in [BF15] (see Section 2, and [GM93] for polynomials), states
that, even though the number of fixed rays by fp is infinite, the number of basic regions
is finite, and each of them contains exactly one of the following: either a parabolic basin
invariant under fp; or an attracting point fixed by fp; or a Siegel point fixed by fp; or a
Cremer point fixed by fp; or a repelling point fixed by fp which is not the landing point
of any fixed ray (of fp). Following [GM93], the attracting, Siegel, Cremer or repelling fixed
point is called an interior fixed point (for fp), and the invariant parabolic basin is called a
virtual fixed point (for fp).

Our main theorem is the following:

Theorem 1.3 (Singular orbits trapped in basic regions). Let f be an entire transcendental
map in class B̂ whose periodic rays land. Let X be a cycle of Siegel disks, attracting basins,
parabolic basins or Cremer points of period q and let p be any multiple of q. Let {Bi}i=0...q−1
be the basic regions for fp containing the elements of X . Then, up to relabeling the indices,
at least one of the following is true.

(1) There exists a singular value v for f such that v ∈
⋃q−1
i=0 Bi, say v ∈ B0, and such

that fn(v) ∈ Bi whenever n mod q = i. The orbit of v accumulates either on the
non-repelling cycle or on the boundary of the cycle of Siegel disks.
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(2) There are infinitely many singular values sj for f in at least one of the basic regions
Bi, say B0, and a sequence nj −→

j→∞
∞ such that fn(sj) ∈ Bi whenever n mod q = i for

all n ≤ nj. The orbits {fn(sj)}j∈N,n≤nj accumulate either on the non-repelling interior
cycle, or on the boundary of the associated Siegel disk.

The first case always occurs if X is attracting or parabolic or if f has only finitely many
singular values.

Moreover, in case (1), the orbit of v does not accumulate on any other interior periodic
cycle or on any point on the boundary of a Siegel disk ∆ /∈ X (provided the point is not on a
periodic ray or a periodic point).

Theorem 1.3 implies for example that if f has infinitely many singular values, all but
finitely many of which are in an attracting or parabolic basins, then f has at most as many
additional non-repelling cycles as the number of ’free’ singular values. This fact is certainly
not surprising but we believe it does not follow directly from the results by Eremenko and
Lyubich [EL92], whose proof uses perturbation in a finite-dimensional parameter space.

If all singular values but finitely many are escaping, the situation is not clear. For example,
let ∆ be a bounded Siegel disk and let Cn be a sequence of finite coverings of ∂∆ by balls
of radius 1/n→ 0. Then if we have infinitely many escaping singular values {sj}j∈N we can
make the singular orbit of sj visit all balls in Cj before escaping infinity.

We believe that our methods work also when f ∈ B \ B̂. In that case the role of dynamic
rays is taken by analogous, non-pathconnected objects called dreadlocks [BRG17]. One would
need to prove the separation theorem using dreadlocks instead of rays and assume that
periodic dreadlocks land. Such extension would remove the function theoretical assumption
on f .

The paper is organized as follows. Section 2 contains some of the background results that
will be used throughout the paper. Section 3 is aimed at proving the main result (Theorem
1.3) and some corollaries including Proposition 1.2.

Acknowledgements
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2 Background

Let f be an entire transcendental function in class B and let D be a disk containing S(f). The
connected components of f−1(C \D) are called tracts and they are unbounded and simply
connected. By definition for any tract T we have that f : T → C\D is an unbranched covering
of infinite degree. Let T denote the union of all tracts. One can easily show that there exists
a (piecewise analytic) curve δ ⊂ C \ (D ∪ T ) connecting δ to ∞ [Rot05]. The preimages of
C \ (D∪ δ) are called fundamental domains and, since fibers are discrete, it follows that only
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finitely many tracts and fundamental domains intersect D. For any fundamental domain F
we have that

f : F → C \ (D ∪ δ)

is a biholomorphism. We refer to [EL92], [RRRS11] and [BF15] for details and other proper-
ties.

Functions in class B have expansive properties near infinity inside fundamental domains,
as shown in the following lemma.

Lemma 2.1 ([BF15, Proposition 2.6]). Let F = {Fα}α=1...N be a finite collection of fun-
damental domains. Then for any R large enough there exists an (analytic) Jordan curve γ
in {|z| > R} such that the preimages γα ⊂ Fα of γ are contained in the bounded connected
component of C \ γ.

Fundamental domains are endowed with a natural cyclic order, and can be used to define
symbolic dynamics on the set of escaping points (or at least, those which stay far enough from
D if the postsingular set is not bounded). This allows to define sets of escaping points which
share the same itinerary. If f ∈ B̂, it is shown in [RRRS11] that the tracts have a nice enough
geometry to prove that these sets of escaping points are injective curves, called dynamic rays,
and that each escaping point belongs to a dynamic ray or a preimage thereof. More precisely,
let Σ be the set of infinite sequences whose symbols are the fundamental domains of f , and
let σ be the left-sided shift map acting on Σ. The elements of Σ are called addresses. An
address is bounded if it takes values over a finite family of fundamental domains, and periodic
if it is a periodic sequence. The following statement summarizes the relation between these
objects.

Theorem 2.2 ([RRRS11]). Let B̂ ⊂ B be the class of maps formed by finite compositions of
finite order maps in B. Then there exists N ⊂ Σ such that the if z ∈ I(f), then for n large
enough fn(z) belongs to an injective unbounded curve Gs ⊂ I(f) called the dynamic ray of
address s for some s ∈ N . The correspondence s 7→ Gs is injective and Gs ∩ Gs̃ = ∅ for
s 6= s̃. Dynamic rays satisfy the relation

f(Gs) = Gσs.

A dynamic ray Gs is periodic if s is periodic, and has bounded address if s is bounded. The
set N of addresses which are realized depends on the class of f as defined in [EL92, Rem09],
but N always contains the set of bounded addresses [Rem08, BK07] and addresses which are
exponentially bounded in the sense of [BRG17]. For the exponential family N is completely
characterized [SZ03]. For more on the characterization of N see [ABR17].

The initial idea of finding curves in the escaping set goes back to [DT86, DK84, BK07].
For functions with not as beautiful a geometry as functions in class B̂, the role of dynamic
rays is played by more general connected sets of escaping points called dreadlocks [BRG17].

We say that an unbounded set X is asymptotically contained in another unbounded set
U if and only if there exists R such that X ∩ {z ∈ C : |z| > R} ⊂ U . It is not hard to see
that a ray Gs of address s = F0F1 . . . is asymptotically contained in the fundamental domain
F0. Also, for each fundamental domain F there exists a unique fixed ray with address F (see
[Rem08], [BK07] and [BF15, Lemma 2.3]) and which is asymptotically contained in F .
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The proof of Theorem 1.3 uses strongly the following theorem.

Theorem 2.3 (Separation Theorem [BF15]). Let p ≥ 1 and f ∈ B̂ and assume that all fixed
rays of fp land. Then there are finitely many basic regions for fp, and each basic region
contains exactly one interior fixed point or virtual fixed point of fp.

Theorem 2.3 was inspired by an analogous Separation Theorem by Goldberg and Milnor
[GM93] for polynomials with connected Julia sets, a condition equivalent to requiring that
the postcritical set is bounded and which implies that all periodic rays land. So in the
transcendental setting, the assumption that all periodic rays land is weaker than than the
hypothesis that the postsingular set is bounded.

Goldberg-Milnor’s Separation Theorem and Theorem 2.3 have many corollaries, including
that parabolic points are always landing points of periodic dynamic rays, and that hidden
components of a Siegel disk are preperiodic to the Siegel disk itself (see [CR16] and [BF17]
for an application of this fact to the existence of critical points on the boundary of Siegel
disks). See also [Kiw00].

3 Singular Values and Basic Regions

In this section we prove Theorem 1.3 and Proposition 1.2. Consider an entire transcendental
map f ∈ B̃ whose periodic rays land, and consider the basic regions for fp for some p ∈ N.
By the Separation Theorem 2.3, each basic region contains exactly one interior fixed point
for fp or an attracting parabolic basin fixed under fp.

We shall make a further distinction between different types of basic regions. See Figure
1.

Definition 3.1 (Basic regions of transcendental and polynomial type). A basic region B is
called of polynomial type if B ∩ (C \ T ) is bounded and of transcendental type otherwise.

The following proposition is not surprising, and we will not need it in the sequel, but
we include it because it illustrates the fact that transcendental behaviour, as for example
the presence of unbounded Fatou components, only appears associated to basic regions of
transcendental type.

Proposition 3.2 (Bounded Fatou Components). Let Q be a periodic Siegel disk, a periodic
attracting basin, or a periodic parabolic basin of period q which is contained in a basic region
B of polynomial type for fp, with p multiple of q. Then Q is bounded, and either ∂Q∩ ∂B is
empty or it is contained in the set of boundary fixed points.

Proof. Without loss of generality we can assume that the period is 1 and that B is a basic
region for f . Let z0 be the attracting, indifferent or parabolic interior fixed point for B. We
will only prove the case in which z0 is the center of a Siegel Disk ∆, since the other two cases
are very similar.

Since B is of polynomial type and rays are asymptotically contained in fundamental
domains, B intersect finitely many fundamental domains. Indeed, the boundary of B is
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Figure 1: Basic regions of polynomial type (orange) and transcendental type (blue). Fixed rays and
their landing points are shown in grey. In red, the curve δ and its preimages, which, together with
the track boundaries (black) bound the fundamental domains.

made of finitely many rays pairs union the point ∞. While moving along the boundary of B
counterclockwise (passing trough infinity when moving from one ray pair to the other), any
two consecutive rays which do not land together belong to the same tract (otherwise B \ T
would be unbounded), hence there are only finitely many fundamental domains between
them. Since ∂B contains finitely many ray pairs and fundamental domains have a cyclic
order, B intersect finitely many fundamental domains.

Let γ, γα be as in Lemma 2.1. Consider the region B̂ obtained by cutting B with the
arcs γα. By choice of γα, B̂ is contained in the bounded connected component of C\γ, hence
f(γα) ∩ B̂ = ∅. Let us start by showing that ∆ ⊂ B̂.

Let φ : D → ∆ be the Riemann map conjugating f to a rotation, and for all r < 1 let
Vr := φ(Dr). Let r0 := sup{r : Vr ⊂ B̂}. Observe that ∆ ⊂ B̂ if and only if r0 = 1. Suppose
that r0 < 1. Since ∆ is fully contained in B, we would have that ∂φ(Vr0) ∩ γα 6= ∅. But

since Vr0 ⊂ B̂ is forward invariant, we have that f(Vr0) ⊂ B̂, while f(γα) ⊂ C \ B̂ by choice
of γα, this gives a contradiction. So r0 = 1, ∆ is fully contained in B̂ and in particular it
is bounded. Since it is bounded its boundary cannot contain escaping points, and since it is
contained in B̂ and forward invariant it cannot intersect rα (again because f(rα) ⊂ C \ B̂).
So ∂∆ ∩ ∂B contains at most the boundary fixed points.

We observe that one could prove Proposition 3.2 also by using weakly polynomial-like
maps.

Remark 3.3. It seems to be a difficult problem to know whether there can be (repelling)
periodic points on the boundaries of Siegel disks. For polynomials, it is known that if such
a case occurs, then the boundary of the Siegel Disk is an indecomposable continuum. By
Pérez-Marco [PM97], there are no periodic points on the boundary of a Siegel disk if the
latter has a neighborhood on which f and f inverse are well defined and univalent (he calls
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this Siegel Disks of type I). It is also not unlikely to think that the boundary of unbounded
Siegel Disk could contain escaping points. Observe that rays can not only intersect, but even
be contained in the boundaries of attracting basins; for example, when the map λez has an
attracting fixed point with a completely invariant basin of attraction, it is known that the
Julia set equals the boundary of such basin and consists of curves of escaping points together
with their landing points. Proposition 3.2 ensures that there cannot be escaping points on
the boundary of Fatou components which are in a basic region of polynomial type.

We now proceed to prove the main result in the paper.

Proof of Theorem 1.3. Let X be as in the statement. If it is a cycle of attracting or parabolic
basins there is nothing to prove since each such cycle contains a singular orbit. The proof
is a refinement of the classical fact that Cremer points and the boundaries of Siegel disks
are contained in the postsingular set (see Corollary 14.4 in [Mil06, Corollary 14.4] for Siegel
Disks and [Bea91, Theorem 9.3.4] for Cremer points).

Siegel case. Let X = ∆0,∆1, . . .∆q−1 be a cycle of Siegel disks of period q. Fix any p
multiple of q and let {Bi}i=0...q be the q basic regions for fp containing the images ∆1 . . .∆q−1
of ∆ = ∆0, with f(∆i) = ∆i+1 and all indices are taken modulo q. Let us define the set of
singular values SB := S(f) ∩ (∪Bi), and let us define

PB :=
⋃

s∈SB , n≤ns

fn(s),

where ns ≤ ∞ is the largest integer such that fns (s) ∈ ∪Bi for all n ≤ ns.
Let w ∈ ∂∆0 \ ∂B0: such a point exists, or otherwise we would have ∆0 = B0, which is

impossible (B0 contains, for example, rays, which cannot intersect ∆0).

Let us first show that w ∈ PB. Suppose by contradiction that there exists a simply
connected neighborhood U of w with U ∩ PB = ∅. Let us see that this implies that for each
n there is a unique univalent inverse branch φn of f−n such that φn(∆0 ∩ U) ⊂ ∆−n mod q;
this would be the same as in [Mil06] if we were considering P instead of PB, but in our case
requires a further argument. Since w ∈ ∂∆0 \ ∂B0, up to restricting U we can assume that
U ⊂ B0. Observe that any preimage V of U under fn with V ∩∆i 6= ∅ for some i, is fully
contained in Bi. (Indeed, the graph Γp formed by the closure of the rays invariant under fp is
invariant under f . So, if there was a point z ∈ ∂(∪Bi)∩V ⊂ (Γp ∩V ), by forward invariance
of Γp we would have f(z) ∈ U ∩ ΓP , a contradiction.)

So for each n there is a unique univalent inverse branch φn of f−n such that φn(∆∩U) ⊂
∆−n mod q; the {φn} form a normal family by Montel Theorem because they can be chosen
to omit two values (say, a repelling orbit of period at least two which does not intersect U).
Hence a subsequence φnk

converges locally uniformly to an analytic limit map φ : U → φ(U).

The map φ is not constant because no subsequence of φn is converging to a constant on ∆0.
On the other hand, let D b φ(U) be a slightly smaller topological disk still intersecting the
Julia set. Then for n large, φn(U) ⊃ D, hence fn|D ⊂ U for infinitely many n, contradicting
the fact that D intersects J(f).

So φn is defined and univalent on U only for n ≤ n1 with n1 maximal (possibly, n1 = 0 if
U contains singular values). Since univalent branches in a simply connected open set V are
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well defined and univalent only if V does not contain singular values, it follows that there is
a singular value s1 for f such that s1 ∈ φn1(U). In particular, fn(s1) ∈ fn(φn1(U)) ⊂ ∪Bi
for all n ≤ n1. The same argument can be repeated for a decreasing sequence {Uj} of nested
simply connected neighborhoods of w, obtaining an infinite sequence of points wj = fnj (sj)
accumulating on w with sj ∈ SB and fn(sj) ∈ ∪Bi for n ≤ nj .

Now there are two (non-exclusive) cases. Suppose first that sj = s for some s ∈ S(f) and
infinitely many j. In this case nj →∞, fn(s) ∈ ∪Bi for all n and case (1) occurs. If this case
does not occur, then there are infinitely many distinct sj ∈ SB such that fn(sj) ∈ ∪Bi for
n ≤ nj and we are in case (2). In this case either nj →∞ or, if nj has a bounded subsequence,
case (1) occurs. Indeed, if nj has a bounded subsequence, there is some minimal N > 0 and
a subsequence jk such that fN (sjk) converges to w. This implies that sjk → φN (w) hence
since S(f) is closed, φN (w) ∈ S(f) ∩ ∂∆. Since the union of the boundaries of the Siegel
disks in the forward orbit of ∆ is forward invariant, φN (w) satisfies the hypothesis of case
(1).

Since singular values of f q are the first q− 1 images of singular values for f , it is directly
implied by the construction that each Bi contains a singular value si for f q for which fnq(si) ∈
Bi for all n ∈ N such that nq ≤ n(si).

Cremer case. Let z0 be a Cremer fixed point. The proof is the same as in the Siegel
case except that the inverse branches φn are defined so as to fix z0, and the limit function φ
is non-constant because |φ′n(z0)| = 1 for all n.

Now suppose we are in case (1) and let v ∈ B0 be the singular value for the cycle X . Let
Y be any other interior cycle of period `. Let p = ` · q. By the Separation Theorem, elements
of X and elements of Y belong to different basic regions for fp and therefore the orbit of v is
disjoint from the basic regions containing Y.

Remark 3.4. A repelling periodic point which is not the landing point of any periodic ray
of any period is called rationally invisible and is an interior fixed point for fp for all p. It is
expected that every repelling periodic orbit is the landing point of at least one but at most
finitely many periodic rays of the same period, although partial results are only available
when the postsingular set is bounded [Hub93], [BL14], [BRG17]). Theorem 1.3 together with
the Separation Theorem implies that the singular orbits given by case (1) cannot accumulate
on any rationally invisible repelling periodic point, since the latter belongs to different basic
regions for fp than X when p is large enough.

The next Proposition is another practical application of the philosophy that polynomial-
type regions are associated to polynomial-type behaviour.

Proposition 3.5 (Regions of polynomial type). Under the assumptions of Theorem 1.3, the
first case always occurs if at least one of the Bi is a basic region of polynomial-type. In this
case the singular value given by Theorem 1.3 is in fact a critical value.

Proof. Suppose that B0 is a basic region of polynomial type. Consider the cut region B̂0 ⊂ B0

as in Proposition 3.2. Observe that ∂B̂0 \ ∂B0 = {γα}. In the construction above notice that
φn(U) ⊂ B̂0 for all n, otherwise φn(U) would contain points in γα for some minimal n which
is impossible because f(γα)∩ B̂0 = ∅ and φn−1(U) ⊂ B̂0. This implies that all singular values
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preventing the continuation of the corresponding inverse branches are critical values, since
finite non-critical preimages of singular values do not obstruct the extension. Since B̂0 is
bounded it contains only finitely many critical points, hence finitely many singular values,
and one of them has to accumulate on ∂∆ infinitely many times implying the occurrence of
case (1).

From the proof of Theorem 1.3 we obtain the following corollary, which says that every
basic region B for fp whose interior fixed point is non-repelling contains either infinitely
many singular values for fp, or at least a singular value for fp which returns to B infinitely
many times.

Corollary 3.6 (Singular Values and basic regions). Let f be a polynomial or an entire
transcendental map in class B̂ whose periodic rays land. Let B be a basic region for fp whose
interior fixed point z0 is non-repelling, or which contains an attracting parabolic basin. Then
at least one of the two following cases occur:

1. B contains at least one singular value s for fp whose orbit fnp(s) is contained in B for
all n ≥ 0 and accumulates either on the parabolic, attracting or Cremer fixed point, or
on the boundary of the associated Siegel disk.

2. B contains infinitely many singular values sj for fp such that fpn(sj) ∈ B for all
n ≤ nj → ∞ as j → ∞, and {fpnj (sj)}n,j accumulates either on the interior periodic
point, or on the boundary of the associated Siegel disk.

The first case always occurs if z0 is attracting, or B contains a parabolic basins, or B is
a basic region of polynomial-type, or f has finitely many singular values.

Proof of Corollary 3.6. Let B be a basic region for fp whose interior fixed point is non-
repelling. If the interior fixed point is attracting, or if B contains a parabolic basin invariant
under fp, there is nothing to prove, since in this case the cycle of basins contains a singular
orbit for f . So we can assume that B contains either a Cremer point z0 or a Siegel disk ∆ of
period q, which necessarily divides p since it is fixed under fp. The claim then follows from
Theorem 1.3, and the fact that S(fp) = S(f) ∪ f(S(f)) ∪ . . . ∪ fp(S(f)).

The fact that polynomial type basic regions are always in case (1) follows from Proposition
3.5.

As the final corollary of Theorem 1.3 we obtain the improvement on the classical Fatou
Shishikura mentioned in the introduction.

Proof of Proposition 1.2. Suppose by contradiction that f has q singular values and more
than q non-repelling cycles (possibly infinitely many). Take N + 1 of them and let p be the
product of their periods. Each element in each of the N+1 cycles is fixed by fp hence belongs
to a different basic region for fp. In particular, there are N + 1 disjoint collections of basic
regions which by Theorem 1.3 have to contain each a singular value for f as well as its entire
orbit, giving a contradiction.
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Let X be any non-repelling cycle of period q and let s be the singular value given by
Theorem 1.3. Let Y be any other non-repelling cycle or a rationally invisible repelling periodic
cycle of period `. Let p = ` · q. Then elements of X and elements of Y belong to different
basic regions for fp. By part 1. in Theorem 1.3 the orbit of s is disjoint from the basic
regions containing Y.
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