THE LIMIT CYCLES OF A CLASS OF PIECEWISE DIFFERENTIAL SYSTEMS

IMANE BENABDALLAH!, REBIHA BENTERKI! AND JAUME LLIBREZ

ABSTRACT. In this century many papers have been published on the piecewise differential systems in
the plane. The increasing interest for this class of differential systems is motivated by their many
applications for modelling several natural phenomena. One of the main difficulties for controlling the
dynamics of the planar differential systems consists in determining their periodic orbits and mainly their
limit cycles. Hence there are many papers studying the existence or non-existence of limit cycles for
the discontinuous and continuous piecewise differential systems. The study of the maximum number of
limit cycles is one of the biggest problems in the qualitative theory of planar differential systems. In
this paper we provide the maximum number of limit cycles of a class of planar discontinuous piecewise
differential systems formed by an arbitrary linear center and an arbitrary quadratic center, separated
by the straight line x = 0. In general it is a hard problem to find the exact upper bound for the number
of limit cycles that a class of differential systems can exhibit. We show that this class of differential
systems can have at most 4 limit cycles. Here we also show that there are examples of all types of these
differential systems with one, two, three, or four limit cycles.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

A planar polynomial differential system is a system of the form
(1) i=Plz,y), §=0Q(@xy),

where P(z,y) and Q(z,y) are polynomial, and the maximum degree of these polynomials is the degree
of this system.

In the study of differential systems the existence of periodic solutions is very important because they
play an important role in many natural phenomena. An isolated periodic orbit in the set of all periodic
orbits of a differential system is called a limit cycle.

This paper deals with discontinuous piecewise differential systems of the form

Fo(z,y) = (Ff(fvvy),F{(ﬂc,y))T yexrT,
Fray) = (Fr ). B @) yest,
such that the separation line of the plane is ¥ = {(z,y) : « = 0} and
27 ={(z,y) 2 <0}, BT ={(z,y):2 >0}
In this paper we shall work with discontinuous piecewise differential systems in R?, and the definition

of these differential systems on the separation line of their two pieces in R? follows the rules of Filippov
[12].

Research on discontinuous piecewise linear differential systems started with the studies of Andronov,
Vitt and Khaikin about 1930 in [1]. Recently the dynamics of piecewise differential systems appears
frequently in many fields of applied mathematics, mechanics, electronics, economics, neuroscience, etc.,
see for instance [7, 22, 23].

(2) (#,9) = F(z,y) =
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The second part of the famous sixteenth Hilbert problem consists in finding an upper bound for the
maximum number of limit cycles that the polynomial differential systems in the plane of a given degree
can have, see [14, 15, 18]. In the last years many authors have been involved in solving the extension of
this problem to some classes of discontinuous piecewise differential systems.

In the literature we find many papers interested in studying piecewise differential linear systems sep-
arated by either a straight line or an algebraic curve, such as a conic or a reducible or irreducible cubic
curve, see for instance [2, 4, 5, 6, 8, 9, 11, 13, 21].

In [19] it is studied the maximum number of limit cycles of the planar continuous piecewise differential
systems formed by an arbitrary linear center and an arbitrary quadratic center, separated by a parabola.

The main goal of this paper is to solve the extension of the second part of the sixteenth Hilbert problem
to the class of discontinuous piecewise differential systems formed by an arbitrary linear center and an
arbitrary quadratic center separated by the straight line x = 0.

Using the first integrals of the linear and quadratic centers we will obtain a set of equations whose solu-
tions provide the upper bound for the maximum number of limit cycles for the class of the discontinuous
piecewise differential systems that we study.

Lemma 1. Every linear center after doing a linear change of variables and a rescaling of the independent
variable can be written as

4% + w?
(3) Jb:—ﬁx—%y—&—al, Uy =ax+ By + 61, with w >0, a>0,

and its first integral is

(4) H(z,y) = 8a(b1z — 01y) + 4(az + By)” + v w?.

For a proof of Lemma 1 see [20].

In the following result we give a normal form of the quadratic centers, for a proof see for instance
Theorem 8.15 of [10].

Theorem 2 (Kapteyn-Bautin Theorem). Any quadratic system candidate to have a center can be written
after an affine transformation and a rescaling of the independent variable in the form
(5) & =—y—ba?—Cxy—dy?, y=ux+az®+ Azy— ay’.
This system has a center at the origin if and only if one of the following conditions holds
(i) C=a=0,

(i3) b+d=0,

(iii) C+2a=A—-2b=0,
(iv) C+2a=A+3b+5d=a*+ bd +2d* = 0.

The results stated in the next theorem do not depend on which half-plane x > 0 or x < 0 are located
the linear and the quadratic centers.

Our main results is stated in the next theorem.

Theorem 3. The maximum number of limit cycles of the discontinuous piecewise differential systems
separated by the straight line 3 and formed by an arbitrary linear center and an arbitrary quadratic center
satisfying the condition of Kapteyn-Bautin Theorem of

(I) type C =a =0 is three if A= —b# 0, and one if ether A=0%#b, orb=0# A, or A=b=0.
There are discontinuous piecewise differential systems of these types with three limit cycles see
Figure 1(a) and with one limit cycle see Figure 1(b).
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(IT) type b+ d = 0 is three if either A+b =0 and b # 0, or AbC(A + b)(4b(A +b) + C?) £ 0, or
b=C=0,0rA=0andb#0, orb=0 and A # 0; two if (4b(A + b) + C?) = 0; and one if
A =0b=0. There are discontinuous piecewise differential systems of this type with three limit
cycles see Figure 2(a) and with one limit cycle see Figure 2(b).

(IT1) type C +2a = A —2b = 0 is one. There are discontinuous piecewise differential systems of this
type with one limit cycle, see Figure 3(a).

(IV) type C +2a = A+ 3b+5d = a® + bd + 2d*> = 0 is four. There are discontinuous piecewise
differential systems of this type with four limit cycles, see Figure 3(b).

Theorem 3 is proved in section 3.

(a) (b)

FIGURE 1. (a) The three limit cycles of the discontinuous piecewise differential system

(22)—(23), and (b) the unique limit cycle of the discontinuous piecewise differential system
(24)—(25).

b

(a) (0)

FIGURE 2. (a) The three limit cycles of the discontinuous piecewise differential system

(26)—(27), and (b) the unique limit cycle of the discontinuous piecewise differential system
(28)-(29).

2. Quadratic centers after an affine change of variables

In this section we give the expression of an arbitrary quadratic differential center with its corresponding
first integral obtained after the general affine change of variables {x — a1z +y1y+1,y = asx+y2y+0d2}
with a2 — asyr # 0.
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FIGURE 3. (@) The unique limit cycle of the discontinuous piecewise differential system
(30)—(31), and (b) the four limit cycles of the discontinuous piecewise differential system
(32)—(33).

Thus system (5) becomes

T = Qo1 1 a1y <m2 (ami(a1 — az)(a1 + az) + Aaraayr + 72 (@b + a1a2C + a3d)) + y*(a
Y} + 72 (A+ )13 (C — a) +73d) + 81 (ay11 + by201 +71) + da (A1
+72 +72061) + 63 (v2d — am1)y(r1y2(—2ads + Ady + 2b61 + Cda) + vi(2ady
+A83 + 1) +72(Coy + 2d52 + 1)) + z(a1 (2av2y + 71 + 2a7161 + 1172y + (A

+2b) + Ay102 4 207201 + 72C (62 + 12y)) + a2(AY1(01m1Yy) + Y2 — 2a71 (52

+72y) + 72 + C(01 + My) + 272d(52 + 72y)))>7
1

j= — <x2 (aa + a103(C — a) + A az(A+b) + add) + y(aca (v — v2) (11 + 72)
Q172 — Q21

+y2(Aaryr + a1 C + agyed) + asby?) + 01(aar 61 + aq + azbdy) + 83
(Oégd — CLOZl) —+ (52(14@1(51 —+ (65 + a2061) —+ y(a1(2a'yl51 — 20/}/2(52 + A7152
—I—A’}/Q(Sl + ’y1) + a2(2b7161 + v2 + ’}/1052 + 12Cd1 + 2’}/2d52)) + :13(0&1042

(—(2a = C) (02 +72y) + A(01 +71y) + 20(1 +my)) + af(2a(51 +m1Yy)
A2 +929) +1) + 03(C(01 + ) + 2452 +729) +1))).

For its corresponding first integral we distinguish the following cases.

I. The quadratic system (6) satisfying condition (i) of Theorem 2. The corresponding first
integral of this differential system if A = —b # 0 becomes

(7) Hl(l)(xa y) = (A(d2 + aox + y2y) + 1)2d621(1ay)’
where
1
Z = A A2 2 o 2A
1(,y) (A(0s + oz + 129) £ 1)? ( ( (01 + i +711y) (62 + o + Y1)

+4d(02 + aax + y2y) — 1) + Sd).
If A=0#b it becomes



Hél)(x, y) = e2(0tartry) (2b3(61 + a1z +my)? + 20%d(52 + azx + y2y)? + 2b(b — d)

(8)
®r+%m+ww—b+@.

If b=0# A it becomes
H?()l)(x,y) _ eA(A2(51+a1x+71y)2+Ad(52+a2m+’Y2y)2+2(A7d)(52+a2z+’72y))(A(52 + Qg

(9) 2d—2A
+2y) + 1)2¢24
If A=5b=0 it becomes
(10) H (2,y) = 2d(55 + asz + 729)® + 3 ((61 + a1z + 11y)? + (62 + aor + 721)?) .

I1I. The quadratic system (6) satisfying condition (ii) of Theorem 2. The first integral of the
differential system (6) if A = —b# 0 and a = 0 # C becomes

HP (z,y) = 2@ (1= b(6y + az + 12y)) "0 =" (=b(62 + 021 + 72y) + C (61

(11) tonz + 1) +1)b2,
where
Z(a,y) = e (861 + onz +31y) + C (02 + 2w +720)).
b(d2 + agx + yoy) — 1

If AbC(A+b)A #0 and a =0 with A =4b(A +b) + C? <0 and L = v/—A it becomes

8b

C? 4 12) (5 + Twmon
(12)  HP () = (—( +1%) (02 + oge 729)—b(ag+a2x+m>+1> o

4b

where M = arctan <2b(62 + oz +70y) — 01 + e+ my) — 2).

L(01 + oz +71y)
If AbC(A+Db)A #0 and a = 0 with A = 4b(A +b) + C? > 0 and 7 = VA it becomes

1
Héz)(x, y) = (A2 + asz + yoy) + 1)1/1“(5 (C =) (01 + nx +71y) — b(d2 +
(13)

r—C r+C
= /1 ™
+72y) + 1) o (5 (C+71) (614 onz +71y) — b(S2 + 2w + Y2y) + 1) o
If b= C = 0 it becomes
1
H? y) = 2@V (a(5) + g + +1*2V‘1“2+A2( Ja + o
2 (zyy) e (a(d1 1 1y) +1) (@01 + onz + 1y) +1)2 ((d2 2
(14) +72y) (a®(— (02 + azz + 12y)) + aA(61 + oqz + y) + A) + (a(é1 + vz + 71y)
RV rEy
+1)%)) ,
where
— —2a%(83+asz aA(d1+arx A
Z(w,y) = 2040 + A2(01 + a1 + my) - 2Atanh ! (Lo mRy At Ed )
If A=a=0,C # 0 and b # 0 it becomes
1 S
Hé2) (z,y) = 662+azx+’yzy(§ (C —7r) (61 + 12 + ny) — b(d2 + aox + Y2y) + 1) o (5(0

(15) .
2rb

+7)(01 + a1 + m1y) — b(d2 + axx + Yoy) + 1)



6 I.BENABDALLAH, R. BENTERKI AND J. LLIBRE

where r = /402 + C?.
Ifb=a=0,C#0and A # 0 it becomes
H® (2,y) = e 2ACAGHaz+m) +CG2ta2a+720) (O(8, + aya + my) + 1)24 (A(6

(16) 202
+agx + yoy) + 1)%¢7.

If A=4b(A+b)+C?=0and a=0# C it becomes
4b2

T ap24C2
- b(52 —+ o + ’}/Qy) + 1) (—2[)(62

C%(82 + aox + Y2y)
4b

+oox + Yoy) + C(61 + oz + ny) +2),

(2) — 1 Z(z,y)+1 —
(17) H; (z,y) = 26

C(61 + a12 4+ 7Yy)
2b(02 + agx + v2y) — C(61 + arz +my) — 2

where Z(x,y) =

If A=b=0and a =0 # C it becomes

(18) HP (z,y) = (C01 + a1z + my) + 1)2e~ (O tazmtrny) 126 tonzimy))
ITI. The quadratic system (6) satisfying condition (iii) of Theorem 2. Has the first integral

1
Hl(?’) (x,y) = 6(2(1(61 + a1 +y1y)3 + 6b(61 + a1z + Y19)% (62 + asx + Y2y) + 3(5;

(19) +arx +71y)? — 6a(61 + arx + 11y)(d2 + o + Y2y)? + 2d(62 + azx

+729)° + 3(82 + oz + 72y)?).
IV. The quadratic system (6) satisfying condition (iv) of Theorem 2. Has the first integral
H(@,y) = (0 + d2)(d(02 + 022 +729) — ald1 + a1z + 11y))* — 3ad(a® + d2)(8,

+a17 + 1Y) (62 + oz + Y2y) + 3d?(a® + d?) (02 + azx + y2y)? + 3d(a?
(20) 2
+d2) (85 + sz + 72y) + d2) /((a2 + d2)(a(8y + a1z +m1y) — d(6s + asz

3
F2y))? + 2d(0? + d2)(82 + gz + yoy) + &)

3. PROOF OF THEOREM 3

Now we should give the proof of Theorem 3, where we provide the maximum number of limit cycles
which can have the discontinuous piecewise differential systems separated by the straight line ¥, and
formed by an arbitrary linear center and an arbitrary quadratic centers.

In one half-plane we consider the linear differential center (3) with its first integral H(z,y) given in
(4). In the other half-plane we consider system (6) satisfying one of the four condition of Theorem 2,

with its corresponding first integral H,ij)(x, y)withk=1,...,8 and j =1,...,4.
In order that the discontinuous piecewise differential system (3)—(6) has a limit cycle that intersects

the straight line ¥ at the points (0,y1) and (0,ys) with y; < y2, these points must satisfy the following
system

(21) e1 = H(0,y1) — H(O,yg) = (y1 — yg) ((452 + w2) (y1 + y2) — Saol)) =0,
’ij)

es = HP(0,51) — HY (0,42) = Y (1, 42) = 0.



Sa
From e; = 0, we obtain y; = W% — yo and by substituting it in es = 0 we obtain the equation
w

F(y2) = 0 in the variable yo, which differs according with the first integrals of system (6).

Proof of statement (I) of Theorem 3. Now we prove the statement (I) for the discontinuous piecewise
differential system formed by the linear differential center (3) and the quadratic differential center (6) of
type C' = a = 0, and we distinguish the following cases:

Case 1. If A = —b # 0 then k = 1 and j = 1 in system (21), the first integral of (6) is H{l)(aj,y)
given in (7), so the solutions of F'(y2) = 0 are equivalent to the solutions of the non-algebraic equation
f1(y2) = g1(y2) where

ko + k1 yo + ko y3 + k3 v

Fi(ye) = LitLloy and g1 (y2) = o (L1 + Lo y2)?(L3 — Lo 242)27
Lz — Ly yo

where

1
bo= gy ey [0AT1a(A” (B2 (8m8182 — 420F + 4203) + (2118182 — 207 +7203)
+8a0102(VE +73)) — Y2d(45% + w?) — 3Ay2d ((52 (462 + w2) + 4047201) — A% (728,
—7102) (5152 (482 + w?) + daoy (1162 + 7251)) + A2( (482 + w?) (1101 + 7202(1

~2d83)) + dacy (3 +13 — 413d62) ),

2 3202 A%v50?

ki = 4A((Ad2 4+ 1)(d(247202 + 72) — A2(02(AM161 +72) + 61(11 — Ayady))) + AR 1w
2 2 2 2 dadoy 3252 2592 2 2
(A%y1(7102 — 7201) + A(7F +73) — 275d) — 177 1 o? (A°(vi05 — 307) + 2A4%02(v7

+73) + A(vE + 73 (1 — 4ddy)) — 3dv3)),

48aA3vy0
ko = _MTOQJ; (A%y1 (1102 — 7201) + A (7§ +13) — 273d)
ky = 4A%; (A%y1 (102 —7201) + A (7f +13) — 273d)
o o o 80[14’}/2(71 _
L]— A(52+17 LQ—A’)/Q, Lg—m‘f’A(SQ‘f’l,’r—zd

We note that (fl)/(yg) and (gl),(yg) are the derivatives of the functions f;(y2) and g1 (y2), respectively.
Where .
/ - Ly + Ly y2)"™

(f1) (w2) = (L3 — Ly y2) 1’

and
Ko + k1 yo + ko y2 + ks y3
(91) (y2) = e(L1+ Lo y2)*(Ls — Lo y2)? Plys) ,
(L1 + L2 y2)*(L1 — L2 y2)?

with n = rLy(Ls + Ly), and
P(y2) = ksL3 ys + La(2ke L2 + ks(Ls — L1)) 43 + 3 (k1L3 + ksL1Ls) y3 + (4koL3 + k1La(Ly — La)
+2koLyL3) yo + 2koL1 Ly — 2koLoLg + k1 Ly L.
We denoted by (Cy,) and (Cy,) the graphics of the functions fi(y2) and gi(y2), respectively.

According with the sign of ( fl)/(yg) which depends on r and with the sign of the parameter n € R,
we obtain that all the possible graphics (C,) of the function fi(y2) are as follows.
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If r is an even integer or the rational r = p/(2¢ + 1) with p is an even integer and ¢ is an arbitrary
integer, then the sign of (fl)/(yg) depends on the sign of n (L1 + Lo y2) (L3 — Lo y2). Therefore the
graphic (Cy,) is given in Figure 4(a) if n > 0, or 4(b) if n < 0.

If r is an odd integer or the rational r = p/(2¢ + 1) with p is an odd integer and ¢ is an arbitrary
integer, then the sign of ( fl)/(yg) depends only on the sign of 7. Therefore the graphic (Cy,) is given in
Figure 4(c) if n < 0, or Figure 4(d) if n > 0.

If r is irrational or the rational r = p/(2¢) where p is an odd integer and ¢ is an arbitrary integer,

then the sign of (fl)/(yg) depends on the sign of 7. Consequently the graphics (Cy,) are the same than
in the case that r is an odd integer but in the domain of definition of fi(ya).

fly) A § £(y) § ()

Y2

Y. i Ye

(a) (b) (c) (d)

FIGURE 4. The graphics of the function fi(yz). The dashed straight line is the vertical
asymptote straight line.

According with the sign of (gl)l(yg) and with the different kind of the roots r; with ¢ € {1,...,4} of
the polynomial P(y2), and by considering the case when L3 # —L;, we shall obtain the different possible
topologically distinct graphics (Cy, ).

If P(y2) has four simple real roots, then the positions of these roots with respect to the two vertical

L-
asymptotes straight lines yo; = —L—l and g9 = —L—3 play a main role in the variation of the graphics
2 2

(Cy,)- So all the possible topologically distinct graphics (Cy, ) are given in Figure 5(a) if yo1 < 71 < y22 <
ro < 13 < 14, Or Figure 5(b) if r1 < 19 < r3 < y21 < 14 < Y22, or Figure 5(c) if 11 < ya1 < r2 < Yoo <
r3 < r4, or Figure 5(d) if 1 < ro < ya1 < r3 < yaz < ry, or Figure 5(e) if yo1 <71 < 12 < yag < r3 < Ty,
or Figure 5(f) if 11 < 1y < yo1 < r3 < 14 < Y22, or Figure 5(¢g) if r1 < y21 < ro < 13 < Yoo < T4, OF
Figure 5(h) if 71 < yo1 <713 < 1r3 <14 < Y22, or Figure 5(7) if yo1 <11 < re <713 < yoo < 74.

If P(y2) has one triple and one simple real root, or two complex and two simple real roots, the graphics
(Cy,) are given in Figure 5(7) if yo1 < 71 < 72 < Ya2, or Figure 5(k) if r1 < y21 < ra < y2o, or Figure 5(1)
if yo1 <71 < Yoo < 7o

If P(y2) = 0 has one double real and two complex roots, the graphics (C,, ) are given in Figure 6(a).

If P(y2) = 0 has two double real roots, the graphics (Cy, ) are given in Figure 6(b) if r1 < y21 < r2 < Y22,
or Figure 6(c) if Y21 < 11 < Yoz < T2.

If P(y2) = 0 has four complex roots, see Figure 6(d).

If P(y2) = 0 has one double real 7y and two simple real roots 71 and ro, then if 1o < r1 < ya1 < r2 < Y22
see Figure 6(e), or if Y21 < 71 < ya2 < 19 < 12 see Figure 6(f), or if r1 < y21 < rg < 12 < yaz see Figure
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6(g), or if yo1 < 71 < ro < Y22 < 72 see Figure 6(h), or if r1 < yo1 < 79 < yaz < r2 see Figure 6(i),
or if yo1 < 11 < 1y < Yoo < 1o see Figure 6(j), or if rg < yo1 < 71 < 12 < Y22 see Figure 6(k), or
if yo1 < 1o < Yoo < 11 < 1o see Figure 6(1), or if 11 < ro < yo1 < 79 < Y22 see Figure 7(a), or if
T0 < Y21 < 11 < Yoo < T2 see Figure 7(b).

If P(y2) = 0 has one real root of order four this root must equal one of the two asymtotes ya1 or yaa,
then the graphics (C,, ) are given in Figure 7(c), or Figure 7(d).

Now if L3 = —L; we obtain that P(y2) = 0 is a cubic equation, therefore the graphics (Cy,) are as
follows.

If P(y2) = 0 has one triple real root or one simple and two complex roots, the graphics (Cy, ) are given
in Figure 7(c) or 7(d).

If P(y2) = 0 has one double real and one simple real root, the graphics (Cy,) are given in Figure 7(e)
or 7(f) if r1 =re < yo1 <73, or 71 < Yo1 < g = r3, respectively.

If P(y2) = 0 has three real roots, the graphics (C,,) are given in Figure 7(g) if yo1 <71 <13 <rs, or
Figure 7(h) if r1 < ro < yo1 < 13, or Figure 7(2) if r1 < y21 < 19 < 13, or Figure 7(j) if r1 < ro < r3 < y21.

We will only give the graphics (Cy,) when the derivative (gl)/(yg) starts with a negative sign because
when the derivative start with a positive sign their graphics are topologically equivalent to the previous
ones.

For the function f;(y2) we remark that the sign of the derivative changes at most three times when r
an even integer or r = p/(2¢q + 1) with p an even integer and ¢ is an arbitrary integer which guarantees
that (Cy,) can have at most one local extrem in (a) or (b) of Figure 4, and on the other hand it is obvious
that the graphics (Cy,) can have at most four local extremes in (a), or (b), or (c), or (d), or (e), or (f),
or (g), or (h), or (¢) or (j) of Figure 5, and since the function g;(y2) is positive and it has the horizontal
asymptote straight line g1 (y2) = 1, then we guarantee that the maximum number of intersection points
between the graphics (Cy,) and (C,,) can be precisely between (a) or (b) of Figure 4 and (a), or (b), or
(¢), or (d), or (e), or (f), or (g), or (h), or (¢) or (j) of Figure 5. It is clear that the graphics (Cy,) and
(Cy,) intersect at most in seven points, see for example Figure 8. Hence, F'(y2) = 0 has at most seven real
solutions. We can show easily that if (y1,y2) is a solution of (21), then (y2,y1) is also a solution of this
system. Consequently, the maximum number of limit cycles of the discontinuous piecewise differential
system (3)—(6) in this case is at most three.

In what follows we construct an example with exactly seven intersection points between the graph-
ics (Cy,) and (Cy,) by considering {L1, La, L3, ko, k1, k2, ks, 7} — {—2,1,-3.5,2,2.5, -1, —6.9, 2}, these
points are shown in Figure 8.

To complete the proof of this case we provide an example with three limit cycles.

Three limit cycles for a discontinuous piecewise differential system (3)—(6) of type C = a = 0 with
A=-b#£0.

In the half-plane ¥~ we consider the quadratic center

(22) &= —0.41137..2% + 2(—4.7083..y — 0.8342..) + y(—12.0159..y — 0.866409..) + 1.05188..,
0.053171..22 + 2(0.67274..y + 0.0188591..) + y(1.9488..y + 0.11029..) — 0.720841..,
its corresponding first integral is

HY (2,y) = —0.001233..(—2 — 10.5578..y + 9.06)> (:c2 + (9.8313..y + 6.51292..)x + (21.4047..yy

+14.3032..)y + 2.38945..).
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a.(y,) i(y/k | oy el
3 v: Y. Y. Y:
(a) (b) (c) (d)
Loy LgdYs : | gy || 9y
\ f | % | | |
(e) (f) (8) (h)
A I | gy | oty
V2 va V2 v:
(i) 6) (k) )

FIGURE 5. The graphics of the function g1 (y2).

In the half-plane ¥ we consider the linear differential center

(23) t=_r——y+o, y=3r—y— —

with the first integral
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ooy A L gy, -EA
Y2 A 1 A A
(a) (b) (c) (d)
ICTAREE T ey | | oyl |
V. Y. v, v:
(e) () (8) (h)
oy A L gy, A
A Y, Y2 \A
() ) (k) @

FIGURE 6. The graphics of the function ¢ (y2).

In this case system (21) has the three solutions (y1,y2) = (0.0217348..,0.502283..), (y3,y4) = (0.0725424..,
0.451475..) and (ys,ys) = (0.143419..,0.380598..) which provide the three limit cycles for the discontinu-
ous piecewise differential system (22)—(23) shown in Figure 1(a).

Case 2. If A =0 # b then k = 2 and j = 1 in system (21), then the first integral of system
(6) is Hél)(x,y) given in (8), and the solutions y, of F(y2) = 0 are equivalent to the solutions of the
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| 9y,

gu(y2)

e

Y2 Y2

Iz § L J a(v)

(a) (b) (c)

9,(v) () T

~— g

— ) N

Y.

Y. i Y. i A

(e) () ()

| oy aly;

=N

\A ! \A

() @

FIGURE 7. The graphics of the function g;(y2).

non-algebraic equation fa(y2) = g2(y2), where

ko + k1 yo + ko y3
20+ 21 Y2 + ko Y3’

fo(yz) = elothv2) and  go(yo) =

Y2
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FIGURE 8. The seven intersection poitns between the two functions f;(y2) drawn in
continuous line and g;(y2) drawn in dashed line.

with
o= 0000 ) ke = b (20267 + 208y (d6y 1) — 248y — 1) +d
152+ w2 ) i 2(do2 2 )
k= 2 (2629101 + b(y2 + 272d02) — yad) , ka = 26 (72 + 12d)
Zo = 2b< Sag, (26°7161 + b(y2 + 272d2) — 2d) + 6?67 + _Bda%bor (b7E +73d) + bdd3 + bo
4ﬁ2+w2 1 (4ﬂ2+w2)2 1 2 2 2

16
—d(sg) —b+ d, z1 = 2b< — 2b2’}/151 — b’YQ — 2b’}/2d52 — ﬁ (b’}/% + ’}/%d) + ’YQd) .

We denoted by (Cf,) and (Cy,) the graphics of fo(y2) and g2(y2), respectively.
The possible graphics of f2(y2) are shown either in Figure 10(a) if I; > 0, or in Figure 10(b) if I; < 0.

For the function go(y2) its derivative is

Py (y2)

2) (12) = ——,
(g) ! (P2(Z/2)>

with
Pi(y2) = (kaz1 — k1ko)y3 + (2kozo — 2koka)ys — koz1 + kizo and Pa(y2) = kay3 + 21y2 + 0.

We see that the discriminant of the numerator of ga(y2) = 0 is equal to the discriminant of Py(y2) = 0
which is Ao = k’% — 4k0k2 = Z% — 4Z()k2, and A = (2k220 — 2k0k2)2 — 4(k22:1 — k‘1k’2)(—k‘02’1 + ]{?120) is
the discriminant of Pj(y2) = 0, then according to the sign of the determinants Ag and A the graphics of
g1(y2) are given in Figure 9(a) or Figure 9(b) if Ag > 0 and A < 0, Figure 9(c¢) or Figure 9(d) if Ay > 0
and A > 0, Figure 9(e) or Figure 9(f) if Ag > 0 and A =0 or Ap = 0 and A > 0, and Figure 9(g) or
Figure 9(h) if Ag < 0and A <0.

It is clear that the graphics (Cy,) can have the maximum number of local extremes in (c), or (d), or (g)
or (h) of Figure 9, then we know that the maximum number of intersection points between the graphics
(Cy,) and (Cy,) can be precisely between (a) or (b) of Figure 10 and (c), or (d), or (g) or (h) of Figure 9.
It is obvious that the graphics (Cy,) and (Cy,) intersect at most in three points see for example Figure
11. Due to the symmetry of the solutions of system (21) we know that the maximum number of limit
cycles in this case is at most one.

In the following we build an example with exactly three intersection points between the graphics (Cy,)
and (Cy,) by taking {lo, 1, ko, k1, k2, 20, 21} — {0.35,0.2,3.9, -2, —1,4, —2}, these points are shown in
Figure 11.
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eyl [ | oty T A
1 : v, Y,
Y. ! ! Y. i ! |
(a) (b) (c) (d)
[ v |ty 9y 9.y
1A Y. /\ W
v V.
(e) ®) (8) (h)

FIGURE 9. The graphic of the function g (ys).

£,(y,) f.(y.)

(a) (b)
FIGURE 10. The graphic of the function f5(y2).

Case 3. If b=0# A then k = 3 and j = 1 in system (21), the first integral of system (6) is H?El)(x, Y)
given in (9), and the solutions of F'(y2) = 0 are equivalent to the ones of the equation f3(y2) = g3(y2).

We have f5(y2) = f1(y2), with r = 2d — 2A, therefore the graphics of f3(y2) are given in Figure 4.
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FIGURE 11. The three intersection poitns between the two functions fa(y2) drawn in
continous line and go(y2) drawn in dashed line.

We have also g3(y2) = f2(y2), then we know that the graphics of g3(y2) are given in Figure 10.

The parameters of the function gs(y2) are:

1
ZO = m (16C¥A01 (A2’}/1 ((51 (452 + UJQ) + 40(’}/10'1) + A’}/Q (4ﬁ2 (d52 + 1) + 40[’}/20'1d + d62w2
) = ppd(48° + ) )
1
I = TR (4A(A2fyl (61(46% + w?) + dayi01) + Ay2(48%(dds + 1) + dayeord + doaw? + w?)

—2d(45? + w?)).

Due to the fact that f3(y2) = f1(y2) there is at most one local extrem at zero in (a) or (b) of Figure 4, we
know also that gs(y2) = f2(y2), then it is clear that the maximum number of intersections points between
the graphics (Cy,) and (C,) can be precisely between (a) or (b) of Figure 4 and Figure 10. Consequently
the graphics of functions f3(y2) and g3(y2) intersect at most in three points see for example Figure 12.
Due to the symmetry of the solutions of system (21) we know that the maximum number of limit cycles
of the discontinuous piecewise differential system (3)—(6) is at most one.

By considering {lo,l1, L1, L2, Ls,r} — {—0.2,1.75,4, -7, —0.4, —2} we constuct an example with ex-
actly three intersection points between the graphics of the two functions f5(y2) and g3(y2), these points
are illustrated in Figure 12.

Case 4. If A=b=0 then k =4 and j = 1 in system (21), the first integral in this case is Hil)(x, Y)
given in (10), and

8ay20 3 S8ay o 2
F(y2) = Qd(ﬁ + 02 — 721/2) —2d(05 + y2y2)* + 3((452 ijz +01 — ’Ylyz)
Baryz01 2
(74@ ek 02 — ’YQZ/Q) ) = 3((01 +my2)? + (62 + 7212)?) -

Since F'(y2) = 0 is a cubic equation in the variable yo the maximum number of real solutions of system
(21) is at most three. Eventually, the upper bound of the maximum number of limit cycles for this case
is at most one.

To complete the proof of this case we build an example with one limit cycle of the discontinuous
piecewise differential system (3)—(6) of type C =a =0 with A=0b=0.
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v
T

FIGURE 12. The three intersection poitns between the two functions f5(y2) drawn in
continuous line and g3(y2) drawn in dashed line.

We consider the quadratic center

n o1 1 8 28 43
P = —1.06383.. (7_7 1—4(-02 —0.5) ) Sl B s Yl
v (“; 5 10l (—02 )+ 107 Th0Y TasY T 10

1 1 11 121y 1 19 52
j= 1.06383. ( ——a2 7(1—4(—7 - o NN S LA
Y ( 1" ””(4 57 2))+ 25) Y T 1Y T 5

in the half-plane X7, with its first integral

(T R IR

(24)

In the half-plane ¥ we consider the linear differential center

(25) b= 027632+ 1, §— L, 1

with the first integral

H(z,y) = 4(:10 - ll—oy)2 + 8( . %;v . y) +1.06528..42.

In this case system (21) has the unique solution (yi,y2) = (0.978592..,6.25938..) which provides the

unique limit cycle for the discontinuous piecewise differential system (24)-(25), see Figure 1(c).
example completes the proof of statement (I).

Proof of statement (II) of Theorem 8. Now we must prove the statement for the discontinuous piecewise
differential system formed by the linear center (3) and the quadratic center (6) of type b+ d = 0, and we

distinguish the following cases:

Case 1. f A+b=0and a =0# C, then £k = 1 and j = 2 in system (21), the first integral of the
quadratic center is H1(2)(a:,y) given in (11), the solutions of F(y2) = 0 are the same as the solutions of

the equation fi(y2) = §1(y2) where

ko + k1 y2

1 T2
fi(ye) = <m1 + mo yz) (m +ng yz) and  §i(ys) = e (M1 +mg y2)(ms —mz y2)
m3 — ma Y2 ng —n2 Y2
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where
my = SO0l = bye = s = 1 — by, Ty = B+ O
1 132+ u? 2 ; M2 Y2 =, M3 2, " )
8aoy 2
ny= —biy+Cé+1, ng =7C —by, nz = m(%c —bys) —boy + Co1 + 1, 79 =%,
8abCoy
ko = (b(=bv102 + by261 + 1) +72C), ki = 2bC(b(=by102 + by201 + 71) + 72C).

462 + w2
The derivative of the function fl(yg) and g1 (y2) are

_y (my +msa y2)" " H(ny + no y2)™2 7t
= (My+ M M, y2
(f1) (2) = (Mo + My y2 + M2 y3) (ms — ma y2)" 1 (ng — ng o)1

and
) ko + k1 yo
(§1)/(y2) _ (No + N1y + Nzyz) o (m1+ma y2)(m3 — ma ya)
(m1 + maya)?(ms — mays2)?
with
Moy = maningri(mi +ms) + mymanara(ny + ng),
My = mana(ri(mi +m3)(ng —n1) —r2(m1 — ms3)(n1 +n3z)),
Mo —mang(neri(my + ms) + maora(ny + ns)),

No = —mgmoky + mimokg + mimsky, N1 = Qkom%, Ny = k‘lm%

According to the number of the vertical asymptotes of the function f; (y2) we can divide the study of
this function into two parts.

If mi1 =mny, mo =no, m3g =ngz,orry =0 and ro #0, or r| # 0 and ry = 0, then the function fl (y2)
has one vertical asymptote and the graphics (C, ) of the function fi(y2) are the same as the ones of the
function fi(y2) shown in Figure 4.

If my # nq, or my # ng, or mg = ng, or 1 # 0 and r9 # 0, then the function fl (y2) has two vertical
asymptotes. Therefore according with the derivative ( fl)l(yg) which depends on the parameters r1, 7o
and with the sign of the discriminant Ay = M2 — 4MyM> also according with the positions of the roots
of the numerator of ( fl)l(yg) with respect to the two vertical asymptotes, we obtain that all the possible
topologically distinct graphics (C',) of the function f1(y2) are given as follows.

If 1 and 7 are even integers, or r1 is an even integer and rq is rational such that ro = 2p/(2¢ + 1)
with p,q € Z, all the graphics (Cy,) are given in Figure 13 if Ay > 0. If Ay = 0 the graphics (Cj,) are
given in (a), or (b), or (c), or (d), or (e) of Figure 14. If Ay < 0 the graphics (C,) are given in (f), or
(g) of Figure 14.

If 71 and ro are odd integers, or r is an odd integer and ry is rational such that ro = (2p+1)/(2¢+1)
with p, ¢ € N, therefore if Ay > 0 the graphics (C,) are given in (h), or (i), or (j), or (k), or (1) of Figure
14 and in (a), or (b), or (c), or (d), or (e), or (f), or (g) of Figure 15. If Ay = 0 the graphics (C';,) are
given in (h), or (i), or (j), or (k), or () of Figure 15. If A; < 0 the graphics (Cy,) are given in (a), or
(b) of Figure 16.

If r; is an odd integer and ry is an even integer, or ry is an even integer and 1 = (2p 4+ 1)/(2¢ + 1)
with p,q € Z, or ry is an odd integer and ro = (2p)/(2qg + 1) with p, ¢ € Z, then the sign of the derivative
(fl)/(yg) depends on the sign of (MO + My yo + Mo y%) (n1+n2 ya2)(ns — na y2), therefore if Ay > 0 the
graphics (C'7,) are given in (c), or (d), or (e), or (f), or (g), or (h), or (i), or (j), or (k), or (I) of Figure
16 and in (a), or (b) of Figure 17. If Ay = 0 the graphics (C,) are given in (c), or (d), or (e), or (f), or
(g) of Figure 17. If Ay <0 the graphics (Cf,) are given in (h), or (i) of Figure 17.
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If r; is an odd integer and 7 is irrational or ro = p/2q with p,q € Z, then the sign of the derivative
(fl)/(yg) depends on the sign of the quadratic polynomial (MO + My yo + Mo y%), therefore the graphic
(Cfl) are the same as the case in which r; and ry are odd integers but in their domain of definition.

If ro is an even integer and r is irrational or r; = p/2q with p,q € Z, then the sign of the derivative
(fl)/(yg) depends on the sign of the products (Mo + My ys + Mo y%) (n1 +n2 y2)(ng — na ya2), therefore
the graphics (Cfl) are the same as in the case that r; is an odd integer and r; is an even integer but in
their domain of definition.

If r1 is irrational or 7 = po/2qo and ry is irrational or rational with ro = p/2¢ and py, p are odd integers,
then the sign of the derivative (fl)/(yg) depends on the quadratic polynomial (Mo + M7 ys + Mo y%),
therefore the graphics of fl(yg) are the same as in the case that r; and r, are odd integers, but in their
domain of definition.

If both r1, 79 are rational with 1 = (2pg)/(2q0+1) and 72 = (2p)/(2g+1) such that p, ¢, po, g0 € Z, then
the sign of the derivative (fl)/(yg) depends on (MO + My yo + My y%) (m1 4+ ma y2)(ms — ma y2)(n1 +
ng y2)(n3 — ng ya), therefore the graphics of f;(y2) are the same as in the case that r; and ro are even
integers.

If both ry, ro are rational with r; = (2py + 1)/(2¢0 + 1) and ro = (2p + 1)/(2¢ + 1) such that
P, q,Po,qo € Z, then the sign of the derivative (fl)/(y2) depends on (MO + My yo + My y%)7 therefore the
graphics of f; (y2) are the same as in the case that r; and ro are odd integers.

If both ry, 79 are rational with r; = (2po+1)/(2go+1) and r2 = (2p)/(2¢+1) such that p, ¢, po, g0 € Z,
then the sign of the derivative (fl)/(yg) depends on (Mo + My yo + Mo y%), therefore the graphics of
fl(yg) are the same as in the case of rq is an odd integer and r5 is an even integer.

If 1 is irrational or rational and ro rational with 7y irrational or r1 = po/(2¢o) and 7o = (2p)/(2¢+ 1)
and pg is an odd integer and qo, p and g are integers, therefore the graphics of fi(y2) are the same in the
case that 1 is an odd integer and ry is an even integer but in their domain of definition.

If ry is irrational or rational and r9 rational with r; irrational or 11 = pg/(2qo) and ro = (2p+1)/(29+1)
and pg is an odd integer and qg, p and ¢ are integers, therefore the graphics of fi(y2) are the same in the
case that r; and ry are odd integers but in their domain of definition.

According to the sign of the derivative of the function g1 (y2) which depends on the sign of the quadratic
polynomial P(y2) = No+ Nyy2 + Nay3, then the topologically distinct graphics of §;(y2) are shown in (a)
and (b) of Figure 18 if mg # —my and P(y2) has two distinct real roots, or (c) of Figure 18 if mg # —my
and P(y2) has two complex roots, or (d) of Figure 18 if mg # —my and P(y2) has one double real root,
or (e) and (f) of Figure 18(e) if mz = —mj.

The possible graphics of f; (y2) are given in Figures 4, 13, 14, 15, 16 and 17, and the graphics of §; (y2)
are given in Figure 18.

Since the graphics of f)(y2) can have the maximum number of local extremes in (a)—(I) of Figure 13
and due to the fact that the function g (y2) is positive and its graphics can have at most two extremes in
(a) or (b) of Figure 18, we know that the maximum number of intersection points between the graphics
of f1(y2) and g1 (y2) can be precisely between (a)—(I) of Figure 13 and (a) or (b) of Figure 18. In this case
the two functions fl(yg) and §1(y2) have fl(yg) = g1(y2) = 1 as an horizontal asymptote which ensures
that at infinity there are no intersection points between their graphics. Therefore the graphics (C fl) and
(Cy,) of the two functions fi(y2) and g (y2) intersect at most in six points see for example Figure 19.
Then the upper bound of the maximum number of limit cycles in this case is at most three.
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fvd [ i) ) |
(a) (b) (©) (d)
fv) | f | f) | (%
Y. A
(e) () () (h)
L2 fv) | fv) | fv) |
2 Y2
O] Q) (k) M

FIGURE 13. The graphics of the function fi(y2).

By taking {ko, k1, m1, m2, ms,r1,72, 01,02, 03} — {—0.21,-1.7, -1.7,-5.8, -2.5,4,2,—1.28,2.75, —3.9}.
we build an example with exaclty six intersection poitns between graphics of the functions fi(y2) and
d1(y2). These points are shown in Figure 19.

Case 2. If ADCA # 0 and a = 0 with A = 4b(A +b) + C? <0, then k = 2 and j = 2 in system (21),
the first integral of (6) is Hg(z)(x, y) given in (12). The equation F(ys) = 0 is equivalent to the equation
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Ty | 1 [fes L/ J fv| 1 [l
| | R | | | |

2 Y 3 : Y

(a) (b) (c) (d)

v | | e | | e | )

12 i i 2 : : 2

(e) (f) (g) (h)

i) 1 ol | i) e |

() () (k) )

FIGURE 14. The graphics of the function f; (y2).

f2(y2) = g2(y2) where
< <33y2+34> (53y2+36>>
~ my | arctan| ———— | +arctan| ———
faly2) =€ S1Y2 + S2 55— 5192/ )

Ga(y2) = < t1ys + b2 ) <K1y3+K2y2+K3>“
2\92) — -, . 4,
—t1y2 + 13 K1y3 + Kyyo + K

and
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fv) Fv)| | [ | [fes
yl Ag =N yz y
(a) (b) (c) (d)
fv) Fv) | | fea| 1 [
Y. Y Y2 A
(e) (f) (8) (h)
T(v.) Ty [ | Ty | fv)
A
A
A A
® 6) (k) O]
FIGURE 15. The graphics of the function f; (y2).
where
81 = ’ylLy So = (51’ S3 = 'le — 2b’}/27
8ayio1L
si= W+ O8 42 5= T AL,
16abys01 8ay1Co; 2C
= —= =425 ———— —C6 —2 = —,
6= UB a2 2T up 2 LTS e
1
K, = 1 (4673 — 4by172C + 43C? +43L7),
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v | ) e 1 Fool o [fe
v § §
: ( : : V. v Y2
(a) (b) () (d)
i) | e o e T |
3 Y. AN
Ve 3 g Y Y

(e) () (2) (h)
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FIGURE 16. The graphics of the function fi(y2).

1
K2 = —W (8040’1 (4b2’}/§ + ’Y%Lg) + (462 + W2) (4()2’}/262 — 4()’}/2 + ’71(51[/2) — 20(4&[)’}/1’}/20'1
+(45% + w?)(by162 + by201 —71)) + 1 C*(Bayion + 61 (487 + w2))>,
1

T (= 4C (81 (48 + w?) + 8aman) (483(b62 — 1) + Sabyaoy + bSw?® — w?) +4(482(b; — 1)
w

+8abya01 + blaw? — w2)2 +C? (51 (4&2 + w2) + 8a’ylal)2 + L2 (51 (452 + wz) + 804’)/101)2 ),
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1

1= N
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)
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o] f)
Y.
Y.
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A Y.
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Fv) | fv) !
Y.
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FIGURE 17. The graphics of the function fi(y2).

9 = —

+ 1.

1
4b

(

(—40(51(1)(52 - ].) + 4(b(52 - 1)2 + 02(5% + 6%[/2) , 1 =

S8arya01 (4b2 + C? + L2)

57

432 4 w?

1

T A28y — 4b+ C26, + 52L2),

To =

(40%7202 — 4byz — 2C(y1(bd2 — 1) + by2d1) + 11 C?01 + 7161 L3)

8
40 + C2 4 L%’

23
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S | INET | 8.
1 v: i v: 3 ‘ v,
(a) (b) (c)
I (I e
Y. § ' 3 A
(d) (e) (f)

FIGURE 18. The graphic of the function ¢ (y2).

F1cURE 19. The six intersection poitns between the two functions fl(yg) drawn in con-
tinuous line and g1 (y2) drawn in dashed line.

We note that ( fg)l(yg) and (gg),(yg) are the derivatives of the functions f5(y2) and g2 (y2), respectively,
where
7y z Pi(y2)
=m ?
(o) (va) = ma fo ) e Gt o09) (o = 519207 F (oat T 5079
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(32) (w2) = - Py (y2) ( tiys +to )7‘2
(tiya + ta)(—trya + t3) (K13 + Kayz + K3) (K1y3 + Kaya + K5) \ —t1y2 +t3

(Kw% + Koy + Ks)rl
K193 + Kyya + K5 ’

with

Pi(y) = y3 (s% + s%) (s1(s4 — S6) — S253 — $355) — 2y (8% + 83) (8256 + 5485) — $15356 — S15586 + 515452

+5184S% — 535385 — 52535% - 82538% - 835?155, and

Py(y2) =y (K§ratits + Kiratits + K1 Korqt3 — K1 Kyrit3) + v (K1 Karitits — K1 Koritits + K1 Koratito

+ K Koratits + 2K1K3r1t% — KW Kyritits + K1 Kyritits + K1 Kyrotite + K1 Kyrot it — 2K1K5’I“1t%)
+y3( — K1 Karitots + 2K, Ksritits — 2K, Karitits + K1 Ksrotits + Ky Karatits + K1 Karitots
—2K 1 Ksritito + 2K Ksritits + K1 Ksratito + K1 Ksrotits + Ko Kyraotite + Ko Kyratits

— Ky K5r1t3 + KsKyrit1) + y2(—2K1 Ksritats + 2K Ksritots — Ko Ksritity + Ko Ksritits
+K3Ksratity + Ko Ksrotits + Kz Kyritity — K3 Kyritits + KzKyratita + K3 Karotits)

+ Ko Ksritats — KgKyritats + K3Ksratita + K3 Ksratits.

We denoted by (sz) and (Cjy,) the graphics of fo and o, respectively.

According with the sign of (fg)/(yg) which depends on m; and with the sign of §; = (s184—$253)(s156+
$385), we obtain that and all the possible topologically distinct graphics (sz) of the function fo (y2) are
given in what follows. '

For s; # —s9 the function fg(yg) can have two vertical asymptotes and all the distinct topologically
equivalent graphics of the function f5(y2) are given in Figure 20 as follows.

If 1 > 0 the graphics (C,) are given in (a), or (b), or (c), or (d), or (e), or (f) of Figure 20.
If 61 < 0 the graphic (Cf,) is shown in Figure 20(g).
If 61 = 0 the graphic (C},) is shown in Figure 20(h).

For s5 = —s3 the graphic (sz) has only one vertical asymptote, then the graphics (sz) depends only
on the sign of ¢;.

If 6; < 0, the graphic is given in Figure 20(h).
If 6, > 0, the graphic is given in (i), or(j), or(k) of Figure 20.

According with the derivative (gg)l(yg) and the parameters 71, 72, and due to the fact that the sign
of the discriminants A; and A, of the equations K1y3 + Kays + K3 = 0, and K193 + Kyys + K5 = 0,
respectively, are negative, where A; = Ay = —L2(by182 — by20; — v1)?, and knowing the different kind
of the roots z; with ¢ € {1,...,4} of the polynomial P5(y2), we get all the possible topologically distinct
graphics (Cj,) of the function g2(y2) which are given in Figures 4, 13, 14, 15, 16 and 17 if A; = 0 as
we proved in the first case of statements (I) and (II). For A; < 0 the topologically distinct possible
graphics of g2(y2) are given in what follows.

If either r4 is an even integer or ro = (2p)/(2¢+1) with p, ¢ € Z, and P»(y2) has four simple real roots,
then the graphic of ga(y2) is given in (a), or (b), or (¢), or (d), or (e), or (f) of Figure 21.
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FIGURE 20. The graphic of the function fg(yg).

If Py(y2) has two complex and two simple real roots, then the graphic of g2 (y2) is given in (g), or (h),
or (i), or (j) of Figure 21.

If P5(y2) has four complex roots, then the graphic of ga(y2) is shown in (k), or (I) of Figure 21.

If Py(y2) has one double and two complex roots, then the graphic of go(y2) is given in (a), or (b), or
(c) of Figure 22.
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If P5(y2) has two double real roots, then the graphic of g2(y2) is shown in (d), or (e), or (f), or (g) of
Figure 22.

If P>(y2) has one triple and one simple real root, or one double and two simple real roots, then the
graphic of ga(y2) is given in (h) of Figure 22.

If ro is an odd integer or 7o = (2p + 1)/(2¢ 4+ 1) with p,q € Z we have the same graphics as the case
when r5 is an even integer where xy = —(t2/t1) represent an inflexion point of the function g2 (y2).

if ro is irrational or ro = p/(2q) with p,q € Z the sign of the derivative (gg)/(yg) depends only on
the sign of Pa(y2), then the possible graphics of the function gs(y2) are the same as the ones of the case
where 75 is an odd integer on its definition domain.

For r; < 0 and by a similar way we find the same graphics as in the case ro > 0.

The graphics of fg (y2) are given in Figure 10 and the graphics of ga(y2) are given in Figures 4, 13, 14,
15, 16, 17, 21 and 22.

For the function go(y2) we remark that its graphics can have at most five local extremes in (a), or (b),
or (¢), or (d), or () or (f) of Figure 21, we know also that the function fo(ys) is positive and its graphics
can have at most two extremes in (a), or (b), or (c), or (d), or (f), or (i), or (j) or (k) of Figure 10.
Therefore we guarantee that the maximum number of intersection points between the graphics of fg (y2)
and §a(y2) can be precisely between (a), or (b), or (¢), or (d), or (e) or (f) of Figure 21 and (a), or (b),
or (¢), or (d), or (f), or (i), or (j) or (k) of Figure 10. Due to the fact that there are no intersection
points at infinity because of the common horizontal asymptote fg(yg) = g2(y2) = 1. Then the maximum
number of solutions of system (21) is at most seven see for example Figure 23, this provides at most three
limit cycles of the discontinuous piecewise differential system (3)—(6).

Now we construct an example with exactly seven intersections points between the two functions fa(y2)
and QQ(yg) by takmg {Kl, KQ, Kg, K4, K5, t17 t27 t37 r1,7T2,81,82,83,S54, S5, S¢6, ml} — {0576282, —327 41,
0.1,0.02,-5,5.4,93,1,2,1.2,4, 1,100, 5,2, —3.8.}, see Figure 23.

Case 3. If ADCA # 0 and a = 0 with A = 4b(A +b) + C? > 0, then k = 3 and j = 2 in system (21),
the first integral of the quadratic center (6) is H§2)(CE y) given in (13). Then the solutions y, satisfying
F(y2) = 0 are equivalent to the solutions y, of the equation f3(y2) = §a(y2) with

2);

f3(y2) = fi(y2) and gs(y2) = fi(y

where

1
my = 551(0+ WAL +C%) —boy +1, mg—hm—f%<0+ 4MA+wy+cﬂ7

1 Bay101 80467201
_ = 2 _
ms = 2(0 4b(A +b) +C)<4ﬂ2+w2 1> ] by + 1,
1 1
ny = 551 (C 4b A+b +C2)—b52+1 ng—b’}/z—i’yl (C— 4b(A+b)+C2>,
1 8ay101 8abya0y
_ = 2 _ _
ng = 2(6’ 4b(A+b) +C><4B2+w2 1> 157 4 o béa + 1,

n= gt b(A+b)+02)T2 (- %mfm+m}

804’}’20’1 1
L1: A<W+52>+17 L2:A’YQ, LS:A52+17T:Z.

_ The graphics of the function J3(y2) are shown in Figures 4, 13, 14, 15, 16 and 17. For the function
f3(y2) all its graphics are given in Figure 4.
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FIGURE 21. The graphic of the function gs(y2).

It is obvious that the graphics of fg(yg) can have at most four local extrem in Figure 13 and due to the
fact that the function gs(y2) is positive and its graphics can have at most one extremes in (a) or (b) of
Figure 4, we guarantee that the maximum number of intersection points between the graphics of fg (y2)
and gs(y2) take place between Figure 13 and (a) or (b) of Figure 4. In this case we know that the two
functions have the common horizontal asymptote f3(y2) = gs(y2) = 1. Hence the maximum number of
intersection points between these two functions is at most seven see for example Figure 24. Due to the
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FIGURE 22. The graphics of the function g2(y2).

symmetry of solutions of system (21) we conclude that the maximum number of limit cycles is at most
three.

In Figure 24 we build an example that shows exactly seven points of intersection between the two func-
tions f3(y2) and gg(yg) by choosing {ml, mo,m3,7T1,72,M1,N2, N3, Ll, Lg, L37 ’I“} — {7, —1, 2, 2, 6, —0.53,
—0.17,-1.71,4,-3.25,—-0.15, 2}.

Case 4. If b= C =0 then k = 4 and j = 2 in system (21), (14) is the first integral of the quadratic
center (6). Then the solutions of F(y2) = 0 are the solutions of the equation f4(y2) = Ga(y2), where

2 r

i mo Y5 +my Y2 + ma

f4(y2)=< 1 )
mo Y3 + N1 Yo + no

and

—1(S1y2+S —1(85—-S1y
k1+k2y2+2A(tanh (ﬁ)ftanh (ﬁ))

ga(y2) = e
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FicURE 23. The seven intersection poitns between the functions fg(yg) drawn in con-
tinuous line and g2(y2) drown in dashed line.

FIGURE 24. The seven intersection poitns between the functions fg(yg) drawn in con-
tinuous line and g3(y2) drawn in dashed line.

mo = a’y? — a3 + aAvy1va, m1 = 2a%7181 — 2a%¥202 + aAy162 + aAYedy + 2ay; + Ay,
mo = a%6? —a?63 + aAd10 + 2a8; + Ada + 1,

16 - ) + A
ny = —a(’yl(2a51 + A52 + 2) + 72 (A51 - 2(152)) - e (a(’h 4;22)_(:;2 72) 7172) - A727
ng = a®67 —a*é3 + W(Mﬁm%f(a(% —Y2) (71 +72) + Av172)) + 13§ o2 (8ao((ady

+1)(20"}/1 + A"YQ) + (162(14’}/1 — 2&"}’2))) + LLA5152 + 2&51 + A52 + 1,
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2 2
r— VAT A ky = 16a8%v1vV4a? + A2 n dayw?V4a? + AQ7 hy = — 16acyi01v4a? + AQ’
442 4+ w? 48?2 + w? 4682 4+ w?
S1 = aAy; —2a%yy, So = —2a%05 + aAd; + A, Ss = ay1V4a® + A2,
16ca®vyy0 8aaA7101
Sy = ad1V4a? + A2 4a? + A2, Sy = 7—225 ————— +add A,
y = abiVia® + A2 4+ Vida? + A2, S5 = 1T o 2t GgE e T ANt

8aary1v4a? + A2
462 +

We see that the discriminants of the numerator and the denominator of f4(y2) are equal, and it is

A= (4a2 + A2) (ay102 — ay202 —¥2)?. Since A > 0 we obtain that all the possible topologically different

graphics (Cf4) of the function f4(y2) are given in Figures 4, 13, 14, 15, 16 and 17 as we proved in the

first case of statements () and (I7).

S = + adV4a2? + A% + V442 + A2.

Now we study the function g4(y2) where its derivative is

o,
—
Neg
[ V)
N—

(94)/(92) = Ja(y2)

V)
—~
<

DN
~

with
Pi(y2) = —2AS3S,y3 — 2AS3Sey3 + 2A525553y3 — 4AS2S52S6ya + 2AS52S3S5y3 + 4AS754S5y0

_9A8,5256 + 2A8, 525452 + 245, 52S6y2 + 245, 5255 — 2A51 5,52 + 248, 54,52
+2A835555 — 2A45,53y3 AS253Seya + 245259552 — 2A5555528 — 2455 S5y3 — 4AS3S4S5y-
—2AS357 S5 + ko Stys + 2kaSYSay3 — 2ka ST S5y3 + k2 STS3y3 — 4k ST 52855 — 2kaSTSTys
—2koS3S354y3 + 2kaS2S396y5 — kaS7S3y3 + koS2S2y3 — ko S?S2y3 — 2keS153S5y0
k51595243 + 4ksS1 5285 S6y2 + 2KaS1 5282y — 2K S1 S22y + 2k 51 525513
44k 51 S3SuS5y2 + 2k 5152 S5ys — ka2 S252y2 + 2k0S2S5Seys + kaS2S2 — kaS2SZ + oSy
+2k2S3S4y3 — 2kaS3Seys + kaS3S3y3 — 4k S354S6y3 — kaS3S2y3 + kaS352y3 + ke S3S2
k05352 Says — 2knS35452ys + 2K2S35452ys — knS2S2,

and

P>(y2) = (y2(S1 — S3) + S2 — S4)(y2(S1 + S3) + S2 + S4)(y2(S3 — S1) + S5 — S6) (—y2(S1 + S3) + S5 + S6).

According with the sign of (94)/(y2) and the kind of roots of the quartic polynomial P;(y2) and with
S5 + Se Sy — S

and ygo = 2 we give all
S1+ 53 ST

the possible topologically different graphics of the function §4(y2) in what follows.

their position with respect to the two vertical asymptotes yo1 =

If P;(y2) has four simple real roots the graphics of g4(y2) are given in (a), or (b), or (c), or (d), or (e),
or (f), or (g), or (h), or (i) of Figure 25.

If P;(y2) has two simple real roots and two complex roots the graphics of g4(y2) are given in (j), or
(k), or (1) of Figure 25, or in (a) of Figure 26.

(1
If P;(y2) has four complex roots the unique graphic of g4(y2) is shown in (b) of Figure 26.
(

If Py (y2) has one triple and one simple real root the unique graphic of g4(y2) is shown in (¢) of Figure
26.

If P;(y2) has one double real root and two complex roots the unique graphic of g4(y2) is shown in (d)
of Figure 26.
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If P;(y2) has one double and two simple real roots the graphics of g4(y2) are shown in (e), or (f), or
(g) of Figure 26.

If P;(y2) has one real root of order four or two double real roots the unique graphic of g4(y2) is shown
n (h) of Figure 26.

ay) | INEZEE e | | gy

AU AL A2

(a) (b) (c) (d)

J guy. i i au(y. i § au(y. i i CAVA

J al) 2. el | | ey,

(@) @ (k) )

FIGURE 25. The graphics of the function g4(ys).

Since the graphics of f4(y2) can have at most four local extremes in Figure 13 and by knowing that
the function g4(y2) is positive and its graphics can have at most four local extremes in (a), or (), or (c),
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FIGURE 26. The graphics of the function §4(ys2).

or (d), or (e), or (f), or (g), or (f) of Figure 25, therefore we conclude that the maximum number of
intersection points between the graphics of f4(y2) and g4(y2) can be precisely between Figure 13 and (a),
or (b), or (¢), or (d), or (e), or (f), or (g), or (h) of Figure 25. It results that the maximum number of
intersection points between the functions f4(y2) and g4(y2) is at most seven see for example Figure 27.
Due to symmetry of solutions (y1,y2) of (21), we know that the maximum number of limit cycles of the
discontinous piecewise differential system (3)—(6) is at most three.

_ In figure 27 we build an example that shows exactly seven intersection points between the functions
fa(y2) and g4(y2) by considering {mg, m1,ma, n1,na,r, k1, ka, A, S1, 52,53, 54, 55, 56} — {1, —1.23283,
0.265293, —1.65,6.63,4,5,—4.5,4,4,—-0.5,0.5,1,0.5,9.4}

Case 5. f A=a=0,C#0andb#0, then k =5 and j = 2 in system (21), (6) has the first integral
H§2)(x,y) given in (15), studying the solutions of F(y2) = 0 is equivalent to study the solutions of the
equation f5(y2) = g5(y2) where

f5(y2) = fa(y2) and gs(y2) = fi(ve),
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FIGURE 27. The seven intersection poitns between the functions f4(y2) drawn in con-
tinuous line and g4 (y2) drawn in dashed line.

where

1 1
my= 5 (C+ Va2 +C?) —bdy + 1, my = 3™ (C + Vb2 + C?) — bye,

4 8ab
ms = 4;2‘7101 (C+ VA2 C?) + 51(C’+\/4b2+02) % by + 1,
1 C 1 C
= —(1+—= - (1=
" 2b( + 4b2+02)’r2 Qb( ,/4b2_|_02)’
1 1
ny = 5(51(0—\/4[)24'02)—()(524-1, 77,2:5’}/1 (C— 4b2—|—02)—b72,

4avyio 1 S8abyso
ng = wjﬁ(c*—\/zwuw)+§51(C—¢4b2+02) 452” L boy+ 1,

8aya0
46% + w?’

We know that the graphics of f5 (y2) are shown in Figure 10, and the graphics of g5(y2) are shown in
Figures 4, 13, 14, 15, 16 and 17.

lo= 27, I1 =

As in the previous case we ensure that the graphics (Cg) shown in Figure 13 are the ones that
guarentee the maximum number of intersections points between the graphics of the functions gs(y2) and
f5(y2) which has the horizontal asymptote fs (y2) = 0. Then we guarantee that the maximum number of
intersection points between the graphics (Cy,) and (Cy,) takes place between Figure 10 and Figure 13.
Thus the maximum number of the intersection points of these graphics is at most seven, which provide

at most three limit cycles of the discontinuous piecewise differential system (3)—(6).

_ In what follows we build an example provides the seven intersection points between the tow functions
f5(y2) and g5(y2) when we consider {mq, ma, ms, n1,na,n3,71,72,lo, 11} — {5,—1.3,3,—0.5, —0.1703,
—1.1,-2,—4,2.19,—0.18}, these points are shown in Figure 28.
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FiGure 28. The seven intersection poitns between graphics of the functions f5(y2)
drawn in continuous line and ¢5(y2) drawn in dashed line.

Case 6. If b=a=0,C #0 and A # 0, then £k = 6 and j = 2 in system (21), the first integral of (6)
is Héz) (z,y) given in (16). The equation F(y2) = 0 is equivalent to the equation fg(yg) = gg¢(y2) where

fo(y2) = f2(y2) and go(y2) = f1(y2),

where
160 ACo
lo = *W(Awﬂzc)v l1 = 4AC(An + 720),
— AGy 1 g = Ay, g = AT s a2
mi; = 2 , Mo = A7Y2, 3_4B2+w2 2 » 'l — )

8ayCo;
4ﬁ2 + w2
The graphics of f@(yg) are given in Figure 10 and the graphics of gg(y2) are given in Figures 4, 13, 14,
15, 16 and 17. Then the maximum number of solutions of system (21) is at most seven which provides
at most three limit cycles of the discontinuous piecewise differential system (3)—(6).

ng= C& +1, noy :’)/10, ng = +Co1 + 1, ro =242,

Since the maximum number of limit cycles of all these six cases is at most three, we will build only an
example with three limit cycles of the discontinuous piecewise differential system (3)—(6) of type b+d =0
with A=a=0,C # 0 and b # 0.

In the half-plane ¥ we consider the quadratic center

&= —0.0273949..2% + 2(0.0133241..y + 3.85736..) + (—0.00150606.y — 0.845815..)y + 3.3482..,
(26) = —0.273949..2% + 2(0.133241..y + 18.5736..) + (—0.0150606..y — 3.7726..)y + 25.7332..,
with its corresponding first integral
HéQ) (z,y) = —0.0000384239..eﬁ(y_10$)(x —0.307716..y — 34.9503..)(x — 0.178658..y + 27.1508..)%.
In the half-plane ¥~ we consider the linear differential center
(27) j::lx—gy—i—g, g)=6m—ly+£,
5 120 20 5 5 5

with the first integral

6 1 \? 48 /11 19
H —4( 22— 2 2 - = 2,
(z,9) (539 5y> + 5 <5x 20y>+y

In this case system (21) has the three solutions (y1,y2) = (0.592968...,7.2691..), (ys,y4) = (1.31716...,
6.54491...) and (ys, ys) = (2.34295...,5.51911...) which provide the three limit cycles for the discontinuous
piecewise differential system (26)—(27), see Figure 2(b).
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Case 7. If a =0# C and A = 4b(A +b) + C%? =0, then k = 7 and j = 2 in system (21), (17) is the
first integral of the quadratic center (6). Then the solutions of F(y2) = 0 are the same as the solutions
of the equation f7(y2) = g7(y2) where

fr(y2) = fily2) and §r(y2) = G1(y2),

where
8ao
mip = m(%C — 2by2) — 2083 + Cda + 2, my = 2byy — 11 C, mg = —2bds + Cdy + 2,
(4b* + C?) V2 2
m= 1= prmry ey 02 (457 +6%) 4 8an0), np = (407 + C2) ny =1 (402 + C7),
4b?
ne hnE T
16aCo
k‘o = —m(b’yl(SQ — b’7262 — ’71), k’1 = 40(()’)/152 — b’YQ(SQ — ’)/1).

Since r; = 1, the graphics of the function f7(y2) are given in (k), (i), (j), (k) and (I) of Figure 14 and
in Figures 4, 15, 16 and 17. All the graphics of the function g7(y2) are shown in Figure 18.

Therefore the graphics of the two functions f7(ys) and gr(ys) intersect at most in five points see for
example Figure 29. Consequently, the maximum number of limit cycles of the discontinuous piecewise
differential system (3)—(6) is at most two.

Now we construct an example with exactly five intersection points between f7(y2) and g7(y2) by taking
{ml, mo,ms3,r1,72,MN1,MN2,MN3, k‘o, kl} — {—0.5, 7.2, —2, 1, —2, 0.12, —9.57 —0.3, 1.2, 0} These points are
shown in Figure 29.

-0.05+

FIGURE 29. The five intersection poitns between the functions f7(y2) drawn in contin-
uous line and §7(y2) drawn in dashed line.

Case 8. f A=b=0and a =0 # C, then k = 8 and j = 2 in system (21), the first integral of (6)
is Héz) (x,y) given in (18), and the solutions of F(y2) = 0 are the same as the solutions of the equation
fa(y2) = gs(y2) where

. 1

fs(y2) = M2 fo(yo) and Gs(yo) = fi(y2), with M = Ve
and

lp = 7M2(].604001) ((452 +w2) (’)’1 + ’)/QC(SQ) + 40&’)/2200'1) y

L= MAC((48% +w?) (n +1208) +4ar3Co1)),

8
C&+Lla=mal@=0<(mwg+&>+Lr=2

L
! 462 4+ w
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The graphics of fs(y2) are given in Figure 10. Since gs(y2) is a sub-case of fi(y2) with the particular
parameters given previously, then its graphics are shown in Figures 4(a) and 4(b). Clearly that the
maximum number of intersection points of their corresponding graphics is at most three see for example
Figure 30. Then the upper bound of the number of limit cycles in this case is at most one.

In what follows we consider {lg, {1, L1, L2, Ls,r, M} — {—0.2,—1.75,1, —5.6,-0.4,2, 1.53} for building
an example with exactly three intersection points between the two functions fs(y2) and gs(y2) see Figure
30.

F1cURE 30. The three intersection poitns between the functions fg(yQ) drawn in con-
tinuous line and gg(y2) drawn in dashed line.

Now we will prove that the result of case 8 is reached by giving an example of system (3)—(6) of type
b+d=0with A=b=0and a=0#C.

In the half-plane ¥ we consider the quadratic center

1
i= = (~242° + 2(1537 — 2490y) — 20(5y(90y — 151) + 241))
(28)
3320
i= oo (xy + (320 — 1921) + 120002 — 7300y + 10),

this system has the first integral
Héz)(a;, y) = e—(1/100)(8$+30y+1)2+((1/5)w+20y—10(x + 100y — 60)2.
In the half-plane ¥~ we consider the linear differential center
(29) =(1/2)x —1.57968..y + 2, y=2x— (1/2)y+1/2,
with the first integral
H(x,y) =2((1/2) — (1/2)y) + 2% + (0.789842..y — 2)y.

In this case system (21) has the unique solution (y1,y2) = (0.894524..,1.63763..) which provides the
unique limit cycle for the discontinuous piecewise differential system (28)—(29), see Figure 2(b). This
example completes the proof of statement (I7). O

Proof of statement (II1) of Theorem 3. In this statement F(y2) = 0 is the following cubic equation in
the variable y
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1
- (2 (y2 (48% + w?) — dao) (64(120% (a (3 = 3173) + 3b7iv2 + vad) — daoy

F(y) = W

<4B2 + w2) (7%(—6(101 — 6bd2 + 6byays — 3) — 6v172(—2ads + avyays + 2b671)
+72(6ad; — 6dds + 2vodys — 3) + 2a’yfy2> + (462 + w2)2 (a(?rﬂ (61 — 02)(01
+02) — 6720102 + y3 (vi)’ - 3717%)) + 3b(61 (27182 + 7201) + Viy2y3) + 37161

+3’}/252 + 3’)’2d(5§ + ’yg’dyg)))
Therefore this equation has at most three real solutions. Eventually the planar discontinuous piecewise
differential system (3)—(6) has at most one limit cycle.

To confirm we present in what follows a discontinuous piecewise differential systems with exactly one
limit cycle. In the half-plane ¥~ we consider the quadratic center

i = ﬁ( — 262(174x + 19)y + 20(x(341z + 1963) — 3198) + 2418597,
(30) 1
J= Tmoo (65001;2 +202(665 — 841y) + y(11397y — 19630) + 9000),
its first integral is
H® (2,y) = ~B93(174x +19)y” + 60(x(841 +1963) — 3198)y + (#(x(130z + 399) + 540) — 2869)
124185y,

In the half-plane ¥ we consider the linear differential center
(31) z=x4+0.618871..y — 1, y=-2.01981..x —y+ 1.3,
with the first integral
H(z,y) = 16.3185..2° + £(16.1584..y — 21.006..) + 5(y — 3.23169..)y.

In this case system (21) has the unique solution (yi,y2) = (0.567633..,2.66406..) which provides the
unique limit cycle for the discontinuous piecewise differential system (30)—(31), see Figure 3(a). This
example completes the proof of statement (I17). O

Proof of statement (IV') of Theorem 3. In this statement the solutions of F'(y2) = 0 are equivalent to the
solutions of an equation of degree nine and due to the big expression of this equation we omit it. This
equation has at most nine real solutions which provide at most four limit cycles for the discontinuous
piecewise differential system (3)—(6).

In what follows we give a discontinuous piecewise differential system of the class (3)—(6) of type (IV)
with four limit cycles. In the half-plane >~ we consider the quadratic center

i = 2(525.153.. — 2.477..y) — 0.0005176..z% + y(5365.y — 850504.) + 66467.,
§= 2(0.0686512.. —0.0004798..) + y(104.576.. — 0.024..y) — 1.924.. - 10822 — 13667.3..,

with its first integral

HY(z,y) = (0.990099(1.23 + 22(3.62455 - 106 — 33461.5y) + = (y(3.73225 - 103y — 8.09237
-1010) + 4.38777 - 10'2) + 4((4.51686 - 10 — 1.38763 - 10'2y)y — 4.90232 - 10'6)
+1.77406 - 10®)2) /((1.22 4 2(2.41637 - 10° — 22307.7y) + y(1.24408 - 108y — 1010
-2.69973) + 1.46548 - 1012)3).

(32)

In the half-plane ¥% we consider the linear differential center
(33) & = —8x — (25601/40)y + 50, ¢ = (1/10)x + 8y + 20,

with the first integral
H(z,y) = 4(x + 80y)? + 800(2z — 5y) + y°.
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In this case system (21) has the four solutions (y1,y2) = (0.00817805..,0.148066..), (y3,y4) = (0.0177713..,
0.138473..), (ys,ys) = (0.0292114..,0.127033..) and (yr,ys) = (0.0443241..,0.11192..) which provide the
four limit cycles for the discontinuous piecewise differential system (32)—(33), see Figure 3(b). This
example completes the proof of statement (IV). O
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