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Abstract. In this century many papers have been published on the piecewise differential systems in

the plane. The increasing interest for this class of differential systems is motivated by their many
applications for modelling several natural phenomena. One of the main difficulties for controlling the

dynamics of the planar differential systems consists in determining their periodic orbits and mainly their

limit cycles. Hence there are many papers studying the existence or non-existence of limit cycles for
the discontinuous and continuous piecewise differential systems. The study of the maximum number of

limit cycles is one of the biggest problems in the qualitative theory of planar differential systems. In

this paper we provide the maximum number of limit cycles of a class of planar discontinuous piecewise
differential systems formed by an arbitrary linear center and an arbitrary quadratic center, separated

by the straight line x = 0. In general it is a hard problem to find the exact upper bound for the number
of limit cycles that a class of differential systems can exhibit. We show that this class of differential

systems can have at most 4 limit cycles. Here we also show that there are examples of all types of these

differential systems with one, two, three, or four limit cycles.

1. Introduction and statement of the main result

A planar polynomial differential system is a system of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y) and Q(x, y) are polynomial, and the maximum degree of these polynomials is the degree
of this system.

In the study of differential systems the existence of periodic solutions is very important because they
play an important role in many natural phenomena. An isolated periodic orbit in the set of all periodic
orbits of a differential system is called a limit cycle.

This paper deals with discontinuous piecewise differential systems of the form

(2) (ẋ, ẏ) = F (x, y) =

 F−(x, y) =
(
F−
1 (x, y), F−

2 (x, y)
)T

y ∈ Σ−,

F+(x, y) =
(
F+
1 (x, y), F+

2 (x, y)
)T

y ∈ Σ+,

such that the separation line of the plane is Σ = {(x, y) : x = 0} and

Σ− = {(x, y) : x ≤ 0}, Σ+ = {(x, y) : x ≥ 0}.

In this paper we shall work with discontinuous piecewise differential systems in R2, and the definition
of these differential systems on the separation line of their two pieces in R2 follows the rules of Filippov
[12].

Research on discontinuous piecewise linear differential systems started with the studies of Andronov,
Vitt and Khaikin about 1930 in [1]. Recently the dynamics of piecewise differential systems appears
frequently in many fields of applied mathematics, mechanics, electronics, economics, neuroscience, etc.,
see for instance [7, 22, 23].
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The second part of the famous sixteenth Hilbert problem consists in finding an upper bound for the
maximum number of limit cycles that the polynomial differential systems in the plane of a given degree
can have, see [14, 15, 18]. In the last years many authors have been involved in solving the extension of
this problem to some classes of discontinuous piecewise differential systems.

In the literature we find many papers interested in studying piecewise differential linear systems sep-
arated by either a straight line or an algebraic curve, such as a conic or a reducible or irreducible cubic
curve, see for instance [2, 4, 5, 6, 8, 9, 11, 13, 21].

In [19] it is studied the maximum number of limit cycles of the planar continuous piecewise differential
systems formed by an arbitrary linear center and an arbitrary quadratic center, separated by a parabola.

The main goal of this paper is to solve the extension of the second part of the sixteenth Hilbert problem
to the class of discontinuous piecewise differential systems formed by an arbitrary linear center and an
arbitrary quadratic center separated by the straight line x = 0.

Using the first integrals of the linear and quadratic centers we will obtain a set of equations whose solu-
tions provide the upper bound for the maximum number of limit cycles for the class of the discontinuous
piecewise differential systems that we study.

Lemma 1. Every linear center after doing a linear change of variables and a rescaling of the independent
variable can be written as

ẋ = −βx−
(
4β2 + ω2

)
4α

y + σ1, ẏ = αx+ βy + δ1, with ω > 0, α > 0,(3)

and its first integral is

H(x, y) = 8α(δ1x− σ1y) + 4(αx+ βy)2 + y2ω2.(4)

For a proof of Lemma 1 see [20].

In the following result we give a normal form of the quadratic centers, for a proof see for instance
Theorem 8.15 of [10].

Theorem 2 (Kapteyn-Bautin Theorem). Any quadratic system candidate to have a center can be written
after an affine transformation and a rescaling of the independent variable in the form

ẋ = −y − bx2 − Cxy − dy2, ẏ = x+ ax2 +Axy − ay2.(5)

This system has a center at the origin if and only if one of the following conditions holds

(i) C = a = 0,
(ii) b+ d = 0,
(iii) C + 2a = A− 2b = 0,
(iv) C + 2a = A+ 3b+ 5d = a2 + bd+ 2d2 = 0.

The results stated in the next theorem do not depend on which half-plane x ≥ 0 or x ≤ 0 are located
the linear and the quadratic centers.

Our main results is stated in the next theorem.

Theorem 3. The maximum number of limit cycles of the discontinuous piecewise differential systems
separated by the straight line Σ and formed by an arbitrary linear center and an arbitrary quadratic center
satisfying the condition of Kapteyn-Bautin Theorem of

(I) type C = a = 0 is three if A = −b ̸= 0, and one if eiher A = 0 ̸= b, or b = 0 ̸= A, or A = b = 0.
There are discontinuous piecewise differential systems of these types with three limit cycles see
Figure 1(a) and with one limit cycle see Figure 1(b).
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(II) type b + d = 0 is three if either A + b = 0 and b ̸= 0, or AbC(A + b)(4b(A + b) + C2) ̸= 0, or
b = C = 0, or A = 0 and b ̸= 0, or b = 0 and A ̸= 0; two if (4b(A + b) + C2) = 0; and one if
A = b = 0. There are discontinuous piecewise differential systems of this type with three limit
cycles see Figure 2(a) and with one limit cycle see Figure 2(b).

(III) type C + 2a = A − 2b = 0 is one. There are discontinuous piecewise differential systems of this
type with one limit cycle, see Figure 3(a).

(IV) type C + 2a = A + 3b + 5d = a2 + bd + 2d2 = 0 is four. There are discontinuous piecewise
differential systems of this type with four limit cycles, see Figure 3(b).

Theorem 3 is proved in section 3.

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

-0.2

0.0

0.2

0.4

0.6

(a)

-1 0 1 2 3

0

2

4

6

8

10

(b)

Figure 1. (a) The three limit cycles of the discontinuous piecewise differential system
(22)–(23), and (b) the unique limit cycle of the discontinuous piecewise differential system
(24)–(25).
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Figure 2. (a) The three limit cycles of the discontinuous piecewise differential system
(26)–(27), and (b) the unique limit cycle of the discontinuous piecewise differential system
(28)–(29).

2. Quadratic centers after an affine change of variables

In this section we give the expression of an arbitrary quadratic differential center with its corresponding
first integral obtained after the general affine change of variables {x → α1x+γ1y+δ1, y → α2x+γ2y+δ2}
with α1γ2 − α2γ1 ̸= 0.
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Figure 3. (a) The unique limit cycle of the discontinuous piecewise differential system
(30)–(31), and (b) the four limit cycles of the discontinuous piecewise differential system
(32)–(33).

Thus system (5) becomes

(6)

ẋ =
1

α2γ1 − α1γ2

(
x2
(
aγ1(α1 − α2)(α1 + α2) +Aα1α2γ1 + γ2

(
α2
1b+ α1α2C + α2

2d
))

+ y2(a

γ3
1 + γ2

1γ2(A+ b)γ1γ
2
2(C − a) + γ3

2d) + δ1(aγ1δ1 + bγ2δ1 + γ1) + δ2(Aγ1δ1

+γ2 + γ2Cδ1) + δ22(γ2d− aγ1)y(γ1γ2(−2aδ2 +Aδ1 + 2bδ1 + Cδ2) + γ2
1(2aδ1

+Aδ2 + 1) + γ2
2(Cδ1 + 2dδ2 + 1)) + x(α1(2aγ

2
1y + γ1 + 2aγ1δ1 + γ1γ2y + (A

+2b) +Aγ1δ2 + 2bγ2δ1 + γ2C(δ2 + γ2y)) + α2(Aγ1(δ1γ1y) + γ2 − 2aγ1(δ2

+γ2y) + γ2 + C(δ1 + γ1y) + 2γ2d(δ2 + γ2y)))
)
,

ẏ =
1

α1γ2 − α2γ1

(
x2
(
aα3

1 + α1α
2
2(C − a) + α2

1α2(A+ b) + α3
2d
)
+ y2(aα1(γ1 − γ2)(γ1 + γ2)

+γ2(Aα1γ1 + α2γ1C + α2γ2d) + α2bγ
2
1) + δ1(aα1δ1 + α1 + α2bδ1) + δ22

(α2d− aα1) + δ2(Aα1δ1 + α2 + α2Cδ1) + y(α1(2aγ1δ1 − 2aγ2δ2 +Aγ1δ2

+Aγ2δ1 + γ1) + α2(2bγ1δ1 + γ2 + γ1Cδ2 + γ2Cδ1 + 2γ2dδ2)) + x(α1α2

(−(2a− C)(δ2 + γ2y) +A(δ1 + γ1y) + 2b(δ1 + γ1y)) + α2
1(2a(δ1 + γ1y)

+A(δ2 + γ2y) + 1) + α2
2(C(δ1 + γ1y) + 2d(δ2 + γ2y) + 1))

)
.

For its corresponding first integral we distinguish the following cases.

I. The quadratic system (6) satisfying condition (i) of Theorem 2. The corresponding first
integral of this differential system if A = −b ̸= 0 becomes

(7) H
(1)
1 (x, y) = (A(δ2 + α2x+ γ2y) + 1)2deZ1(x,y),

where

Z1(x, y) =
1

(A(δ2 + α2x+ γ2y) + 1)2

(
A
(
A2(δ1 + α1x+ γ1y)

2 − 2A(δ2 + α2x+ γ2y)

+4d(δ2 + α2x+ γ2y)− 1
)
+ 3d

)
.

If A = 0 ̸= b it becomes



5

(8)
H

(1)
2 (x, y) = e2b(δ2+α2x+γ2y)

(
2b3(δ1 + α1x+ γ1y)

2 + 2b2d(δ2 + α2x+ γ2y)
2 + 2b(b− d)

(δ2 + α2x+ γ2y)− b+ d
)
.

If b = 0 ̸= A it becomes

(9)
H

(1)
3 (x, y) = eA(A

2(δ1+α1x+γ1y)
2+Ad(δ2+α2x+γ2y)

2+2(A−d)(δ2+α2x+γ2y))(A(δ2 + α2x

+γ2y) + 1)2d−2A.

If A = b = 0 it becomes

(10) H
(1)
4 (x, y) = 2d(δ2 + α2x+ γ2y)

3 + 3
(
(δ1 + α1x+ γ1y)

2 + (δ2 + α2x+ γ2y)
2
)
.

II. The quadratic system (6) satisfying condition (ii) of Theorem 2. The first integral of the
differential system (6) if A = −b ̸= 0 and a = 0 ̸= C becomes

(11)
H

(2)
1 (x, y) = eZ(x,y)(1− b(δ2 + α2x+ γ2y))

−b2−C2

(−b(δ2 + α2x+ γ2y) + C(δ1
+α1x+ γ1y) + 1)b

2

,

where

Z(x, y) =
bC

b(δ2 + α2x+ γ2y)− 1

(
b(δ1 + α1x+ γ1y) + C(δ2 + α2x+ γ2y)

)
.

If AbC(A+ b)∆ ̸= 0 and a = 0 with ∆ = 4b(A+ b) + C2 < 0 and L =
√
−∆ it becomes

(12) H
(2)
2 (x, y) =

(
−
(
C2 + L2

)
(δ2 + α2x+ γ2y)

4b
− b(δ2 + α2x+ γ2y) + 1

)− 8b
4b2+C2+L2

e
−2CM

bL ,

where M = arctan

(
2b(δ2 + α2x+ γ2y)− C(δ1 + α1x+ γ1y)− 2

L(δ1 + α1x+ γ1y)

)
.

If AbC(A+ b)∆ ̸= 0 and a = 0 with ∆ = 4b(A+ b) + C2 > 0 and r =
√
∆ it becomes

(13)

H
(2)
3 (x, y) = (A(δ2 + α2x+ γ2y) + 1)1/A

(1
2
(C − r) (δ1 + α1x+ γ1y)− b(δ2 + α2x

+γ2y) + 1
) r−C

2rb
(1
2
(C + r) (δ1 + α1x+ γ1y)− b(δ2 + α2x+ γ2y) + 1

) r+C
2rb

.

If b = C = 0 it becomes

(14)

H
(2)
4 (x, y) = eZ(x,y)(a(δ1 + α1x+ γ1y) + 1)−2

√
4a2+A2

( 1

(a(δ1 + α1x+ γ1y) + 1)2
((δ2 + α2x

+γ2y)
(
a2(−(δ2 + α2x+ γ2y)) + aA(δ1 + α1x+ γ1y) +A

)
+
(
a(δ1 + α1x+ γ1y)

+1)2
))−√

4a2+A2

,

where

Z(x, y) = 2a
√
4a2 +A2(δ1 + α1x+ γ1y)− 2A tanh−1

(
−2a2(δ2+α2x+γ2y)+aA(δ1+α1x+γ1y)+A√

4a2+A2(a(δ1+α1x+γ1y)+1)

)
.

If A = a = 0, C ̸= 0 and b ̸= 0 it becomes

(15)
H

(2)
5 (x, y) = eδ2+α2x+γ2y

(1
2
(C − r) (δ1 + α1x+ γ1y)− b(δ2 + α2x+ γ2y) + 1

) r+C
2rb
(1
2
(C

+r)(δ1 + α1x+ γ1y)− b(δ2 + α2x+ γ2y) + 1
) r−C

2rb

,
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where r =
√
4b2 + C2.

If b = a = 0, C ̸= 0 and A ̸= 0 it becomes

(16)
H

(2)
6 (x, y) = e−2AC(A(δ1+α1x+γ1y)+C(δ2+α2x+γ2y))(C(δ1 + α1x+ γ1y) + 1)2A

2

(A(δ2

+α2x+ γ2y) + 1)2C
2

.

If ∆ = 4b(A+ b) + C2 = 0 and a = 0 ̸= C it becomes

(17)
H

(2)
7 (x, y) =

1

2
eZ(x,y)+1

(
−C2(δ2 + α2x+ γ2y)

4b
− b(δ2 + α2x+ γ2y) + 1

)− 4b2

4b2+C2

(−2b(δ2

+α2x+ γ2y) + C(δ1 + α1x+ γ1y) + 2),

where Z(x, y) =
C(δ1 + α1x+ γ1y)

2b(δ2 + α2x+ γ2y)− C(δ1 + α1x+ γ1y)− 2
.

If A = b = 0 and a = 0 ̸= C it becomes

(18) H
(2)
8 (x, y) = (C(δ1 + α1x+ γ1y) + 1)2e−C(C(δ2+α2x+γ2y)

2+2(δ1+α1x+γ1y)).

III. The quadratic system (6) satisfying condition (iii) of Theorem 2. Has the first integral

(19)

H
(3)
1 (x, y) =

1

6
(2a(δ1 + α1x+ γ1y)

3 + 6b(δ1 + α1x+ γ1y)
2(δ2 + α2x+ γ2y) + 3(δ1

+α1x+ γ1y)
2 − 6a(δ1 + α1x+ γ1y)(δ2 + α2x+ γ2y)

2 + 2d(δ2 + α2x

+γ2y)
3 + 3(δ2 + α2x+ γ2y)

2).

IV. The quadratic system (6) satisfying condition (iv) of Theorem 2. Has the first integral

(20)

H
(4)
1 (x, y) =

(
(a2 + d2)(d(δ2 + α2x+ γ2y)− a(δ1 + α1x+ γ1y))

3 − 3ad(a2 + d2)(δ1

+α1x+ γ1y)(δ2 + α2x+ γ2y) + 3d2(a2 + d2)(δ2 + α2x+ γ2y)
2 + 3d(a2

+d2)(δ2 + α2x+ γ2y) + d2
)2

/
(
(a2 + d2)(a(δ1 + α1x+ γ1y)− d(δ2 + α2x

+γ2y))
2 + 2d(a2 + d2)(δ2 + α2x+ γ2y) + d2

)3
.

3. Proof of Theorem 3

Now we should give the proof of Theorem 3, where we provide the maximum number of limit cycles
which can have the discontinuous piecewise differential systems separated by the straight line Σ, and
formed by an arbitrary linear center and an arbitrary quadratic centers.

In one half-plane we consider the linear differential center (3) with its first integral H(x, y) given in
(4). In the other half-plane we consider system (6) satisfying one of the four condition of Theorem 2,

with its corresponding first integral H
(j)
k (x, y) with k = 1, ..., 8 and j = 1, ..., 4.

In order that the discontinuous piecewise differential system (3)–(6) has a limit cycle that intersects
the straight line Σ at the points (0, y1) and (0, y2) with y1 < y2, these points must satisfy the following
system

(21)
e1 = H(0, y1)−H(0, y2) = (y1 − y2)

((
4β2 + ω2

)
(y1 + y2)− 8ασ1)

)
= 0,

e2 = H
(j)
k (0, y1)−H

(j)
k (0, y2) = h

(j)
k (y1, y2) = 0.



7

From e1 = 0, we obtain y1 =
8ασ1

4β2 + ω2
− y2 and by substituting it in e2 = 0 we obtain the equation

F (y2) = 0 in the variable y2, which differs according with the first integrals of system (6).

Proof of statement (I) of Theorem 3. Now we prove the statement (I) for the discontinuous piecewise
differential system formed by the linear differential center (3) and the quadratic differential center (6) of
type C = a = 0, and we distinguish the following cases:

Case 1. If A = −b ̸= 0 then k = 1 and j = 1 in system (21), the first integral of (6) is H
(1)
1 (x, y)

given in (7), so the solutions of F (y2) = 0 are equivalent to the solutions of the non-algebraic equation
f1(y2) = g1(y2) where

f1(y2) =

(
L1 + L2 y2
L3 − L2 y2

)r

and g1(y2) = e

k0 + k1 y2 + k2 y22 + k3 y32
(L1 + L2 y2)2(L3 − L2 y2)2 ,

where

k0 =
1

(4β2 + ω2)2
16Aσ1α(A

3(β2(8γ1δ1δ2 − 4γ2δ
2
1 + 4γ2δ

2
2) + ω2(2γ1δ1δ2 − γ2δ

2
1 + γ2δ

2
2)

+8ασ1δ2(γ
2
1 + γ2

2))− γ2d(4β
2 + ω2)− 3Aγ2d

(
δ2
(
4β2 + ω2

)
+ 4αγ2σ1

)
−A4(γ2δ1

−γ1δ2)
(
δ1δ2

(
4β2 + ω2

)
+ 4ασ1(γ1δ2 + γ2δ1)

)
+A2

( (
4β2 + ω2

)
(γ1δ1 + γ2δ2(1

−2dδ2)) + 4ασ1

(
γ2
1 + γ2

2 − 4γ2
2dδ2

) )
,

k1 = 4A
(
(Aδ2 + 1)(d(2Aγ2δ2 + γ2)−A2(δ2(Aγ1δ1 + γ2) + δ1(γ1 −Aγ2δ1))) +

32α2A2γ2σ
2
1

(4β2 + ω2)2

(A2γ1(γ1δ2 − γ2δ1) +A(γ2
1 + γ2

2)− 2γ2
2d)−

4αAσ1

4β2 + ω2
(A3(γ2

1δ
2
2 − γ2

2δ
2
1) + 2A2δ2(γ

2
1

+γ2
2) +A(γ2

1 + γ2
2(1− 4dδ2))− 3dγ2

2)
)
,

k2 = −48αA3γ2σ1

4β2 + ω2

(
A2γ1(γ1δ2 − γ2δ1) +A

(
γ2
1 + γ2

2

)
− 2γ2

2d
)
,

k3 = 4A3γ2
(
A2γ1(γ1δ2 − γ2δ1) +A

(
γ2
1 + γ2

2

)
− 2γ2

2d
)
,

L1 = Aδ2 + 1, L2 = Aγ2, L3 =
8αAγ2σ1

4β2 + ω2
+Aδ2 + 1, r = 2d.

We note that
(
f1
)′
(y2) and

(
g1
)′
(y2) are the derivatives of the functions f1(y2) and g1(y2), respectively.

Where (
f1
)′
(y2) =

η(L1 + L2 y2)
r−1

(L3 − L2 y2)r+1
,

and

(
g1
)′
(y2) = e

k0 + k1 y2 + k2 y22 + k3 y32
(L1 + L2 y2)2(L3 − L2 y2)2 P (y2)

(L1 + L2 y2)3(L1 − L2 y2)3
,

with η = rL2(L3 + L1), and

P (y2) = k3L
2
2 y42 + L2

(
2k2L2 + k3(L3 − L1)

)
y32 + 3

(
k1L

2
2 + k3L1L3

)
y22 +

(
4k0L

2
2 + k1L2(L1 − L3)

+2k2L1L3

)
y2 + 2k0L1L2 − 2k0L2L3 + k1L1L3.

We denoted by (Cf1) and (Cg1) the graphics of the functions f1(y2) and g1(y2), respectively.

According with the sign of
(
f1
)′
(y2) which depends on r and with the sign of the parameter η ∈ R,

we obtain that all the possible graphics (Cf1) of the function f1(y2) are as follows.
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If r is an even integer or the rational r = p/(2q + 1) with p is an even integer and q is an arbitrary

integer, then the sign of
(
f1
)′
(y2) depends on the sign of η (L1 + L2 y2) (L3 − L2 y2). Therefore the

graphic (Cf1) is given in Figure 4(a) if η > 0, or 4(b) if η < 0.

If r is an odd integer or the rational r = p/(2q + 1) with p is an odd integer and q is an arbitrary

integer, then the sign of
(
f1
)′
(y2) depends only on the sign of η. Therefore the graphic (Cf1) is given in

Figure 4(c) if η < 0, or Figure 4(d) if η > 0.

If r is irrational or the rational r = p/(2q) where p is an odd integer and q is an arbitrary integer,

then the sign of
(
f1
)′
(y2) depends on the sign of η. Consequently the graphics (Cf1) are the same than

in the case that r is an odd integer but in the domain of definition of f1(y2).

f (y )1 2

y2

(a)

y2

f (y )1 2

(b)

f (y )1 2

y2

(c)

f (y )1 2

y2

(d)

Figure 4. The graphics of the function f1(y2). The dashed straight line is the vertical
asymptote straight line.

According with the sign of
(
g1
)′
(y2) and with the different kind of the roots ri with i ∈ {1, . . . , 4} of

the polynomial P (y2), and by considering the case when L3 ̸= −L1, we shall obtain the different possible
topologically distinct graphics (Cg1).

If P (y2) has four simple real roots, then the positions of these roots with respect to the two vertical

asymptotes straight lines y21 = −L1

L2
and y22 = −L3

L2
play a main role in the variation of the graphics

(Cg1). So all the possible topologically distinct graphics (Cg1) are given in Figure 5(a) if y21 < r1 < y22 <
r2 < r3 < r4, or Figure 5(b) if r1 < r2 < r3 < y21 < r4 < y22, or Figure 5(c) if r1 < y21 < r2 < y22 <
r3 < r4, or Figure 5(d) if r1 < r2 < y21 < r3 < y22 < r4, or Figure 5(e) if y21 < r1 < r2 < y22 < r3 < r4,
or Figure 5(f) if r1 < r2 < y21 < r3 < r4 < y22, or Figure 5(g) if r1 < y21 < r2 < r3 < y22 < r4, or
Figure 5(h) if r1 < y21 < r2 < r3 < r4 < y22, or Figure 5(i) if y21 < r1 < r2 < r3 < y22 < r4.

If P (y2) has one triple and one simple real root, or two complex and two simple real roots, the graphics
(Cg1) are given in Figure 5(j) if y21 < r1 < r2 < y22, or Figure 5(k) if r1 < y21 < r2 < y22, or Figure 5(l)
if y21 < r1 < y22 < r2.

If P (y2) = 0 has one double real and two complex roots, the graphics (Cg1) are given in Figure 6(a).

If P (y2) = 0 has two double real roots, the graphics (Cg1) are given in Figure 6(b) if r1 < y21 < r2 < y22,
or Figure 6(c) if y21 < r1 < y22 < r2.

If P (y2) = 0 has four complex roots, see Figure 6(d).

If P (y2) = 0 has one double real r0 and two simple real roots r1 and r2, then if r0 < r1 < y21 < r2 < y22
see Figure 6(e), or if y21 < r1 < y22 < r0 < r2 see Figure 6(f), or if r1 < y21 < r0 < r2 < y22 see Figure
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6(g), or if y21 < r1 < r0 < y22 < r2 see Figure 6(h), or if r1 < y21 < r0 < y22 < r2 see Figure 6(i),
or if y21 < r1 < r2 < y22 < r0 see Figure 6(j), or if r0 < y21 < r1 < r2 < y22 see Figure 6(k), or
if y21 < r0 < y22 < r1 < r2 see Figure 6(l), or if r1 < r2 < y21 < r0 < y22 see Figure 7(a), or if
r0 < y21 < r1 < y22 < r2 see Figure 7(b).

If P (y2) = 0 has one real root of order four this root must equal one of the two asymtotes y21 or y22,
then the graphics (Cg1) are given in Figure 7(c), or Figure 7(d).

Now if L3 = −L1 we obtain that P (y2) = 0 is a cubic equation, therefore the graphics (Cg1) are as
follows.

If P (y2) = 0 has one triple real root or one simple and two complex roots, the graphics (Cg1) are given
in Figure 7(c) or 7(d).

If P (y2) = 0 has one double real and one simple real root, the graphics (Cg1) are given in Figure 7(e)
or 7(f) if r1 = r2 < y21 < r3, or r1 < y21 < r2 = r3, respectively.

If P (y2) = 0 has three real roots, the graphics (Cg1) are given in Figure 7(g) if y21 < r1 < r2 < r3, or
Figure 7(h) if r1 < r2 < y21 < r3, or Figure 7(i) if r1 < y21 < r2 < r3, or Figure 7(j) if r1 < r2 < r3 < y21.

We will only give the graphics (Cg1) when the derivative
(
g1
)′
(y2) starts with a negative sign because

when the derivative start with a positive sign their graphics are topologically equivalent to the previous
ones.

For the function f1(y2) we remark that the sign of the derivative changes at most three times when r
an even integer or r = p/(2q + 1) with p an even integer and q is an arbitrary integer which guarantees
that (Cf1) can have at most one local extrem in (a) or (b) of Figure 4, and on the other hand it is obvious
that the graphics (Cg1) can have at most four local extremes in (a), or (b), or (c), or (d), or (e), or (f),
or (g), or (h), or (i) or (j) of Figure 5, and since the function g1(y2) is positive and it has the horizontal
asymptote straight line g1(y2) = 1, then we guarantee that the maximum number of intersection points
between the graphics (Cf1) and (Cg1) can be precisely between (a) or (b) of Figure 4 and (a), or (b), or
(c), or (d), or (e), or (f), or (g), or (h), or (i) or (j) of Figure 5. It is clear that the graphics (Cf1) and
(Cg1) intersect at most in seven points, see for example Figure 8. Hence, F (y2) = 0 has at most seven real
solutions. We can show easily that if (y1, y2) is a solution of (21), then (y2, y1) is also a solution of this
system. Consequently, the maximum number of limit cycles of the discontinuous piecewise differential
system (3)–(6) in this case is at most three.

In what follows we construct an example with exactly seven intersection points between the graph-
ics (Cf1) and (Cg1) by considering {L1, L2, L3, k0, k1, k2, k3, r} → {−2, 1,−3.5, 2, 2.5,−1,−6.9, 2}, these
points are shown in Figure 8.

To complete the proof of this case we provide an example with three limit cycles.

Three limit cycles for a discontinuous piecewise differential system (3)–(6) of type C = a = 0 with
A = −b ̸= 0.

In the half-plane Σ− we consider the quadratic center

(22)
ẋ = −0.41137..x2 + x(−4.7083..y − 0.8342..) + y(−12.0159..y − 0.866409..) + 1.05188..,

ẏ = 0.053171..x2 + x(0.67274..y + 0.0188591..) + y(1.9488..y + 0.11029..)− 0.720841..,

its corresponding first integral is

H
(1)
2 (x, y) = −0.001233..(−x− 10.5578..y + 9.06)2

(
x2 + (9.8313..y + 6.51292..)x+ (21.4047..y

+14.3032..)y + 2.38945..
)
.
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(d)
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y2

(e)

y2
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(f)
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y2

(g)
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(h)

y2
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(i)
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g (y )1 2

(j)

y2

g (y )1 2

(k)

y2

g (y )1 2

(l)

Figure 5. The graphics of the function g1(y2).

In the half-plane Σ+ we consider the linear differential center

ẋ =
1

5
x− 229

300
y +

1

5
, ẏ = 3x− 1

5
y − 3

10
,(23)

with the first integral

H(x, y) = 4
(
3x− 2

10
y
)2

+ 24
(
− 3

10
x− 2

10
y
)
+ 9y2.
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y2

g (y )1 2

(a)

y2

g (y )1 2

(b)

y2

g (y )1 2

(c)

g (y )1 2

y2

(d)

g (y )1 2

y2

(e)

g (y )1 2

y2

(f)

g (y )1 2

y2

(g)

g (y )1 2

y2

(h)

y2

g (y )1 2

(i)

g (y )1 2

y2

(j)

g (y )1 2

y2

(k)

g (y )1 2

y2

(l)

Figure 6. The graphics of the function g1(y2).

In this case system (21) has the three solutions (y1, y2) = (0.0217348.., 0.502283..), (y3, y4) = (0.0725424..,
0.451475..) and (y5, y6) = (0.143419.., 0.380598..) which provide the three limit cycles for the discontinu-
ous piecewise differential system (22)–(23) shown in Figure 1(a).

Case 2. If A = 0 ̸= b then k = 2 and j = 1 in system (21), then the first integral of system

(6) is H
(1)
2 (x, y) given in (8), and the solutions y2 of F (y2) = 0 are equivalent to the solutions of the
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(b)

y2
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(c)

y2

g (y )1 2

(d)

y2

g (y )1 2

(e)

y2

g (y )1 2

(f)

y2

g (y )1 2

(g)

y2y2

g (y )1 2

(h)

y2y2

g (y )1 2

(i)

g (y )1 2

y2

(j)

Figure 7. The graphics of the function g1(y2).

non-algebraic equation f2(y2) = g2(y2), where

f2(y2) = e(l0+l1y2) and g2(y2) =
k0 + k1 y2 + k2 y22
z0 + z1 y2 + k2 y22

,
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10

15

20
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0.10

Figure 8. The seven intersection poitns between the two functions f1(y2) drawn in
continuous line and g1(y2) drawn in dashed line.

with

l0 = −16αbγ2σ1

4β2 + ω2
, l1 = 4bγ2, k0 = b

(
2b2δ21 + 2bδ2(dδ2 + 1)− 2dδ2 − 1

)
+ d,

k1 = 2b
(
2b2γ1δ1 + b(γ2 + 2γ2dδ2)− γ2d

)
, k2 = 2b2

(
bγ2

1 + γ2
2d
)
,

z0 = 2b
( 8ασ1

4β2 + ω2

(
2b2γ1δ1 + b(γ2 + 2γ2dδ2)− γ2d

)
+ b2δ21 +

64α2bσ2
1

(4β2 + ω2)
2

(
bγ2

1 + γ2
2d
)
+ bdδ22 + bδ2

−dδ2

)
− b+ d, z1 = 2b

(
− 2b2γ1δ1 − bγ2 − 2bγ2dδ2 −

16αbσ1

4β2 + ω2

(
bγ2

1 + γ2
2d
)
+ γ2d

)
.

We denoted by (Cf2) and (Cg2) the graphics of f2(y2) and g2(y2), respectively.

The possible graphics of f2(y2) are shown either in Figure 10(a) if l1 > 0, or in Figure 10(b) if l1 < 0.

For the function g2(y2) its derivative is

(
g2
)′
(y2) =

P1(y2)(
P2(y2)

)2 ,
with

P1(y2) = (k2z1 − k1k2)y
2
2 + (2k2z0 − 2k0k2)y2 − k0z1 + k1z0 and P2(y2) = k2y

2
2 + z1y2 + z0.

We see that the discriminant of the numerator of g2(y2) = 0 is equal to the discriminant of P2(y2) = 0
which is ∆0 = k21 − 4k0k2 = z21 − 4z0k2, and ∆ = (2k2z0 − 2k0k2)

2 − 4(k2z1 − k1k2)(−k0z1 + k1z0) is
the discriminant of P1(y2) = 0, then according to the sign of the determinants ∆0 and ∆ the graphics of
g1(y2) are given in Figure 9(a) or Figure 9(b) if ∆0 > 0 and ∆ < 0, Figure 9(c) or Figure 9(d) if ∆0 > 0
and ∆ > 0, Figure 9(e) or Figure 9(f) if ∆0 > 0 and ∆ = 0 or ∆0 = 0 and ∆ > 0, and Figure 9(g) or
Figure 9(h) if ∆0 < 0 and ∆ < 0.

It is clear that the graphics (Cg2) can have the maximum number of local extremes in (c), or (d), or (g)
or (h) of Figure 9, then we know that the maximum number of intersection points between the graphics
(Cf2) and (Cg2) can be precisely between (a) or (b) of Figure 10 and (c), or (d), or (g) or (h) of Figure 9.
It is obvious that the graphics (Cf2) and (Cg2) intersect at most in three points see for example Figure
11. Due to the symmetry of the solutions of system (21) we know that the maximum number of limit
cycles in this case is at most one.

In the following we build an example with exactly three intersection points between the graphics (Cf2)
and (Cg2) by taking {l0, l1, k0, k1, k2, z0, z1} → {0.35, 0.2, 3.9,−2,−1, 4,−2}, these points are shown in
Figure 11.
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y2

g (y )2 2g (y )2 2

(a)

y2

g (y )2 2

(b)

y2

g (y )2 2

(c)

g (y )2 2

y2

(d)

y2

g (y )2 2

(e)

g (y )2 2

y2

(f)

y2

g (y )2 2

(g)

y2

g (y )2 2

(h)

Figure 9. The graphic of the function g2(y2).

f (y )2 2

y 2

(a)

y 2

f (y )2 2

(b)

Figure 10. The graphic of the function f2(y2).

Case 3. If b = 0 ̸= A then k = 3 and j = 1 in system (21), the first integral of system (6) is H
(1)
3 (x, y)

given in (9), and the solutions of F (y2) = 0 are equivalent to the ones of the equation f3(y2) = g3(y2).

We have f3(y2) = f1(y2), with r = 2d− 2A, therefore the graphics of f3(y2) are given in Figure 4.
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-4 -2 2 4

1

2

3

Figure 11. The three intersection poitns between the two functions f2(y2) drawn in
continous line and g2(y2) drawn in dashed line.

We have also g3(y2) = f2(y2), then we know that the graphics of g3(y2) are given in Figure 10.

The parameters of the function g3(y2) are:

l0 =
1

(4β2 + ω2)2

(
16αAσ1(A

2γ1(δ1(4β
2 + ω2) + 4αγ1σ1) +Aγ2(4β

2(dδ2 + 1) + 4αγ2σ1d+ dδ2ω
2

+ω2)− γ2d(4β
2 + ω2))

)
,

l1 = − 1

4β2 + ω2

(
4A(A2γ1(δ1(4β

2 + ω2) + 4αγ1σ1) +Aγ2(4β
2(dδ2 + 1) + 4αγ2σ1d+ dδ2ω

2 + ω2)

−γ2d(4β
2 + ω2))

)
.

Due to the fact that f3(y2) = f1(y2) there is at most one local extrem at zero in (a) or (b) of Figure 4, we
know also that g3(y2) = f2(y2), then it is clear that the maximum number of intersections points between
the graphics (Cg3) and (Cf3) can be precisely between (a) or (b) of Figure 4 and Figure 10. Consequently
the graphics of functions f3(y2) and g3(y2) intersect at most in three points see for example Figure 12.
Due to the symmetry of the solutions of system (21) we know that the maximum number of limit cycles
of the discontinuous piecewise differential system (3)–(6) is at most one.

By considering {l0, l1, L1, L2, L3, r} → {−0.2, 1.75, 4,−7,−0.4,−2} we constuct an example with ex-
actly three intersection points between the graphics of the two functions f3(y2) and g3(y2), these points
are illustrated in Figure 12.

Case 4. If A = b = 0 then k = 4 and j = 1 in system (21), the first integral in this case is H
(1)
4 (x, y)

given in (10), and

F (y2) = 2d
( 8αγ2σ1

4β2 + ω2
+ δ2 − γ2y2

)3
− 2d(δ2 + γ2y2)

3 + 3
(( 8αγ1σ1

4β2 + ω2
+ δ1 − γ1y2

)2
+
( 8αγ2σ1

4β2 + ω2
+ δ2 − γ2y2

)2)
− 3

(
(δ1 + γ1y2)

2 + (δ2 + γ2y2)
2
)
.

Since F (y2) = 0 is a cubic equation in the variable y2 the maximum number of real solutions of system
(21) is at most three. Eventually, the upper bound of the maximum number of limit cycles for this case
is at most one.

To complete the proof of this case we build an example with one limit cycle of the discontinuous
piecewise differential system (3)–(6) of type C = a = 0 with A = b = 0.
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Figure 12. The three intersection poitns between the two functions f3(y2) drawn in
continuous line and g3(y2) drawn in dashed line.

We consider the quadratic center

(24)

ẋ = −1.06383..

(
x
(11
5

− 1

10

(
1− 4

(
− 0.2y − 0.5

)))
+

1

10
x2 +

8

500
y2 +

28

25
y − 43

10

)
,

ẏ = 1.06383..

(
−1

4
x2 + x

(1
4

(
1− 4

(
− 1

5
y − 1

2

))
+

121

25

)
− 1

25
y2 +

19

10
y − 52

5

)
,

in the half-plane Σ−, with its first integral

H
(1)
2 (x, y) = 3

((1
2
x− 1

5
y − 1

2

)2
+
(
− 11

5
x− y +

9

2

)2)
− 4
(1
2
x− 1

5
y − 1

2

)3
.

In the half-plane Σ+ we consider the linear differential center

ẋ =
1

10
x− 0.27632..y + 1, ẏ = x− 1

10
y − 1

2
,(25)

with the first integral

H(x, y) = 4
(
x− 1

10
y
)2

+ 8
(
− 1

2
x− y

)
+ 1.06528..y2.

In this case system (21) has the unique solution (y1, y2) = (0.978592.., 6.25938..) which provides the
unique limit cycle for the discontinuous piecewise differential system (24)–(25), see Figure 1(c). This
example completes the proof of statement (I). □

Proof of statement (II) of Theorem 3. Now we must prove the statement for the discontinuous piecewise
differential system formed by the linear center (3) and the quadratic center (6) of type b+ d = 0, and we
distinguish the following cases:

Case 1. If A + b = 0 and a = 0 ̸= C, then k = 1 and j = 2 in system (21), the first integral of the

quadratic center is H
(2)
1 (x, y) given in (11), the solutions of F (y2) = 0 are the same as the solutions of

the equation f̃1(y2) = g̃1(y2) where

f̃1(y2) =

(
m1 +m2 y2
m3 −m2 y2

)r1 (n1 + n2 y2
n3 − n2 y2

)r2

and g̃1(y2) = e

k0 + k1 y2
(m1 +m2 y2)(m3 −m2 y2) ,
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where

m1 = − 8αbγ2σ1

4β2 + ω2
− bδ2 + 1, m2 = bγ2 =, m3 = 1− bδ2, r1 = b2 + C2,

n1 = −bδ2 + Cδ1 + 1, n2 = γ1C − bγ2, n3 =
8ασ1

4β2 + ω2
(γ1C − bγ2)− bδ2 + Cδ1 + 1, r2 = b2,

k0 = − 8αbCσ1

4β2 + ω2
(b(−bγ1δ2 + bγ2δ1 + γ1) + γ2C), k1 = 2bC(b(−bγ1δ2 + bγ2δ1 + γ1) + γ2C).

The derivative of the function f̃1(y2) and g̃1(y2) are(
f̃1
)′
(y2) =

(
M0 +M1 y2 +M2 y22

) (m1 +m2 y2)
r1−1(n1 + n2 y2)

r2−1

(m3 −m2 y2)r1+1(n3 − n2 y2)r1+1
,

and (
g̃1
)′
(y2) =

(
N0 +N1y2 +N2y

2
2

)
(m1 +m2y2)2(m3 −m2y2)2

e

k0 + k1 y2
(m1 +m2 y2)(m3 −m2 y2) .

with
M0 = m2n1n3r1(m1 +m3) +m1m3n2r2(n1 + n3),

M1 = m2n2(r1(m1 +m3)(n3 − n1)− r2(m1 −m3)(n1 + n3)),

M2 = −m2n2(n2r1(m1 +m3) +m2r2(n1 + n3)),

N0 = −m3m2k0 +m1m2k0 +m1m3k1, N1 = 2k0m
2
2, N2 = k1m

2
2.

According to the number of the vertical asymptotes of the function f̃1(y2) we can divide the study of
this function into two parts.

If m1 = n1, m2 = n2, m3 = n3, or r1 = 0 and r2 ̸= 0, or r1 ̸= 0 and r2 = 0, then the function f̃1(y2)

has one vertical asymptote and the graphics (Cf̃1
) of the function f̃1(y2) are the same as the ones of the

function f1(y2) shown in Figure 4.

If m1 ̸= n1, or m2 ̸= n2, or m3 = n3, or r1 ̸= 0 and r2 ̸= 0, then the function f̃1(y2) has two vertical

asymptotes. Therefore according with the derivative
(
f̃1
)′
(y2) which depends on the parameters r1, r2

and with the sign of the discriminant ∆1 = M2
1 − 4M0M2 also according with the positions of the roots

of the numerator of
(
f̃1
)′
(y2) with respect to the two vertical asymptotes, we obtain that all the possible

topologically distinct graphics (Cf̃1
) of the function f̃1(y2) are given as follows.

If r1 and r2 are even integers, or r1 is an even integer and r2 is rational such that r2 = 2p/(2q + 1)
with p, q ∈ Z, all the graphics (Cf̃1

) are given in Figure 13 if ∆1 > 0. If ∆1 = 0 the graphics (Cf̃1
) are

given in (a), or (b), or (c), or (d), or (e) of Figure 14. If ∆1 < 0 the graphics (Cf̃1
) are given in (f), or

(g) of Figure 14.

If r1 and r2 are odd integers, or r1 is an odd integer and r2 is rational such that r2 = (2p+1)/(2q+1)
with p, q ∈ N, therefore if ∆1 > 0 the graphics (Cf̃1

) are given in (h), or (i), or (j), or (k), or (l) of Figure

14 and in (a), or (b), or (c), or (d), or (e), or (f), or (g) of Figure 15. If ∆1 = 0 the graphics (Cf̃1
) are

given in (h), or (i), or (j), or (k), or (l) of Figure 15. If ∆1 < 0 the graphics (Cf̃1
) are given in (a), or

(b) of Figure 16.

If r1 is an odd integer and r2 is an even integer, or r2 is an even integer and r1 = (2p + 1)/(2q + 1)
with p, q ∈ Z, or r1 is an odd integer and r2 = (2p)/(2q+1) with p, q ∈ Z, then the sign of the derivative(
f̃1
)′
(y2) depends on the sign of

(
M0 +M1 y2 +M2 y22

)
(n1 +n2 y2)(n3 −n2 y2), therefore if ∆1 > 0 the

graphics (Cf̃1
) are given in (c), or (d), or (e), or (f), or (g), or (h), or (i), or (j), or (k), or (l) of Figure

16 and in (a), or (b) of Figure 17. If ∆1 = 0 the graphics (Cf̃1
) are given in (c), or (d), or (e), or (f), or

(g) of Figure 17. If ∆1 < 0 the graphics (Cf̃1
) are given in (h), or (i) of Figure 17.
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If r1 is an odd integer and r2 is irrational or r2 = p/2q with p, q ∈ Z, then the sign of the derivative(
f̃1
)′
(y2) depends on the sign of the quadratic polynomial

(
M0 +M1 y2 +M2 y22

)
, therefore the graphic

(Cf̃1
) are the same as the case in which r1 and r2 are odd integers but in their domain of definition.

If r2 is an even integer and r1 is irrational or r1 = p/2q with p, q ∈ Z, then the sign of the derivative(
f̃1
)′
(y2) depends on the sign of the products

(
M0 +M1 y2 +M2 y22

)
(n1 + n2 y2)(n3 − n2 y2), therefore

the graphics (Cf̃1
) are the same as in the case that r1 is an odd integer and r2 is an even integer but in

their domain of definition.

If r1 is irrational or r1 = p0/2q0 and r2 is irrational or rational with r2 = p/2q and p0, p are odd integers,

then the sign of the derivative
(
f̃1
)′
(y2) depends on the quadratic polynomial

(
M0 +M1 y2 +M2 y22

)
,

therefore the graphics of f̃1(y2) are the same as in the case that r1 and r2 are odd integers, but in their
domain of definition.

If both r1, r2 are rational with r1 = (2p0)/(2q0+1) and r2 = (2p)/(2q+1) such that p, q, p0, q0 ∈ Z, then
the sign of the derivative

(
f̃1
)′
(y2) depends on

(
M0 +M1 y2 +M2 y22

)
(m1 +m2 y2)(m3 −m2 y2)(n1 +

n2 y2)(n3 − n2 y2), therefore the graphics of f̃1(y2) are the same as in the case that r1 and r2 are even
integers.

If both r1, r2 are rational with r1 = (2p0 + 1)/(2q0 + 1) and r2 = (2p + 1)/(2q + 1) such that

p, q, p0, q0 ∈ Z, then the sign of the derivative
(
f̃1
)′
(y2) depends on

(
M0 +M1 y2 +M2 y22

)
, therefore the

graphics of f̃1(y2) are the same as in the case that r1 and r2 are odd integers.

If both r1, r2 are rational with r1 = (2p0+1)/(2q0+1) and r2 = (2p)/(2q+1) such that p, q, p0, q0 ∈ Z,
then the sign of the derivative

(
f̃1
)′
(y2) depends on

(
M0 +M1 y2 +M2 y22

)
, therefore the graphics of

f̃1(y2) are the same as in the case of r1 is an odd integer and r2 is an even integer.

If r1 is irrational or rational and r2 rational with r1 irrational or r1 = p0/(2q0) and r2 = (2p)/(2q+1)

and p0 is an odd integer and q0, p and q are integers, therefore the graphics of f̃1(y2) are the same in the
case that r1 is an odd integer and r2 is an even integer but in their domain of definition.

If r1 is irrational or rational and r2 rational with r1 irrational or r1 = p0/(2q0) and r2 = (2p+1)/(2q+1)

and p0 is an odd integer and q0, p and q are integers, therefore the graphics of f̃1(y2) are the same in the
case that r1 and r2 are odd integers but in their domain of definition.

According to the sign of the derivative of the function g̃1(y2) which depends on the sign of the quadratic
polynomial P (y2) = N0+N1y2+N2y

2
2 , then the topologically distinct graphics of g̃1(y2) are shown in (a)

and (b) of Figure 18 if m3 ̸= −m1 and P (y2) has two distinct real roots, or (c) of Figure 18 if m3 ̸= −m1

and P (y2) has two complex roots, or (d) of Figure 18 if m3 ̸= −m1 and P (y2) has one double real root,
or (e) and (f) of Figure 18(e) if m3 = −m1.

The possible graphics of f̃1(y2) are given in Figures 4, 13, 14, 15, 16 and 17, and the graphics of g̃1(y2)
are given in Figure 18.

Since the graphics of f̃1(y2) can have the maximum number of local extremes in (a)–(l) of Figure 13
and due to the fact that the function g̃1(y2) is positive and its graphics can have at most two extremes in
(a) or (b) of Figure 18, we know that the maximum number of intersection points between the graphics

of f̃1(y2) and g̃1(y2) can be precisely between (a)–(l) of Figure 13 and (a) or (b) of Figure 18. In this case

the two functions f̃1(y2) and g̃1(y2) have f̃1(y2) = g̃1(y2) = 1 as an horizontal asymptote which ensures
that at infinity there are no intersection points between their graphics. Therefore the graphics (Cf̃1

) and

(Cg̃1) of the two functions f̃1(y2) and g̃1(y2) intersect at most in six points see for example Figure 19.
Then the upper bound of the maximum number of limit cycles in this case is at most three.
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Figure 13. The graphics of the function f̃1(y2).

By taking {k0, k1,m1,m2,m3, r1, r2, n1, n2, n3} → {−0.21,−1.7,−1.7,−5.8,−2.5, 4, 2,−1.28, 2.75,−3.9}.
we build an example with exaclty six intersection poitns between graphics of the functions f̃1(y2) and
g̃1(y2). These points are shown in Figure 19.

Case 2. If AbC∆ ̸= 0 and a = 0 with ∆ = 4b(A+ b) + C2 < 0, then k = 2 and j = 2 in system (21),

the first integral of (6) is H
(2)
2 (x, y) given in (12). The equation F (y2) = 0 is equivalent to the equation
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Figure 14. The graphics of the function f̃1(y2).

f̃2(y2) = g̃2(y2) where

f̃2(y2) = e
m1

(
arctan

(
s3y2 + s4
s1y2 + s2

)
+arctan

(
s3y2 + s6
s5 − s1y2

))
,

and

g̃2(y2) =

(
t1y2 + t2
−t1y2 + t3

)r2 (K1y
2
2 +K2y2 +K3

K1y22 +K4y2 +K5

)r1

,
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Figure 15. The graphics of the function f̃1(y2).

where
s1 = γ1L, s2 = δ1, s3 = γ1C − 2bγ2,

s4 = −2bδ2 + Cδ1 + 2, s5 =
8αγ1σ1L

4β2 + ω2
+ δ1L,

s6 =
16αbγ2σ1

4β2 + ω2
+ 2bδ2 −

8αγ1Cσ1

4β2 + ω2
− Cδ1 − 2, m1 =

2C

bL
,

K1 =
1

4

(
4b2γ2

2 − 4bγ1γ2C + γ2
1C

2 + γ2
1L

2
)
,
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Figure 16. The graphics of the function f̃1(y2).

K2 = − 1

2(4β2 + ω2)

(
8ασ1

(
4b2γ2

2 + γ2
1L

2
)
+
(
4β2 + ω2

) (
4b2γ2δ2 − 4bγ2 + γ1δ1L

2
)
− 2C(4αbγ1γ2σ1

+(4β2 + ω2)(bγ1δ2 + bγ2δ1 − γ1)) + γ1C
2(8αγ1σ1 + δ1(4β

2 + ω2))
)
,

K3 =
1

4 (4β2 + ω2)
2

(
− 4C

(
δ1
(
4β2 + ω2

)
+ 8αγ1σ1

) (
4β2(bδ2 − 1) + 8αbγ2σ1 + bδ2ω

2 − ω2
)
+ 4
(
4β2(bδ2 − 1)

+8αbγ2σ1 + bδ2ω
2 − ω2

)2
+ C2

(
δ1
(
4β2 + ω2

)
+ 8αγ1σ1

)2
+ L2

(
δ1
(
4β2 + ω2

)
+ 8αγ1σ1

)2 )
,
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Figure 17. The graphics of the function f̃1(y2).

K4 =
1

2

(
4b2γ2δ2 − 4bγ2 − 2C(γ1(bδ2 − 1) + bγ2δ1) + γ1C

2δ1 + γ1δ1L
2
)
,

K5 =
1

4

(
−4Cδ1(bδ2 − 1) + 4(bδ2 − 1)2 + C2δ21 + δ21L

2
)
, r1 =

1

b
, r2 = − 8b

4b2 + C2 + L2
,

t1 =
γ2
(
4b2 + C2 + L2

)
4b

, t2 = − 1

4b

(8αγ2σ1

(
4b2 + C2 + L2

)
4β2 + ω2

+ 4b2δ2 − 4b+ C2δ2 + δ2L
2
)
,

t3 = −C2δ2
4b

− bδ2 −
δ2L

2

4b
+ 1.
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Figure 18. The graphic of the function g̃1(y2).
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Figure 19. The six intersection poitns between the two functions f̃1(y2) drawn in con-
tinuous line and g̃1(y2) drawn in dashed line.

We note that
(
f̃2
)′
(y2) and

(
g̃2
)′
(y2) are the derivatives of the functions f̃2(y2) and g̃2(y2), respectively,

where (
f̃2
)′
(y2) = m1f̃2(y2)

P1(y2)

((s1y2 + s2)2 + (s3y2 + s4)2) ((s5 − s1y2)2 + (s3y2 + s6)2)
,
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and(
g̃2
)′
(y2) = − P2(y2)

(t1y2 + t2)(−t1y2 + t3) (K1y22 +K2y2 +K3) (K1y22 +K4y2 +K5)

(
t1y2 + t2
−t1y2 + t3

)r2

(
K1y

2
2 +K2y2 +K3

K1y22 +K4y2 +K5

)r1

,

with

P1(y1) = y22
(
s21 + s23

)
(s1(s4 − s6)− s2s3 − s3s5)− 2y2

(
s21 + s23

)
(s2s6 + s4s5)− s1s

2
2s6 − s1s

2
4s6 + s1s4s

2
5

+s1s4s
2
6 − s22s3s5 − s2s3s

2
5 − s2s3s

2
6 − s3s

2
4s5, and

P2(y2) = y42
(
K2

1r2t1t2 +K2
1r2t1t3 +K1K2r1t

2
1 −K1K4r1t

2
1

)
+ y32

(
K1K2r1t1t2 −K1K2r1t1t3 +K1K2r2t1t2

+K1K2r2t1t3 + 2K1K3r1t
2
1 −K1K4r1t1t2 +K1K4r1t1t3 +K1K4r2t1t2 +K1K4r2t1t3 − 2K1K5r1t

2
1

)
+y22

(
−K1K2r1t2t3 + 2K1K3r1t1t2 − 2K1K3r1t1t3 +K1K3r2t1t2 +K1K3r2t1t3 +K1K4r1t2t3

−2K1K5r1t1t2 + 2K1K5r1t1t3 +K1K5r2t1t2 +K1K5r2t1t3 +K2K4r2t1t2 +K2K4r2t1t3

−K2K5r1t
2
1 +K3K4r1t

2
1

)
+ y2(−2K1K3r1t2t3 + 2K1K5r1t2t3 −K2K5r1t1t2 +K2K5r1t1t3

+K2K5r2t1t2 +K2K5r2t1t3 +K3K4r1t1t2 −K3K4r1t1t3 +K3K4r2t1t2 +K3K4r2t1t3)

+K2K5r1t2t3 −K3K4r1t2t3 +K3K5r2t1t2 +K3K5r2t1t3.

We denoted by (Cf̃2
) and (Cg̃2) the graphics of f̃2 and g̃2, respectively.

According with the sign of
(
f̃2
)′
(y2) which depends onm1 and with the sign of δ1 = (s1s4−s2s3)(s1s6+

s3s5), we obtain that and all the possible topologically distinct graphics (Cf̃2
) of the function f̃2(y2) are

given in what follows.

For s5 ̸= −s2 the function f̃2(y2) can have two vertical asymptotes and all the distinct topologically

equivalent graphics of the function f̃2(y2) are given in Figure 20 as follows.

If δ1 > 0 the graphics (Cf̃2
) are given in (a), or (b), or (c), or (d), or (e), or (f) of Figure 20.

If δ1 < 0 the graphic (Cf̃2
) is shown in Figure 20(g).

If δ1 = 0 the graphic (Cf̃2
) is shown in Figure 20(h).

For s5 = −s2 the graphic (Cf̃2
) has only one vertical asymptote, then the graphics (Cf̃2

) depends only
on the sign of δ1.

If δ1 ≤ 0, the graphic is given in Figure 20(h).

If δ1 > 0, the graphic is given in (i), or(j), or(k) of Figure 20.

According with the derivative
(
g̃2
)′
(y2) and the parameters r1, r2, and due to the fact that the sign

of the discriminants ∆1 and ∆2 of the equations K1y
2
2 +K2y2 +K3 = 0, and K1y

2
2 +K4y2 +K5 = 0,

respectively, are negative, where ∆1 = ∆2 = −L2(bγ1δ2 − bγ2δ1 − γ1)
2, and knowing the different kind

of the roots xi with i ∈ {1, . . . , 4} of the polynomial P2(y2), we get all the possible topologically distinct
graphics (Cg̃2) of the function g̃2(y2) which are given in Figures 4, 13, 14, 15, 16 and 17 if ∆1 = 0 as
we proved in the first case of statements (I) and (II). For ∆1 < 0 the topologically distinct possible
graphics of g̃2(y2) are given in what follows.

If either r2 is an even integer or r2 = (2p)/(2q+1) with p, q ∈ Z, and P2(y2) has four simple real roots,
then the graphic of g̃2(y2) is given in (a), or (b), or (c), or (d), or (e), or (f) of Figure 21.
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Figure 20. The graphic of the function f̃2(y2).

If P2(y2) has two complex and two simple real roots, then the graphic of g̃2(y2) is given in (g), or (h),
or (i), or (j) of Figure 21.

If P2(y2) has four complex roots, then the graphic of g̃2(y2) is shown in (k), or (l) of Figure 21.

If P2(y2) has one double and two complex roots, then the graphic of g̃2(y2) is given in (a), or (b), or
(c) of Figure 22.
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If P2(y2) has two double real roots, then the graphic of g̃2(y2) is shown in (d), or (e), or (f), or (g) of
Figure 22.

If P2(y2) has one triple and one simple real root, or one double and two simple real roots, then the
graphic of g̃2(y2) is given in (h) of Figure 22.

If r2 is an odd integer or r2 = (2p + 1)/(2q + 1) with p, q ∈ Z we have the same graphics as the case
when r2 is an even integer where x0 = −(t2/t1) represent an inflexion point of the function g̃2(y2).

if r2 is irrational or r2 = p/(2q) with p, q ∈ Z the sign of the derivative
(
g̃2
)′
(y2) depends only on

the sign of P2(y2), then the possible graphics of the function g̃2(y2) are the same as the ones of the case
where r2 is an odd integer on its definition domain.

For r2 < 0 and by a similar way we find the same graphics as in the case r2 > 0.

The graphics of f̃2(y2) are given in Figure 10 and the graphics of g̃2(y2) are given in Figures 4, 13, 14,
15, 16, 17, 21 and 22.

For the function g̃2(y2) we remark that its graphics can have at most five local extremes in (a), or (b),

or (c), or (d), or (e) or (f) of Figure 21, we know also that the function f̃2(y2) is positive and its graphics
can have at most two extremes in (a), or (b), or (c), or (d), or (f), or (i), or (j) or (k) of Figure 10.

Therefore we guarantee that the maximum number of intersection points between the graphics of f̃2(y2)
and g̃2(y2) can be precisely between (a), or (b), or (c), or (d), or (e) or (f) of Figure 21 and (a), or (b),
or (c), or (d), or (f), or (i), or (j) or (k) of Figure 10. Due to the fact that there are no intersection

points at infinity because of the common horizontal asymptote f̃2(y2) = g̃2(y2) = 1. Then the maximum
number of solutions of system (21) is at most seven see for example Figure 23, this provides at most three
limit cycles of the discontinuous piecewise differential system (3)–(6).

Now we construct an example with exactly seven intersections points between the two functions f̃2(y2)
and g̃2(y2) by taking {K1,K2,K3,K4,K5, t1, t2, t3, r1, r2, s1, s2, s3, s4, s5, s6,m1} → {0.576282,−3.2, 4.1,
0.1, 0.02,−5, 5.4, 93, 1, 2, 1.2, 4, 1, 100, 5, 2,−3.8.}, see Figure 23.

Case 3. If AbC∆ ̸= 0 and a = 0 with ∆ = 4b(A+ b) + C2 > 0, then k = 3 and j = 2 in system (21),

the first integral of the quadratic center (6) is H
(2)
3 (x, y) given in (13). Then the solutions y2 satisfying

F (y2) = 0 are equivalent to the solutions y2 of the equation f̃3(y2) = g̃3(y2) with

f̃3(y2) = f1(y2) and g̃3(y2) = f̃1(y2),

where

m1 =
1

2
δ1

(
C +

√
4b(A+ b) + C2

)
− bδ2 + 1, m2 = bγ2 −

1

2
γ1

(
C +

√
4b(A+ b) + C2

)
,

m3 =
1

2

(
C +

√
4b(A+ b) + C2

)( 8αγ1σ1

4β2 + ω2
+ δ1

)
− 8αbγ2σ1

4β2 + ω2
− bδ2 + 1,

n1 =
1

2
δ1

(
C −

√
4b(A+ b) + C2

)
− bδ2 + 1, n2 = bγ2 −

1

2
γ1

(
C −

√
4b(A+ b) + C2

)
,

n3 =
1

2

(
C −

√
4b(A+ b) + C2

)( 8αγ1σ1

4β2 + ω2
+ δ1

)
− 8αbγ2σ1

4β2 + ω2
− bδ2 + 1,

r1 =
1

2b

(
1 +

C√
4b(A+ b) + C2

)
, r2 =

1

2b

(
1− C√

4b(A+ b) + C2

)
,

L1 = A

(
8αγ2σ1

4β2 + ω2
+ δ2

)
+ 1, L2 = Aγ2, L3 = Aδ2 + 1, r =

1

A
.

The graphics of the function g̃3(y2) are shown in Figures 4, 13, 14, 15, 16 and 17. For the function

f̃3(y2) all its graphics are given in Figure 4.
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Figure 21. The graphic of the function g̃2(y2).

It is obvious that the graphics of f̃3(y2) can have at most four local extrem in Figure 13 and due to the
fact that the function g̃3(y2) is positive and its graphics can have at most one extremes in (a) or (b) of

Figure 4, we guarantee that the maximum number of intersection points between the graphics of f̃3(y2)
and g̃3(y2) take place between Figure 13 and (a) or (b) of Figure 4. In this case we know that the two

functions have the common horizontal asymptote f̃3(y2) = g̃3(y2) = 1. Hence the maximum number of
intersection points between these two functions is at most seven see for example Figure 24. Due to the
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Figure 22. The graphics of the function g̃2(y2).

symmetry of solutions of system (21) we conclude that the maximum number of limit cycles is at most
three.

In Figure 24 we build an example that shows exactly seven points of intersection between the two func-
tions f̃3(y2) and g̃3(y2) by choosing {m1,m2,m3, r1, r2, n1, n2, n3, L1, L2, L3, r} → {7,−1, 2, 2, 6,−0.53,
− 0.17,−1.71, 4,−3.25,−0.15, 2}.

Case 4. If b = C = 0 then k = 4 and j = 2 in system (21), (14) is the first integral of the quadratic

center (6). Then the solutions of F (y2) = 0 are the solutions of the equation f̃4(y2) = g̃4(y2), where

f̃4(y2) =

(
m0 y22 +m1 y2 +m2

m0 y22 + n1 y2 + n2

)r

and

g̃4(y2) = e
k1+k2y2+2A

(
tanh−1

(
S1y2+S2
S1y2+S4

)
−tanh−1

(
S5−S1y2
S6−S1y2

))
.
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Figure 23. The seven intersection poitns between the functions f̃2(y2) drawn in con-
tinuous line and g̃2(y2) drown in dashed line.

-2.02 -2.00 -1.98 -1.96

1

2

3

4

5

6

-4 -2 2 4 6 8

1

2

3

4

Figure 24. The seven intersection poitns between the functions f̃3(y2) drawn in con-
tinuous line and g̃3(y2) drawn in dashed line.

Where

m0 = a2γ2
1 − a2γ2

2 + aAγ1γ2, m1 = 2a2γ1δ1 − 2a2γ2δ2 + aAγ1δ2 + aAγ2δ1 + 2aγ1 +Aγ2,

m2 = a2δ21 − a2δ22 + aAδ1δ2 + 2aδ1 +Aδ2 + 1,

n1 = −a(γ1(2aδ1 +Aδ2 + 2) + γ2(Aδ1 − 2aδ2))−
16aασ1(a(γ1 − γ2)(γ1 + γ2) +Aγ1γ2)

4β2 + ω2
−Aγ2,

n2 = a2δ21 − a2δ22 +
1

(4β2 + ω2)
2 (64aα

2σ2
1(a(γ1 − γ2)(γ1 + γ2) +Aγ1γ2)) +

1

4β2 + ω2
(8ασ1((aδ1

+1)(2aγ1 +Aγ2) + aδ2(Aγ1 − 2aγ2))) + aAδ1δ2 + 2aδ1 +Aδ2 + 1,
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r = −
√
4a2 +A2, k1 =

16aβ2γ1
√
4a2 +A2

4β2 + ω2
+

4aγ1ω
2
√
4a2 +A2

4β2 + ω2
, k2 = −16aαγ1σ1

√
4a2 +A2

4β2 + ω2
,

S1 = aAγ1 − 2a2γ2, S2 = −2a2δ2 + aAδ1 +A, S3 = aγ1
√
4a2 +A2,

S4 = aδ1
√
4a2 +A2 +

√
4a2 +A2, S5 = −16αa2γ2σ1

4β2 + ω2
− 2a2δ2 +

8αaAγ1σ1

4β2 + ω2
+ aAδ1 +A,

S6 =
8aαγ1

√
4a2 +A2

4β2 + ω2
+ aδ1

√
4a2 +A2 +

√
4a2 +A2.

We see that the discriminants of the numerator and the denominator of f̃4(y2) are equal, and it is
∆ =

(
4a2 +A2

)
(aγ1δ2− aγ2δ2− γ2)

2. Since ∆ ≥ 0 we obtain that all the possible topologically different

graphics (Cf̃4
) of the function f̃4(y2) are given in Figures 4, 13, 14, 15, 16 and 17 as we proved in the

first case of statements (I) and (II).

Now we study the function g̃4(y2) where its derivative is(
g̃4
)′
(y2) = g̃4(y2)

P1(y2)

P2(y2)
,

with

P1(y2) = −2AS3
1S4y

2
2 − 2AS3

1S6y
2
2 + 2AS2

1S2S3y
2
2 − 4AS2

1S2S6y2 + 2AS2
1S3S5y

2
2 + 4AS2

1S4S5y2

−2AS1S
2
2S6 + 2AS1S

2
3S4y

2
2 + 2AS1S

2
3S6y

2
2 + 2AS1S

2
4S6 − 2AS1S4S

2
5 + 2AS1S4S

2
6

+2AS2
2S3S5 − 2AS2S

3
3y

2
2AS2S

2
3S6y2 + 2AS2S3S

2
5 − 2AS2S3S

2
6 − 2AS3

3S5y
2
2 − 4AS2

3S4S5y2

−2AS3S
2
4S5 + k2S

4
1y

4
2 + 2k2S

3
1S2y

3
2 − 2k2S

3
1S5y

3
2 + k2S

2
1S

2
2y

2
2 − 4k2S

2
1S2S5y

2
2 − 2k2S

2
1S

2
3y

4
2

−2k2S
2
1S3S4y

3
2 + 2k2S

2
1S3S6y

3
2 − k2S

2
1S

2
4y

2
2 + k2S

2
1S

2
5y

2
2 − k2S

2
1S

2
6y

2
2 − 2k2S1S

2
2S5y2

−2k2S1S2S
2
3y

3
2 + 4k2S1S2S3S6y

2
2 + 2k2S1S2S

2
5y2 − 2k2S1S2S

2
6y2 + 2k2S1S

2
3S5y

3
2

+4k2S1S3S4S5y
2
2 + 2k2S1S

2
4S5y2 − k2S

2
2S

2
3y

2
2 + 2k2S

2
2S3S6y2 + k2S

2
2S

2
5 − k2S

2
2S

2
6 + k2S

4
3y

4
2

+2k2S
3
3S4y

3
2 − 2k2S

3
3S6y

3
2 + k2S

2
3S

2
4y

2
2 − 4k2S

2
3S4S6y

2
2 − k2S

2
3S

2
5y

2
2 + k2S

2
3S

2
6y

2
2 + k2S

2
4S

2
6

−2k2S3S
2
4S6y2 − 2k2S3S4S

2
5y2 + 2k2S3S4S

2
6y2 − k2S

2
4S

2
5 ,

and

P2(y2) = (y2(S1 − S3) + S2 − S4)(y2(S1 + S3) + S2 + S4)(y2(S3 − S1) + S5 − S6)(−y2(S1 + S3) + S5 + S6).

According with the sign of
(
g̃4
)′
(y2) and the kind of roots of the quartic polynomial P1(y2) and with

their position with respect to the two vertical asymptotes y21 =
S5 + S6

S1 + S3
and y22 =

S4 − S2

S1 − S3
, we give all

the possible topologically different graphics of the function g̃4(y2) in what follows.

If P1(y2) has four simple real roots the graphics of g̃4(y2) are given in (a), or (b), or (c), or (d), or (e),
or (f), or (g), or (h), or (i) of Figure 25.

If P1(y2) has two simple real roots and two complex roots the graphics of g̃4(y2) are given in (j), or
(k), or (l) of Figure 25, or in (a) of Figure 26.

If P1(y2) has four complex roots the unique graphic of g̃4(y2) is shown in (b) of Figure 26.

If P1(y2) has one triple and one simple real root the unique graphic of g̃4(y2) is shown in (c) of Figure
26.

If P1(y2) has one double real root and two complex roots the unique graphic of g̃4(y2) is shown in (d)
of Figure 26.
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If P1(y2) has one double and two simple real roots the graphics of g̃4(y2) are shown in (e), or (f), or
(g) of Figure 26.

If P1(y2) has one real root of order four or two double real roots the unique graphic of g̃4(y2) is shown
in (h) of Figure 26.
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Figure 25. The graphics of the function g̃4(y2).

Since the graphics of f̃4(y2) can have at most four local extremes in Figure 13 and by knowing that
the function g̃4(y2) is positive and its graphics can have at most four local extremes in (a), or (b), or (c),
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Figure 26. The graphics of the function g̃4(y2).

or (d), or (e), or (f), or (g), or (f) of Figure 25, therefore we conclude that the maximum number of

intersection points between the graphics of f̃4(y2) and g̃4(y2) can be precisely between Figure 13 and (a),
or (b), or (c), or (d), or (e), or (f), or (g), or (h) of Figure 25. It results that the maximum number of

intersection points between the functions f̃4(y2) and g̃4(y2) is at most seven see for example Figure 27.
Due to symmetry of solutions (y1, y2) of (21), we know that the maximum number of limit cycles of the
discontinous piecewise differential system (3)–(6) is at most three.

In figure 27 we build an example that shows exactly seven intersection points between the functions
f̃4(y2) and g̃4(y2) by considering {m0,m1,m2, n1, n2, r, k1, k2, A, S1, S2, S3, S4, S5, S6} → {1,−1.23283,
0.265293,−1.65, 6.63, 4, 5,−4.5, 4, 4,−0.5, 0.5, 1, 0.5, 9.4}

Case 5. If A = a = 0, C ̸= 0 and b ̸= 0, then k = 5 and j = 2 in system (21), (6) has the first integral

H
(2)
5 (x, y) given in (15), studying the solutions of F (y2) = 0 is equivalent to study the solutions of the

equation f̃5(y2) = g̃5(y2) where

f̃5(y2) = f2(y2) and g̃5(y2) = f̃1(y2),
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Figure 27. The seven intersection poitns between the functions f̃4(y2) drawn in con-
tinuous line and g̃4(y2) drawn in dashed line.

where

m1 =
1

2
δ1
(
C +

√
4b2 + C2

)
− bδ2 + 1, m2 =

1

2
γ1
(
C +

√
4b2 + C2

)
− bγ2,

m3 =
4αγ1σ1

4β2 + ω2

(
C +

√
4b2 + C2

)
+

1

2
δ1
(
C +

√
4b2 + C2

)
− 8αbγ2σ1

4β2 + ω2
− bδ2 + 1,

r1 =
1

2b

(
1 +

C√
4b2 + C2

)
, r2 =

1

2b

(
1− C√

4b2 + C2

)
,

n1 =
1

2
δ1
(
C −

√
4b2 + C2

)
− bδ2 + 1, n2 =

1

2
γ1
(
C −

√
4b2 + C2

)
− bγ2,

n3 =
4αγ1σ1

4β2 + ω2

(
C −

√
4b2 + C2

)
+

1

2
δ1
(
C −

√
4b2 + C2

)
− 8αbγ2σ1

4β2 + ω2
− bδ2 + 1,

l0 = −2γ2, l1 =
8αγ2σ1

4β2 + ω2
.

We know that the graphics of f̃5(y2) are shown in Figure 10, and the graphics of g̃5(y2) are shown in
Figures 4, 13, 14, 15, 16 and 17.

As in the previous case we ensure that the graphics (Cg̃5) shown in Figure 13 are the ones that
guarentee the maximum number of intersections points between the graphics of the functions g5(y2) and

f5(y2) which has the horizontal asymptote f̃5(y2) = 0. Then we guarantee that the maximum number of
intersection points between the graphics (Cf5) and (Cg5) takes place between Figure 10 and Figure 13.
Thus the maximum number of the intersection points of these graphics is at most seven, which provide
at most three limit cycles of the discontinuous piecewise differential system (3)–(6).

In what follows we build an example provides the seven intersection points between the tow functions
f̃5(y2) and g̃5(y2) when we consider {m1,m2,m3, n1, n2, n3, r1, r2, l0, l1} → {5,−1.3, 3,−0.5,−0.1703,
− 1.1,−2,−4, 2.19,−0.18}, these points are shown in Figure 28.
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Figure 28. The seven intersection poitns between graphics of the functions f̃5(y2)
drawn in continuous line and g̃5(y2) drawn in dashed line.

Case 6. If b = a = 0, C ̸= 0 and A ̸= 0, then k = 6 and j = 2 in system (21), the first integral of (6)

is H
(2)
6 (x, y) given in (16). The equation F (y2) = 0 is equivalent to the equation f̃6(y2) = g̃6(y2) where

f̃6(y2) = f2(y2) and g̃6(y2) = f̃1(y2),

where

l0 = −16αACσ1

4β2 + ω2
(Aγ1 + γ2C), l1 = 4AC(Aγ1 + γ2C),

m1 = Aδ2 + 1, m2 = Aγ2, m3 =
8αAγ2σ1

4β2 + ω2
+Aδ2 + 1, r1 = 2C2,

n1 = Cδ1 + 1, n2 = γ1C, n3 =
8αγ1Cσ1

4β2 + ω2
+ Cδ1 + 1, r2 = 2A2.

The graphics of f̃6(y2) are given in Figure 10 and the graphics of g̃6(y2) are given in Figures 4, 13, 14,
15, 16 and 17. Then the maximum number of solutions of system (21) is at most seven which provides
at most three limit cycles of the discontinuous piecewise differential system (3)–(6).

Since the maximum number of limit cycles of all these six cases is at most three, we will build only an
example with three limit cycles of the discontinuous piecewise differential system (3)–(6) of type b+d = 0
with A = a = 0, C ̸= 0 and b ̸= 0.

In the half-plane Σ+ we consider the quadratic center

(26)
ẋ = −0.0273949..x2 + x(0.0133241..y + 3.85736..) + (−0.00150606.y − 0.845815..)y + 3.3482..,

ẏ = −0.273949..x2 + x(0.133241..y + 18.5736..) + (−0.0150606..y − 3.7726..)y + 25.7332..,

with its corresponding first integral

H
(2)
6 (x, y) = −0.0000384239..e

1
200 (y−10x)(x− 0.307716..y − 34.9503..)(x− 0.178658..y + 27.1508..)2.

In the half-plane Σ− we consider the linear differential center

ẋ =
1

5
x− 29

120
y +

19

20
, ẏ =

6

5
x− 1

5
y +

11

5
,(27)

with the first integral

H(x, y) = 4

(
6

5
x− 1

5
y

)2

+
48

5

(
11

5
x− 19

20
y

)
+ y2.

In this case system (21) has the three solutions (y1, y2) = (0.592968..., 7.2691..), (y3, y4) = (1.31716...,
6.54491...) and (y5, y6) = (2.34295..., 5.51911...) which provide the three limit cycles for the discontinuous
piecewise differential system (26)–(27), see Figure 2(b).



36 I.BENABDALLAH, R. BENTERKI AND J. LLIBRE

Case 7. If a = 0 ̸= C and ∆ = 4b(A + b) + C2 = 0, then k = 7 and j = 2 in system (21), (17) is the
first integral of the quadratic center (6). Then the solutions of F (y2) = 0 are the same as the solutions

of the equation f̃7(y2) = g̃7(y2) where

f̃7(y2) = f̃1(y2) and g̃7(y2) = g̃1(y2),

where

m1 =
8ασ1

4β2 + ω2
(γ1C − 2bγ2)− 2bδ2 + Cδ2 + 2, m2 = 2bγ2 − γ1C, m3 = −2bδ2 + Cδ2 + 2,

n1 = 1−
(
4b2 + C2

)
4b (4β2 + ω2)

(
δ2
(
4β2 + ω2

)
+ 8αγ2σ1

)
, n2 =

γ2
4b

(
4b2 + C2

)
, n3 = 1− δ2

4b

(
4b2 + C2

)
,

r1 = 1, r2 = − 4b2

4b2 + C2
,

k0 = − 16αCσ1

4β2 + ω2
(bγ1δ2 − bγ2δ2 − γ1), k1 = 4C(bγ1δ2 − bγ2δ2 − γ1).

Since r1 = 1, the graphics of the function f̃7(y2) are given in (h), (i), (j), (k) and (l) of Figure 14 and
in Figures 4, 15, 16 and 17. All the graphics of the function g̃7(y2) are shown in Figure 18.

Therefore the graphics of the two functions f̃7(y2) and g̃7(y2) intersect at most in five points see for
example Figure 29. Consequently, the maximum number of limit cycles of the discontinuous piecewise
differential system (3)–(6) is at most two.

Now we construct an example with exactly five intersection points between f̃7(y2) and g̃7(y2) by taking
{m1,m2,m3, r1, r2, n1, n2, n3, k0, k1} → {−0.5, 7.2,−2, 1,−2, 0.12,−9.5,−0.3, 1.2, 0}. These points are
shown in Figure 29.
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Figure 29. The five intersection poitns between the functions f̃7(y2) drawn in contin-
uous line and g̃7(y2) drawn in dashed line.

Case 8. If A = b = 0 and a = 0 ̸= C, then k = 8 and j = 2 in system (21), the first integral of (6)

is H
(2)
8 (x, y) given in (18), and the solutions of F (y2) = 0 are the same as the solutions of the equation

f̃8(y2) = g̃8(y2) where

f̃8(y2) = M2f2(y2) and g̃8(y2) = f1(y2), with M =
1

4β2 + ω2
,

and
l0 = −M2(16αCσ1)

((
4β2 + ω2

)
(γ1 + γ2Cδ2) + 4αγ2

2Cσ1

)
,

l1 = M(4C
((
4β2 + ω2

)
(γ1 + γ2Cδ2) + 4αγ2

2Cσ1

)
),

L1 = Cδ1 + 1, L2 = γ1C, L3 = C

(
8αγ1σ1

4β2 + ω2
+ δ1

)
+ 1, r = 2.
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The graphics of f̃8(y2) are given in Figure 10. Since g̃8(y2) is a sub-case of f1(y2) with the particular
parameters given previously, then its graphics are shown in Figures 4(a) and 4(b). Clearly that the
maximum number of intersection points of their corresponding graphics is at most three see for example
Figure 30. Then the upper bound of the number of limit cycles in this case is at most one.

In what follows we consider {l0, l1, L1, L2, L3, r,M} → {−0.2,−1.75, 1,−5.6,−0.4, 2, 1.53} for building

an example with exactly three intersection points between the two functions f̃8(y2) and g̃8(y2) see Figure
30.
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Figure 30. The three intersection poitns between the functions f̃8(y2) drawn in con-
tinuous line and g̃8(y2) drawn in dashed line.

Now we will prove that the result of case 8 is reached by giving an example of system (3)–(6) of type
b+ d = 0 with A = b = 0 and a = 0 ̸= C.

In the half-plane Σ+ we consider the quadratic center

(28)
ẋ =

1

770

(
−24x2 + x(1537− 2490y)− 20(5y(90y − 151) + 241)

)
,

ẏ =
3320

3850

(
xy + x(32x− 1921) + 12000y2 − 7300y + 10

)
,

this system has the first integral

H
(2)
8 (x, y) = e−(1/100)(8x+30y+1)2+((1/5)x+20y−10(x+ 100y − 60)2.

In the half-plane Σ− we consider the linear differential center

ẋ = (1/2)x− 1.57968..y + 2, ẏ = 2x− (1/2)y + 1/2,(29)

with the first integral

H(x, y) = x((1/2) − (1/2)y) + x2 + (0.789842..y − 2)y.

In this case system (21) has the unique solution (y1, y2) = (0.894524.., 1.63763..) which provides the
unique limit cycle for the discontinuous piecewise differential system (28)–(29), see Figure 2(b). This
example completes the proof of statement (II). □

Proof of statement (III) of Theorem 3. In this statement F (y2) = 0 is the following cubic equation in
the variable y2
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F (y2) =
1

(4β2 + ω2)3

(
2
(
y2
(
4β2 + ω2

)
− 4ασ1

) (
64α2σ2

1

(
a
(
γ3
1 − 3γ1γ

2
2

)
+ 3bγ2

1γ2 + γ3
2d
)
− 4ασ1(

4β2 + ω2
)(

γ2
1(−6aσ1 − 6bδ2 + 6bγ2y2 − 3)− 6γ1γ2(−2aδ2 + aγ2y2 + 2bδ1)

+γ2
2(6aδ1 − 6dδ2 + 2γ2dy2 − 3) + 2aγ3

1y2

)
+
(
4β2 + ω2

)2 (
a(3γ1(δ1 − δ2)(δ1

+δ2)− 6γ2δ1δ2 + y22

(
γ3
1 − 3γ1γ

2
2)
)
+ 3b(δ1(2γ1δ2 + γ2δ1) + γ2

1γ2y
2
2) + 3γ1δ1

+3γ2δ2 + 3γ2dδ
2
2 + γ3

2dy
2
2

)))
.

Therefore this equation has at most three real solutions. Eventually the planar discontinuous piecewise
differential system (3)–(6) has at most one limit cycle.

To confirm we present in what follows a discontinuous piecewise differential systems with exactly one
limit cycle. In the half-plane Σ− we consider the quadratic center

(30)
ẋ =

1

3400

(
− 262(174x+ 19)y + 20(x(841x+ 1963)− 3198) + 24185y2

)
,

ẏ =
1

1700

(
6500x2 + 20x(665− 841y) + y(11397y − 19630) + 9000

)
,

its first integral is

H
(3)
1 (x, y) = −393(174x+ 19)y2 + 60(x(841x+ 1963)− 3198)y + (x(x(130x+ 399) + 540)− 2869)

+24185y3.

In the half-plane Σ+ we consider the linear differential center

ẋ = x+ 0.618871..y − 1, ẏ = −2.01981..x− y + 1.3,(31)

with the first integral

H(x, y) = 16.3185..x2 + x(16.1584..y − 21.006..) + 5(y − 3.23169..)y.

In this case system (21) has the unique solution (y1, y2) = (0.567633.., 2.66406..) which provides the
unique limit cycle for the discontinuous piecewise differential system (30)–(31), see Figure 3(a). This
example completes the proof of statement (III). □

Proof of statement (IV ) of Theorem 3. In this statement the solutions of F (y2) = 0 are equivalent to the
solutions of an equation of degree nine and due to the big expression of this equation we omit it. This
equation has at most nine real solutions which provide at most four limit cycles for the discontinuous
piecewise differential system (3)–(6).

In what follows we give a discontinuous piecewise differential system of the class (3)–(6) of type (IV )
with four limit cycles. In the half-plane Σ− we consider the quadratic center

(32)
ẋ = x(525.153.. − 2.477..y)− 0.0005176..x2 + y(5365.y − 850504.) + 66467.,
ẏ = x(0.0686512.. − 0.0004798..y) + y(104.576.. − 0.024..y)− 1.924.. · 10−8x2 − 13667.3..,

with its first integral

H
(4)
1 (x, y) = (0.990099(1.x3 + x2(3.62455 · 106 − 33461.5y) + x(y(3.73225 · 108y − 8.09237

·1010) + 4.38777 · 1012) + y((4.51686 · 1014 − 1.38763 · 1012y)y − 4.90232 · 1016)
+1.77406 · 1018)2)/((1.x2 + x(2.41637 · 106 − 22307.7y) + y(1.24408 · 108y − 1010

·2.69973) + 1.46548 · 1012)3).
In the half-plane Σ+ we consider the linear differential center

ẋ = −8x− (25601/40)y + 50, ẏ = (1/10)x+ 8y + 20,(33)

with the first integral
H(x, y) = 4(x+ 80y)2 + 800(2x− 5y) + y2.
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In this case system (21) has the four solutions (y1, y2) = (0.00817805.., 0.148066..), (y3, y4) = (0.0177713..,
0.138473..), (y5, y6) = (0.0292114.., 0.127033..) and (y7, y8) = (0.0443241.., 0.11192..) which provide the
four limit cycles for the discontinuous piecewise differential system (32)–(33), see Figure 3(b). This
example completes the proof of statement (IV ). □
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2 Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Cat-

alonia, Spain

Email address: jllibre@mat.uab.cat


