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Abstract. A lot of attention has been paid in recent years to the study of piecewise differential systems,

and more especially is studying the maximum number of limit cycles that these systems are able to

exhibit. In this paper we consider all classes of discontinuous piecewise differential systems with cubic
reversible isochronous centers having rational first integrals separated by the straight line x = 0.

First, we solve the extension of the second part of the sixteenth Hilbert problem for each of the three

classes of discontinuous piecewise differential systems formed by an arbitrary linear center and one of

the three cubic reversible isochronous centers. We establish that, depending on the class presented, the
maximum number of limit cycles of these classes varies between one and two. Second, by combining the

three types of the cubic reversible isochronous centers, we obtain six classes of discontinuous piecewise

differential systems formed by two cubic reversible isochronous centers. So we solve the extended six-
teenth Hilbert problem for all these classes and we find the maximum number of limit cycles that such

classes can exhibit. Moreover we have reinforced our results by giving examples for each class.

1. Introduction and statement of the main results

Any planar polynomial differential system takes the form ẋ = P (x, y), ẏ = Q(x, y), where P (x, y) and
Q(x, y) are polynomial functions, the degree of this system is the maximum degree of these polynomials.

The study of the existence and determination of the upper bound of the maximum number of limit
cycles of planar polynomial differential systems is an attractive research topic that, until know, is still an
unsolved problem in the qualitative theory of differential systems. As one of the 23 problems presented
at the international congress of mathematicians in Paris in 1900, this problem is known as the second
part of the sixteenth Hilbert problem. For more information, read, for example [17, 19, 21].

In this paper we focus in particular on discontinuous piecewise differential systems of the form

(ẋ, ẏ) = F(x,y) =

 F−(x,y) =
(
F−
1 (x, y), F−

2 (x, y)
)T

y ∈ Σ−,

F+(x,y) =
(
F+
1 (x, y), F+

2 (x, y)
)T

y ∈ Σ+,

where Σ = {(x, y) : x = 0} is the discontinuity line and

Σ− = {(x, y) : x ≤ 0}, Σ+ = {(x, y) : x ≥ 0}.

If F+
1 (0, y0)F

−
1 (0, y0) > 0 then the point (0, y0) ∈ Σ is of the crossing type. A periodic orbit of a

discontinuous piecewise differential system with exactly two crossing points is called a crossing periodic
orbit. Moreover we call an isolated crossing periodic orbit in the set of all crossing periodic orbits, a
crossing limit cycle. In what follows for the sake of brevity, we talk on the limit cycle in place of the
crossing limit cycle.
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The first analyses of discontinuous piecewise linear differential systems in the plane is around 1930’s,
by Andronov, Vitt and Khaikin [1]. These systems have been intensively studied mainly due to their
widely applications in various scientific domains of studies such as engineering, electronics, mechanics,
and physics, see for instance [3, 8, 15, 20, 24, 25].

Planar piecewise linear differential systems, which have a straight line as a separating curve, are the
simplest type of discontinuous piecewise differential systems. Thus in the literature, many researchers
have been interested in solving the extension of the Hilbert sixteenth problem of finding the maximum
number of crossing limit cycles that these systems can exhibit.

The simplest kind of discontinuous piecewise differential systems are formed by the linear ones, in which
a straight line serves as the separation curve. Since these systems can produce a significant number of
crossing limit cycles, many researchers have been interested in identifying them in order to solve the
extension of Hilbert’s sixteenth problem.

For same classes of discontinuous piecewise linear differential systems where the separation curve is
either a straight line, an algebraic conic curve, or a reducible (or irreducible) cubic curve, numerous
studies have recently solved the extension second part of Hilbert’s sixteenth problem, for example see
[2, 4, 5, 9, 10, 13, 14]. Consequently we observe that most of the papers deal with piecewise linear
differential systems separated by a straight line, while nonlinear ones are rarely discussed. For instance,
in [6, 12] the authors have found an answer to the extension of the Hilbert’s 16th problem for some
nonlinear discontinuous differential systems of degree 2 or 3.

The first objective of this paper is to solve the second part of the extension of the sixteenth Hilbert
problem for the classes of discontinuous piecewise differential systems formed by one of the three cubic
reversible isochronous centers with rational first integrals and a linear differential center, separated by
the straight line Σ.

Our second objective is to solve the extension of the sixteenth Hilbert problem for the classes of
discontinuous piecewise differential systems separated by the straight line Σ and formed only by cubic
reversible isochronous centers having rational first integrals in each half-plane.

We will use the following lemma which provides a normal form for an arbitrary linear differential
center.

Lemma 1. After performing a linear change in the variables and a rescaling of the independent variable
each linear center can be expressed as

ẋ = −Ax−
(
A2 + ω2

)
y +B, ẏ = Ay + C + x,(1)

and its first integral is

H(x, y) = (Ay + x)2 + 2(Cx−By) + ω2y2.(2)

For a proof of Lemma 1 see [23] .

The normal forms of the three cubic reversible isochronous centers with a rational first integral are
given in the following theorem.

Theorem 2. After an affine change of variables and a rescaling of the independent variable the three
cubic reversible isochronous centers with rational first integrals can be expressed as one of the following
three differential systems.

(C1) ẋ = y(−1 + 2ax+ 2bx2), ẏ = x+ a(y2 − x2) + 2bxy2,

(C2) ẋ = −y(1− x)(1− 2x), ẏ = x− 2x2 + y2 + 2x3,
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(C3) ẋ = y
(
− 1 +

8

3
x− 32

9
y2
)
, ẏ = x− 4

3
y2.

For a proof of Theorem 2 see [11].

We denote by (C̃i) with i = 1, 2, 3, the three cubic reversible isochronous centers having a rational first
integrals after a general affine change of variables. Our first result is the following.

Theorem 3. The maximum number of crossing limit cycles of the class of planar discontinuous piecewise
differential systems separated by the straight line Σ and formed by the linear center (1) and

(I) the cubic reversible isochronous center (C̃1) is one, there are systems with exactly one limit cycle,
see Figure 1(a);

(II) the cubic reversible isochronous center (C̃2) is two, there are systems with exactly two limit cycles,
see Figure 1(c);

(III) the cubic reversible isochronous center (C̃3) is one, there are systems with exactly one limit cycle,
see Figure 1(b).

Our second result is as follows.

Theorem 4. The maximum number of crossing limit cycles of the class of planar discontinuous piecewise
cubic reversible isochronous centers separated by the straight line Σ and formed by

(I) the cubic reversible isochronous center (C̃1) in each half plane is at most two, this maximum is
reached, see Figure 2(a);

(II) the cubic reversible isochronous centers (C̃1) and (C̃2) is at most three, this maximum is reached,
see Figure 2(b);

(III) the cubic reversible isochronous centers (C̃1) and (C̃3) is at most three, this maximum is reached,
see Figure 2(c);

(IV ) the cubic reversible isochronous center (C̃2) in each half plane is at most eight, this maximum is
reached, see Figure 3(a);

(V ) the cubic reversible isochronous centers (C̃2) and (C̃3) is at most seven, this maximum is reached,
see Figure 3(b);

(V I) the cubic reversible isochronous center (C̃3) in each half plane is at most three, this maximum is
reached, see Figure 4(a).

Theorems 3 and 4 are proved in sections 3 and 4, respectively.

2. The cubic reversible isochronous centers after an affine change of variables

The expressions of the cubic reversible isochronous centers (C1), (C2) and (C3) as well as of their first
integrals after a general affine change of variables {x → a1x + b1y + c1, y → α1x + β1y + γ1}, with
a1β1 − α1b1 ̸= 0 are given in this section.

The isochronous center (C̃1) is

ẋ =
−1

α1b1 − a1β1
(β1(γ1 + α1x+ β1y)(2(a1x+ b1y + c1)(a+ b(a1x+ b1y + c1))− 1)− b1(a(
(γ1 + α1x+ β1y)

2 − (a1x+ b1y + c1)
2
)
+ 2b(a1x+ b1y + c1)(γ1 + α1x

+β1y)
2 + a1x+ b1y + c1)),

ẏ =
−1

α1b1 − a1β1
(a1
(
a
(
(γ1 + α1x+ β1y)

2 − (a1x+ b1y + c1)
2
)
+ 2b(a1x+ b1y + c1)(γ1+

α1x+ β1y)
2 + a1x+ b1y + c1

)
− α1(γ1 + α1x+ β1y)(2(a1x+ b1y + c1)(a

+b(a1x+ b1y + c1))− 1)),
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with the first integral

(3) H̃1(x, y) =
1− 2(a1x+ b1y + c1)

(
a+ b(a1x+ b1y + c1)

)
(a1x+ b1y + c1)2 + (γ1 + α1x+ β1y)2

.

The isochronous center (C̃2) is written as

ẋ =
−1

α1b1 − a1β1
(β1(−(a1x+ b1y + c1 − 1))(2a1x+ 2b1y + 2c1 − 1)(γ1 + α1x+ β1y)− b1(
2(a1x+ b1y + c1)

3 − 2(a1x+ b1y + c1)
2 + a1x+ b1y + c1 + (γ1 + α1x

+β1y)
2
)
),

ẏ =
−1

α1b1 − a1β1
(α1(a1x+ b1y + c1 − 1)(2a1x+ 2b1y + 2c1 − 1)(γ1 + α1x+ β1y) + a1

(
2(a1x

+b1y + c1)
3 − 2(a1x+ b1y + c1)

2 + a1x+ b1y + c1 + (γ1 + α1x+ β1y)
2
)
),

with the first integral

(4) H̃2(x, y) =
(a1x+ b1y + c1 − 1)2

(
(a1x+ b1y + c1)

2 + (γ1 + α1x+ β1y)
2
)

(2(a1x+ b1y + c1)− 1)2
.

The isochronous center (C̃3) is

ẋ =
−1

α1b1 − a1β1

(
β1(γ1 + α1x+ β1y)

(8
3
(a1x+ b1y + c1)−

32

9
(γ1 + α1x+ β1y)

2 − 1
)
− b1(

a1x+ b1y + c1 −
4

3
(γ1 + α1x+ β1y)

2
))

,

ẏ =
−1

α1b1 − a1β1

(
a1

(
a1x+ b1y + c1 −

4

3
(γ1 + α1x+ β1y)

2
)
− α1(γ1 + α1x+ β1y)

(8
3
(a1x

+b1y + c1)−
32

9
(γ1 + α1x+ β1y)

2 − 1
))

,

with the first integral

(5) H̃3(x, y) =
(
3(a1x+ b1y + c1)− 4(γ1 + α1x+ β1y)

2
)2

+ 9(γ1 + α1x+ β1y)
2.
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Figure 1. The unique limit cycle of the discontinuous piecewise differential system, (a)
for (7)–(8), (b) for (11)–(12), and (c) the two limit cycles of the discontinuous piecewise
differential system (9)–(10).
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3. Proof of Theorem 3

Now we will prove Theorem 3 for the class of planar discontinuous piecewise differential systems
separated by the straight line Σ and formed by a linear center and one of the three cubic reversible
isochronous center (C̃i) with i = 1, 2, 3.

In the first half-plane Σ+ we consider the cubic reversible isochronous center (C̃i) with its first integral

H̃i(x, y) given in either (3), or (4), or (5), and in the second half-plane Σ− we consider the planar linear
differential center (1) with its first integral H(x, y) given in (2).

To prove that the discontinuous piecewise differential systems (1)–(C̃i) has at most one crossing limit
cycle that crosses the line of discontinuity Σ at two different points (0, y) and (0, Y ), with y ̸= Y . These
two points must satisfy the following system of equations

(6)
e1 = H(0, y)−H(0, Y ) = (y − Y ) (2B −M(y + Y )) = 0,

e2 = H̃i(0, y)− H̃i(0, Y ) = (y − Y )Fi(y, Y ) = 0.

Where M = A2 + ω2.

From e1 = 0 we obtain Y = −y +
2B

M
= f(y) for i = 1, 2, 3. Substituting the expression of Y in

Fi(y, Y ) = 0, we get an equation Ki(y) = Fi(y, f(y)) = 0 in the variable y, which varies according to the

expressions of the first integrals H̃i(x, y).

Proof of statement (I) of Theorem 3. For i = 1 we consider the class of discontinuous piecewise differ-
ential systems formed by the linear differential center (1) with the first integral H(x, y) and the cubic

reversible isochronous center (C̃1) with its corresponding first integral H̃1(x, y). We find that K1(y) = 0
is the quadratic equation in the variable y

K1(y) = b21
(
M(2ac1 − 2bγ1(γ1 + 2β1y)− 1) + 4bβ1γ1y

2
)
+ 2b1

(
ac21 + a

(
− γ2

1 + β2
1My − β2

1y
2
)
+

c1
(
2b(−γ2

1 + β2
1My − β2

1y
2)− 1

) )
+ β1

(
2ac1 + 2bc21 − 1

)
(2γ1 + β1M) + 2ab31(M − y)y.

This equation can have at most two real solutions y1 and y2 for the variable y. Thus system (6) has
at most two real solutions. Since (y1, f(y1)) = (f(y2), y2), then the class of the discontinuous piecewise

differential systems (1)–(C̃1) has at most one limit cycle.

In order to complete the proof of this statement we give an example with exactly one limit cycle. In
the half-plane Σ− we consider the linear center

(7) ẋ = −1− 5

2
x− 41

4
y, ẏ =

1

2
+ x+

5

2
y,

with the first integral

H(x, y) =
(
x+

5

2
y
)2

+ 2
(1
2
x+ y

)
+ 4y2.

In the other half-plane Σ+ we consider the cubic reversible isochronous center

(8)

ẋ = − 21

500
x3 + x2(0.632258..y + 1.02182..) + x

(
−2.05837..y2 − 4.49659..y − 2.69497..

)
−8.34146..y2 − 15.1823..y − 2.29501..,

ẏ = x2(− 21

500
y − 0.066818..) + x

(
0.632258..y2 + 2.31636..y + 1.93406..

)
− 2.05837..y3

−10.8976..y2 − 3461

200
y − 8.48195..,
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with the first integral

H̃1(x, y) =
1− 2(0.21x− y − 1)(−0.21x+ y + 1.5)

(0.21x− y − 1)2 + (0.1x− 1.02919..y − 2)2
.

Eventually, system (6) for i = 1 has the unique real solution (−0.42479.., 0.229668..) which provides the
unique limit cycle of the discontinuous piecewise differential system (7)–(8) shown in Figure 1(a). Thus
statement (I) of Theorem 3 is proved. □

Proof of statement (II) of Theorem 3. For i = 2 we consider the class of discontinuous piecewise differ-
ential systems formed by the linear differential center (1) with the first integral H(x, y) and the cubic

reversible isochronous center (C̃2) with its first integral H̃2(x, y). We obtain that K2(y) = 0 is the quartic
equation in the variable y

K2(y) = 4b61My2(M − y)2 + 4b51(2c1 − 1)y
(
M3 − 2My2 + y3

)
+ b41

(
(1− 2c1)

2M(M2 + 6My

−6y2) + 4β2
1My2(M − y)2 + 8β1γ1y

2(M − y)2
)
+ 2b31

(
M2(2c1(4c

2
1 − 6c1 − 2β2

1y
2 + 3)

+4β1(2c1 − 1)γ1y − 1) +My
(
2
(
γ2
1 + c1

(
4c21 − 6c1 + 3

)
− 4β1c1γ1y

)
+ 4β1y(γ1 + β1y)

−1
)
− y2

(
2γ2

1 + 2c1
(
4c21 − 6c1 + 3

)
+ 2β2

1y
2 − 1

)
+ 2β2

1(2c1 − 1)M3y
)
+ b21

(
M
(
20c41

−40c31 + 30c21 + β2
1(2c1 − 1)

(
(2c1 − 1)M2 + 2(2c1 − 3)My + 2(3− 2c1)y

2
)
− 10c1 + 1

)
+2β1γ1

(
(1− 2c1)

2M2 + (4c1(2c1 − 3) + 3)My + (4(3− 2c1)c1 − 3)y2
)
+ (4c1 − 3)γ2

1M
)

+2b1(c1 − 1)(2c1 − 1)
(
2c31 − 2c21 + γ2

1 + c1(2β1M(2γ1 + β1M) + 1)− β2
1

(
M2 +My − y2

)
−2β1γ1M

)
+ β1

(
2c21 − 3c1 + 1

)2
(2γ1 + β1M).

This equation can have at most four real solutions, and due to the symmetry stated in the proof of
statement (I) we know that system (6) has at most two different real solutions. As a result the class of

discontinuous piecewise differential systems (1)–(C̃2) has at most two limit cycles.

Now we prove that this result is reached by giving an example with exactly two limit cycles. So in Σ−

we consider the linear center

(9) ẋ = − 1

10
− 5

2
x− 29

4
y, ẏ = − 1

10
+ x+

5

2
y,

its first integral is

H(x, y) =
(
x+

5

2
y
)2

+ 2
( 1

10
y − 1

10
x
)
+ y2.

In Σ+ we consider the cubic reversible isochronous center

(10)

ẋ =
2

10
x3 + x2(−16y − 1.65628..) + x(114.847y + 4.14776..)− 205.093y − 2.82886..,

ẏ =
101

400
x3 + x2

(
− 2

10
y − 2.39869..

)
+ x(1.23559..y + 7.63844..) + 8y2 − 2.34297..

y − 8.12409..,

which has the first integral

H̃2(x, y) =
1

(2(x− 2.83898..)− 1)2
(x− 3.83898..)2

((
− 1

10
x+ 8y + 0.110345..

)2
+ (x− 2.83898..)2

)
.

The discontinuous piecewise differential system (9)–(10) has two limit cycles because system (6) when
i = 2 has the two real solutions (−0.276768.., 0.249182..) and (−0.38544.., 0.357854..), these two limit
cycles are drawn in Figure 1(c). Hence this statement is proved. □

Proof of statement (III) of Theorem 3. For i = 3 we consider the class of discontinuous piecewise dif-
ferential systems composed by the linear differential center (1) with the first integral H(x, y) and the
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cubic reversible isochronous center (C̃3) with its first integral H̃3(x, y). We realize that K3(y) = 0 is the
quadratic equation in the variable y

K3(y) = 9b21M + 6b1
(
−4γ2

1 + 3c1 − 4β2
1

(
M2 −My + y2

)
− 8β1γ1M

)
+ β1(2γ1 + β1M)

(
− 24c1

+16
(
2γ2

1 + β2
1

(
M2 − 2My + 2y2

)
+ 2β1γ1M

)
+ 9
)
.

Therefore system (6) has at most one distinct real solution. Consequently the discontinuous piecewise

differential systems (1)–(C̃3) has at most one limit cycle.

Now we will build an example with exactly one limit cycle to prove that this maximum is reached.

In Σ− we consider the linear center

(11) ẋ = −1− 5

2
x− 11

4
y, ẏ = 1 + x+

5

2
y,

which has the first integral

H(x, y) =
(
x+

5

2
y
)2

+ 2(x+ y) + 4y2.

In Σ+ we consider the cubic reversible isochronous center

(12)

ẋ = x2(0.0257383..− 0.00119261..y)− 0.00002265..x3 + x(−0.0209315..y2 + 0.435441..y

−0.783717..)− 0.122457..y3 − 0.285973..y2 − 20.1494..y − 1.95833..,

ẏ = 1.290533111466.10−6x3 + x2(0.00006795..y − 0.0022262..) + x(0.00119261..y2

−0.0514766..y + 0.918295..) + 0.00697717..y3 − 0.21772..y2 + 0.783717..y − 35.9736..,

with the first integral

H̃3(x, y) =

(
3
( 1

10
x− y − 1

)
− 4
( 1

100
x+ 0.175511..y − 2

)2)2

+ 9
( 1

100
x+ 0.175511..y − 2

)2
.

The pair (−0.339012.., 0.14389..) is the unique real solution of system (6) for i = 3, therefore the dis-
continuous piecewise differential system (11)–(12) has the unique limit cycle shown in Figure 1(b). With
this example we complete the proof of Theorem 3. □
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Figure 2. (a) The two limit cycles of the discontinuous piecewise differential system
(15)–(16), the three limit cycles of the discontinuous piecewise differential system (b) for
(17)–(18), and (c) for (19)–(20).
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Figure 3. (a) The eight limit cycles of the discontinuous piecewise differential system
(21)–(22), and (b) the seven limit cycles of the discontinuous piecewise differential system
(23)–(24).
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Figure 4. (a) The three limit cycles of the discontinuous piecewise differential system
(25)–(26).

4. Proof of Theorems 4

For the proof of this theorem we start by the class of the discontinuous piecewise differential system

created by systems (C̃i)– ( ˜̃Ci) with i = 1, 2, 3. In Σ+ we consider the cubic reversible isochronous center

(C̃i) with its corresponding first integral H̃i(x, y) given in either (3), or (4), or (5), and in Σ− we consider

the second differential cubic reversible isochronous center ( ˜̃Ci) with its first integral ˜̃Hi(x, y) but with the
parameters (α, β, a2, b2, c2, α2, β2, γ2) instead of the parameters (a, b, a1, b1, c1, α1, β1, γ1). The following
system of equations must be satisfied at the points (0, y) and (0, Y ) with y < Y , in order to prove that

the discontinuous piecewise differential system created by the systems (C̃i)– ( ˜̃Ci) for i = 1, 2, 3 has a limit
cycle intersecting the line of discontinuity Σ in these two different points

(13)
e1 = H̃i(0, y)− H̃i(0, Y ) = 0,

e2 = ˜̃Hi(0, y)− ˜̃Hi(0, Y ) = 0.

Later on we shall give the proof of Theorem 4 for the class of the discontinuous piecewise differential
system formed by systems (C̃i)– (C̃j), for i ̸= j and i, j = 1, 2, 3. In the first half-plane we consider

the cubic reversible isochronous center (C̃i) with its corresponding first integral H̃i(x, y). In the second

one we consider the second differential cubic reversible isochronous center (C̃j) with its correspond-

ing first integral H̃j(x, y), but with the parameters (α, β, a2, b2, c2, α2, β2, γ2) instead of the parameters
(a, b, a1, b1, c1, α1, β1, γ1). Thus if we assume the existence of a limit cycle of the previous discontinuous
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piecewise differential system, which must intersect the discontinuity line Σ in the two points (0, y) and
(0, Y ) with y ̸= Y , then these points are the solutions of the following system of equations

(14)
e1 = H̃i(0, y)− H̃i(0, Y ) = 0,

e2 = H̃j(0, y)− H̃j(0, Y ) = 0.

Proof of statement (I) of Theorem 4. We consider the discontinuous piecewise differential system (C̃1)–
( ˜̃C1), we obtain that system (13) when i = 1 is equivalent to

e1 = 2ab31yY + 2ab21c1y + 2ab21c1Y + 2ab1c
2
1 − 2ab1γ

2
1 + 2aβ2

1b1yY + 4aβ1c1γ1 + 2aβ2
1c1y + 2aβ2

1c1Y

−2bb21γ
2
1y − 4bβ1b

2
1γ1yY − 2bb21γ

2
1Y − 4bb1c1γ

2
1 + 4bβ2

1b1c1yY + 4bβ1c
2
1γ1 + 2bβ2

1c
2
1y + 2bβ2

1c
2
1Y

−b21y − b21Y − 2b1c1 − 2β1γ1 − β2
1y − β2

1Y = 0,

e2 = 2αb32yY + 2αb22c2y + 2αb22c2Y − 2βb22γ
2
2y − 4ββ2b

2
2γ2yY − b22y − 2βb22γ

2
2Y − b22Y − 2αb2γ

2
2

+2αb2c
2
2 − 4βb2c2γ

2
2 + 4ββ2

2b2c2yY − 2b2c2 − 2β2γ2 + 2αβ2
2b2yY + 4ββ2c

2
2γ2 + 2ββ2

2c
2
2y

+2ββ2
2c

2
2Y + 4αβ2c2γ2 + 2αβ2

2c2y + 2αβ2
2c2Y − β2

2y − β2
2Y = 0.

Now by doing the change of variable yY → z in e1 and e2, and solving e1 = 0 with respect to the variable
z and by substituting the value of z in e2 = 0 we get an equation P (y, Y ) = 0 in the variables y and Y .
Due to the big expression of P (y, Y ) we omit it.

From P (y, Y ) = 0 we obtain Y = h(y), and by substituting it in e1 = 0 we get the quadratic equation
E(y) = 0 in the variable y

E(y) =
1

M
(2b1y

2(a(b21 + β2
1) + 2bβ1(c1β1 − b1γ1))(((2bαγ

2
1 + α)b32 − 2(ββ2γ2 + bγ1(2ββ2γ1γ2 + β1

(−2βγ2
2 + 2c2α− 1)))b22 + (α+ 2c2β)β

2
2(2bγ

2
1 + 1)b2 − 2b((2βc22 + 2αc2 − 1)β1β

2
2γ1)b

2
1

+2bc1β
2
1((−2βγ2

2 + 2c2α− 1)b22 + ((2βc22 + 2αc2 − 1)β2
2)b1 − b2c(2bc

2
1 − 1)β2

1(αb
2
2 − 2ββ2γ2b2

+(α+ 2c2β)β
2
2) + a(b21 + β2

1)(b1((−2βγ2
2 + 2c2α− 1)b22 + (2βc22 + 2αc2 − 1)β2

2)− 2b2c1(αb
2
2

−2ββ2γ2b2 + (α+ 2c2β)β
2
2)))y

2 + 4b1(a(b
2
1 + β2

1) + 2bβ1(c1β1 − b1γ1))(2bβ1γ1((−2βc22
−2αc2 + 1)β2γ2 + b2(−αc22 + 2βγ2

2c2 + c2 + αγ2
2))b

2
1 + c1((2bαγ

2
1 + α)b32 − 2ββ2(2bγ

2
1 + 1)

γ2b
2
2 + ((α+ 2c2β)β

2
2 + 2b(−αγ2

2β
2
1 − 2c2βγ

2
2β

2
1 − c2β

2
1 + c22αβ

2
1 + αβ2

2γ
2
1 + 2c2ββ

2
2γ

2
1))

b2 + 2b(2βc22 + 2αc2 − 1)β2
1β2γ2)b1 − b2(2bc

2
1 − 1)β1γ1(αb

2
2 − 2ββ2γ2b2 + (α+ 2c2β)β

2
2)

+a(((2βc22 + 2αc2 − 1)β2γ2 + b2(αc
2
2 − 2βγ2

2c2 − c2 − αγ2
2)b

3
1 − (α(c21 − γ2

1)b
3
2 + 2ββ2(γ

2
1

−c21)γ2b
2
2 + (−c22αβ

2
1 + α(c21β

2
2 − γ2

1β
2
2 + β2

1γ
2
2) + c2((2βγ

2
2 + 1)β2

1 + 2ββ2
2(c

2
1 − γ2

1)))b2

+((−2βc22 − 2αc2 + 1)β2
1β2γ2)b1 − 2b2c1β1γ1((αb

2
2 − 2ββ2γ2b2 + (α+ 2c2β)β

2
2)))y

+2b1((a((b
2
1 + β2

1) + 2bβ1(c1β1 − b1γ1))((−2bγ2
1 + 2ac1 − 1)((2βc22 + 2αc2 − 1)β2γ2

+b2(αc
2
2 − ((2βγ2

2 + 1)c2 − αγ2
2))b

2
1 − (2bc21 + 2ac1 − 1)β1((γ1(−2βγ2

2 + 2c2α− 1)b22
+β1(−αc22 + 2βγ2

2c2 + c2 + αγ2
2)b2 + (2βc22 + 2αc2 − 1)β2(β2γ1 − β1γ2))− b1((ac

2
1 − ((2bγ2

1

+1)c1 − aγ2
1t)((−2βγ2

2 + 2c2α− 1)b22 + (2βc22 + 2αc2 − 1)β2
2))),

with

M = a(b21 + β2
1)(b1(b

2
2(−2βγ2

2 + 2αc2 − 1) + β2
2(2c2(α+ βc2)− 1))− 2b2c1(αb

2
2 − 2ββ2b2γ2 + β2

2(α

+2βc2))) + b21(b
3
2(α+ 2αbγ2

1)− 2b22(ββ2γ2 + bγ1(2ββ2γ1γ2 + β1(−2βγ2
2 + 2αc2 − 1))) + β2

2b2

(2bγ2
1 + 1)(α+ 2βc2)− 2bβ1β

2
2γ1(2c2(α+ βc2)− 1)) + 2bβ2

1b1c1(b
2
2(−2βγ2

2 + 2αc2 − 1) + β2
2

(2c2(α+ βc2)− 1))− β2
1b2(2bc

2
1 − 1)(αb22 − 2ββ2b2γ2 + β2

2(α+ 2βc2)).

Using Descartes Theorem, we know that E(y) = 0 can have at most two positive real solutions y1
and y2. Therefore system (13) when i = 1 has at most two distinct real solutions (y1, Y1) and (y2, Y2).

Consequently the discontinuous piecewise differential systems (C̃1)– ( ˜̃C1) can have at most two limit cycles.
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In order to complete the proof of this statement we build an example with exactly two limit cycles.
In the first half-plane Σ− we consider the cubic reversible isochronous differential center (C̃1)

(15)

ẋ = (0.0967917..− 0.292708..y)x2 + 0.0390278..x3 + (−0.975694..y2 − 0.644167..y

+0.955083..)x− 1.29306..y2 +
779

200
y + 0.222722..,

ẏ = (0.0390278..y + 0.0161167..)x2 + (−0.292708..y2 + 0.236694..y − 0.406908..)x

−0.975694..y3 + 0.122083..y2 − 0.718972..y − 0.233283..,

with the first integral

H̃1(x, y) = −
0.750534..

(
x2 + 5xy + 1.51246..x+ 6.25y2 + 3.78114..y − 4.61833..

)
x2 + 4.03846..xy + 1.11538..x+ 9.85577..y2 + 0.865385..y + 0.394231..

.

In the other half-plane Σ+ we consider the cubic reversible isochronous center ( ˜̃C1)

(16)

ẋ =
1

100
x3 +

(
− 3

40
y − 31

1000

)
x2 + x

(
−1

4
y2 − 22

25
y +

433

500

)
− 49

40
y2 +

369

100
y

+
211

1000
,

ẏ =
( 1

100
y +

101

2500

)
x2 +

(
− 3

40
y2 +

121

500
y − 1887

5000

)
x− 1

4
y3 +

1

25
y2 − 0.666..y

−0.2264..,

its first integral is

˜̃H1(x, y) = −
5
(
4x2 + 20xy + 20x+ 25y2 + 50y − 71

)
104x2 + 420xy + 116x+ 1025y2 + 90y + 41

.

For i = 1 the two real solutions (0.2,−0.3625..) and (0.395217..,−0.690869..) of system (13) provide
the two limit cycles of discontinuous piecewise differential system (15)–(16) shown in Figure 2(a). This
example completes the proof of statement (I). □

Proof of statement (II) of Theorem 4. Now we consider the class of discontinuous piecewise differential

systems created by the cubic reversible isochronous center (C̃1) with the first integral H̃1(x, y) and the

cubic reversible isochronous differential center (C̃2) with its first integral H̃2(x, y), we obtain that system
(14) when i = 1 and j = 2 is

e1 = 2ab31yY + 2ab21c1y + 2ab21c1Y + 2ab1c
2
1 − 2ab1γ

2
1 + 2aβ2

1b1yY + 4aβ1c1γ1 + 2aβ2
1c1y + 2aβ2

1c1Y

−2bb21γ
2
1y − 4bβ1b

2
1γ1yY − 2bb21γ

2
1Y − 4bb1c1γ

2
1 + 4bβ2

1b1c1yY + 4bβ1c
2
1γ1 + 2bβ2

1c
2
1y + 2bβ2

1c
2
1Y

−b21y − b21Y − 2b1c1 − 2β1γ1 − β2
1y − β2

1Y = 0,

e2 = 4b62y
2Y 2(y + Y ) + 4b52(2c2 − 1)yY

(
y2 + 3yY + Y 2

)
+ b42

(
(y + Y )

(
(1− 2c2)

2
(
y2 + 8yY + Y 2

)
+4β2

2y
2Y 2

)
+ 8β2γ2y

2Y 2
)
+ 2b32

(
y2
(
8c32 − 12c22 + c2(8β2Y (γ2 + β2Y ) + 6)− 2β2Y (2γ2 + 3β2Y )

−1
)
+ 2β2

2(2c2 − 1)y3Y + yY
(
2γ2

2 + 2β2
2(2c2 − 1)Y 2 + 4β2γ2(2c2 − 1)Y + 3(2c2 − 1)3

)
+ (2c2 − 1)3

Y 2
)
+ b22

(
(y + Y )

(
20c42 − 40c32 + 30c22 + β2

2(2c2 − 1)
(
(2c2 − 1)y2 + 8(c2 − 1)yY + (2c2 − 1)Y 2

)
− 10

c2 + 1
)
+ 2β2γ2

(
(1− 2c2)

2y2 + (4c2(4c2 − 5) + 5)yY + (1− 2c2)
2Y 2

)
+ (4c2 − 3)γ2

2(y + Y )
)
+ 2b2

(c2 − 1)(2c2 − 1)
(
2c32 − 2c22 + γ2

2 + c2(2β2(y + Y )(2γ2 + β2(y + Y )) + 1)− β2
2

(
y2 + 3yY + Y 2

)
(y

−2β2γ2 + Y )
)
+ β2

(
2c22 − 3c2 + 1

)2 (
2γ2 + β2(y + Y )

)
= 0.

From e1 = 0 we obtain Y = f(y), substituting it in e2 = 0 we find an equation of the variable y of
degree six. Therefore system (14) when i = 1 and j = 2 has at most six real solutions namely (yi, Yi)
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with i ∈ {1, . . . , 6}. Since (yi, Yi) = (yj , Yj) with i ∈ {1, 3, 5} and j ∈ {2, 4, 6}, these solutions provide at

most three limit cycles for the discontinuous piecewise differential systems (C̃1)– (C̃2).

Now we prove that this result is reached by giving an example with exactly three limit cycles.

In Σ− we consider the cubic reversible isochronous center of type (C̃2)

(17)

ẋ = −0.514085..x3 + (3.75423..y + 2.2093..)x2 +
(
−0.735423..y2 − 25.5419..y + 3.44704..

)
x

+0.0365141..y3 + 2.17709..y2 + 43.1293..y − 16.5836..,

ẏ = −0.140845..x3 + (0.542254..y + 0.792958..)x2 + (−0.104225..y2 − 2.65859..y

−1.42958..)x+ 0.00514085..y3 − 3.29207..y2 + 8.88296..y − 1.43575..,

with the first integral

H̃2(x, y) =
(15x− 14)2

(
12325x2 − 12100xy + 5580x+ 3025y2 − 3300y + 2056

)
14400(5x− 8)2

.

In Σ+ we consider the cubic reversible isochronous center of type (C̃1)

(18)

ẋ = −0.00141019..x2 + (0.000171292..y − 0.217157..)x+ 0.0496747..y2 + 6.04893..y

−2.29839..,

ẏ = −2.42082291791.10−6x2 + x(−0.00280815..y − 0.170976..) + 0.00362918..y2

+0.214343..y − 0.0817112..,

its corresponding first integral is

H̃1(x, y) =
1

(−10x+ 13.2y − 5)2 + (0.1x+ 58y + 7084.68)2

(
1− 0.000281426..

( 1

10
x+ 58y +

177117

25

))
.

For the discontinuous piecewise differential system (17)–(18) system (14) when i = 1 and j = 2 has the
three real solutions (−0.598492.., 1.36883..), (−0.682118.., 1.45531..) and (−0.759451.., 1.53549..). These
solutions provide the three limit cycles of system (17)–(18) drawn in Figure 2(b). Then this statement is
proved. □

Proof of statement (III) of Theorem 4. We consider the class of discontinuous piecewise differential sys-

tems composed by the cubic reversible isochronous center (C̃1) with the first integral H̃1(x, y) and the

cubic reversible isochronous differential center (C̃3) with its first integral H̃3(x, y), so system (14) when
i = 1 and j = 3 is

e1 = 2ab31yY + 2ab21c1y + 2ab21c1Y + 2ab1c
2
1 − 2ab1γ

2
1 + 2aβ2

1b1yY + 4aβ1c1γ1 + 2aβ2
1c1y + 2aβ2

1c1Y

−2bb21γ
2
1y − 4bβ1b

2
1γ1yY − 2bb21γ

2
1Y − 4bb1c1γ

2
1 + 4bβ2

1b1c1yY + 4bβ1c
2
1γ1 + 2bβ2

1c
2
1y + 2bβ2

1c
2
1Y

−b21y − b21Y − 2b1c1 − 2β1γ1 − β2
1y − β2

1Y = 0,

e2 = 9b22(y + Y ) + 6b2
(
3c2 − 4

(
β2
2y

2 + β2y(2γ2 + β2Y ) + (γ2 + β2Y )2
))

+ β2(2γ2 + β2(y + Y ))
(
− 24c2

+16
(
2γ2

2 + β2
2

(
y2 + Y 2

)
+ 2β2γ2(y + Y )

)
+ 9
)
= 0.

From e1 = 0 we obtain Y = f(y), substituting it in e2 = 0 we find an equation of the variable y of degree
six. Thus system (14) when i = 1 and j = 3 has at most six real solutions, due to the symmetry of the

solutions of this system, we conclude that the discontinuous piecewise differential systems (C̃1)– (C̃3) has
at most three limit cycles.
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In what follows we give a class of discontinuous piecewise differential system which has exactly three
limit cycles. So in Σ− we consider the cubic reversible isochronous center of type (C̃3)

(19)

ẋ = −0.013446..x3 + x2(0.305282..y + 0.45729..) + x
(
−2.31041..y2 − 4.90347..y − 2.46581..

)
+5.82847..y3 + 10.9181..y2 + 9.12441..y − 0.481199..,

ẏ = −0.00177667..x3 + x2(0.040338..y + 0.0780411..) + x(−0.305282..y2 − 0.914579..y

−0.84173..) + 0.770136..y3 + 2.45173..y2 + 2.46581..y + 0.233753..,

with the first integral

H̃3(x, y) =

(
3
(1
2
x− 1.7828..y

)
− 4
( 1

10
x− 0.75681..y + 0.410816..

)2)2

+ 9
( 1

10
x− 0.75681..y

+0.410816..
)2

.

In Σ+ we consider the cubic reversible isochronous center of type (C̃1)

(20)

ẋ =
( 7

200
− 9

40
y
)
x2 +

1

100
x3 +

(
−5

8
y2 − 27

20
y + 0.405909..

)
x− 15

8
y2 + 5.07727..y

−0.247727..,

ẏ =
( 1

100
y +

9

500

)
x2 + x

(
− 9

40
y2 +

3

20
y − 0.173364..

)
− 5

8
y3 − 17

40
y2 − 0.105909..y

−0.113909..,

its corresponding first integral is

H̃1(x, y) = −
5
(
4x2 + 20xy + 20x+ 25y2 + 50y − 71

)
104x2 + 300xy + 124x+ 3125y2 − 350y + 61

.

The pairs (0.316546..,−0.285777..), (0.183095..,−0.0988845..) and (0.12139..,−0.0261521..) are the dis-
tinct three real solution of system (14) when i = 1 and j = 3. Then the discontinuous piecewise
differential system (19)–(20) has three limit cycles shown in Figure 2(c). This example completes the
proof of statement (III) of Theorem 4. □

Proof of statement (IV ) of Theorem 4. We consider the discontinuous piecewise differential system (C̃2)–
( ˜̃C2), we obtain that system (13) when i = 2 is written as

e1 = (y − Y )EY = 0, e2 = (y − Y )Ey = 0.

We denote by Ey and EY the polynomials of variables y and Y where

EY =
(
4b61y

2Y 2(y + Y ) + 4b51(2c1 − 1)yY
(
y2 + 3yY + Y 2

)
+ b41

(
(y + Y )

(
(1− 2c1)

2
(
y2 + 8yY + Y 2

)
+4β2

1y
2Y 2

)
+ 8β1γ1y

2Y 2
)
+ 2b31

(
y2
(
8c31 − 12c21 + c1(8β1Y (γ1 + β1Y ) + 6)− 2β1Y (2γ1 + 3β1Y )

−1
)
+ 2β2

1(2c1 − 1)y3Y + yY
(
2γ2

1 + 2β2
1(2c1 − 1)Y 2 + 4β1γ1(2c1 − 1)Y + 3(2c1 − 1)3

)
+ (2c1 − 1)3

Y 2
)
+ b21

(
(y + Y )

(
20c41 − 40c31 + 30c21 + β2

1(2c1 − 1)
(
(2c1 − 1)y2 + 8(c1 − 1)yY + (2c1 − 1)Y 2

)
−10c1 + 1

)
+ 2β1γ1

(
(1− 2c1)

2y2 + (4c1(4c1 − 5) + 5)yY + (1− 2c1)
2Y 2

)
+ (4c1 − 3)γ2

1(y + Y )
)

+2b1(c1 − 1)(2c1 − 1)
(
2c31 − 2c21 + γ2

1 + c1(2β1(y + Y )(2γ1 + β1(y + Y )) + 1)− β2
1(y

2 + 3yY

+Y 2)− 2β1γ1(y + Y )
)
+ β1

(
2c21 − 3c1 + 1

)2
(2γ1 + β1(y + Y ))

)
,
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Ey =
(
4b62y

2Y 2(y + Y ) + 4b52(2c2 − 1)yY
(
y2 + 3yY + Y 2

)
+ b42

(
(y + Y )

(
(1− 2c2)

2
(
y2 + 8yY + Y 2

)
+4β2

2y
2Y 2

)
+ 8β2γ2y

2Y 2
)
+ 2b32

(
y2
(
8c32 − 12c22 + c2(8β2Y (γ2 + β2Y ) + 6)− 2β2Y (2γ2 + 3β2Y )

−1
)
+ 2β2

2(2c2 − 1)y3Y + yY
(
2γ2

2 + 2β2
2(2c2 − 1)Y 2 + 4β2γ2(2c2 − 1)Y + 3(2c2 − 1)3

)
+ (2c2 − 1)3

Y 2
)
+ b22

(
(y + Y )

(
20c42 − 40c32 + 30c22 + β2

2(2c2 − 1)
(
(2c2 − 1)y2 + 8(c2 − 1)yY + (2c2 − 1)Y 2

)
− 10

c2 + 1
)
+ 2β2γ2

(
(1− 2c2)

2y2 + (4c2(4c2 − 5) + 5)yY + (1− 2c2)
2Y 2

)
+ (4c2 − 3)γ2

2(y + Y )
)
+ 2b2

(c2 − 1)(2c2 − 1)
(
2c32 − 2c22 + γ2

2 + c2(2β2(y + Y )(2γ2 + β2(y + Y )) + 1)− β2
2

(
y2 + 3yY + Y 2

)
(y

−2β2γ2 + Y )
)
+ β2

(
2c22 − 3c2 + 1

)2 (
2γ2 + β2(y + Y )

))
.

The number of the common zeros (y, Y) of Ey and EY show the existence and the number of limit

cycles of the discontinuous piecewise differential systems (C̃2)– ( ˜̃C2). To find this number, we calculate
the resultants, Resultant [Ey, EY , y] and Resultant [Ey, EY , Y ] of Ey and EY (or simply Ry and RY ,
respectively) with respect to y and Y , respectively. By the symmetry of Ey and EY with respect to y
and Y , we know that the resultant Ry and RY have the same expression. So we only need to calculate
one of them, and in this case we consider Ry which is a polynomial of degree sixteen in the variable Y ,
and because of the big expression of Ry we omit it. Consequently the maximum number of solutions of
system (13) when i = 2 is at most sixteen. Due to the symmetry of these solutions it results that the

discontinuous piecewise differential systems (C̃2)– ( ˜̃C2) can have at most eight limit cycles.

In what follows we construct a class of discontinuous piecewise differential system which has exactly
eight limit cycles.

In the first half-plane Σ− we consider the cubic reversible isochronous center (C̃2)

(21)

ẋ = −1.33333..
(3
4
x− 7

10

)(24
10

− 1

2
x
)(11

2
x− 11

4
y +

3

2

)
,

ẏ = 0.484848..
(11
2

(24
10

− 3

2
x
)( 7

10
− 3

4
x
)(11

2
x− 11

4
y +

3

2

)
− 3

4

(
2
(17
10

− 3

4
x
)3

− 2
(17
10

−3

4
x
)2

+
(11
2
x− 11

4
y +

3

2

)2
− 3

4
x+

17

10

))
,

with the first integral

H̃2(x, y) =
(15x− 14)2

(
12325x2 − 12100xy + 5580x+ 3025y2 − 3300y + 2056

)
14400(5x− 8)2

.

In Σ+ we consider the cubic reversible isochronous center ( ˜̃C2)

(22)

ẋ = x2(4.19651..− 0.367605..y) +
9

10
x3 + x((−1.08819.. ∗ 10−15y − 1.63216..)y + 5.10083..)

+y((−8.05325.. ∗ 10−31y − 1.87169.. ∗ 10−15)y − 1.7198..) + 0.938074..,

ẏ = x2
(
10.8999..− 9

10
y
)
+ 2.88353..x3 + x((−2.66421.. ∗ 10−15y − 2.196..)y + 15.8829..)

+y((−1.97166.. ∗ 10−30y − 0.367605..)y − 3.80954..) + 4.12556..,

its corresponding first integral is

˜̃H2(x, y) =
1

(2(−0.5x− 7.40057.. ∗ 10−16y − 0.36)− 1)2

(((
− 1

2
x− 7.40057.. ∗ 10−16y − 36

100

)2
+(

9

10
x− 0.367605..y + 0.200512..)2

)(
− 1

2
x− 7.40057.. ∗ 10−16y − 36

100

)2)
.

The eight pairs (0.162904.., 0.928005..), (0.162904.., 0.928005..) (−0.365742.., 1.45665..), (−0.537248..,
1.62816..), (−0.685078.., 1.77599..), (−0.816962.., 1.90787..), (−0.93716.., 2.02807..) and (−1.04832..,
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2.13923..) are solutions of system (13) when i = 2. Consequently the discontinuous piecewise differential
system (21)–(22) has eight limit cycles, see Figure 3(a). Thus, the proof of statement (IV ) holds. □

Proof of statement (V ) of Theorem 4. We consider the class of discontinuous piecewise differential sys-

tems formed by the cubic reversible isochronous center (C̃2) with the first integral H̃2(x, y) and the cubic

reversible isochronous differential center (C̃3) with its first integral H̃3(x, y), so system (14) when i = 2
and j = 3 becomes

e1 = 4b62y
2Y 2(y + Y ) + 4b52(2c2 − 1)yY

(
y2 + 3yY + Y 2

)
+ b42

(
(y + Y )

(
(1− 2c2)

2
(
y2 + 8yY + Y 2

)
+4β2

2y
2Y 2

)
+ 8β2γ2y

2Y 2
)
+ 2b32

(
y2
(
8c32 − 12c22 + c2(8β2Y (γ2 + β2Y ) + 6)− 2β2Y (2γ2 + 3β2Y )

−1
)
+ 2β2

2(2c2 − 1)y3Y + yY
(
2γ2

2 + 2β2
2(2c2 − 1)Y 2 + 4β2γ2(2c2 − 1)Y + 3(2c2 − 1)3

)
+ (2c2 − 1)3

Y 2
)
+ b22

(
(y + Y )

(
20c42 − 40c32 + 30c22 + β2

2(2c2 − 1)
(
(2c2 − 1)y2 + 8(c2 − 1)yY + (2c2 − 1)Y 2

)
− 10

c2 + 1
)
+ 2β2γ2

(
(1− 2c2)

2y2 + (4c2(4c2 − 5) + 5)yY + (1− 2c2)
2Y 2

)
+ (4c2 − 3)γ2

2(y + Y )
)
+ 2b2

(c2 − 1)(2c2 − 1)
(
2c32 − 2c22 + γ2

2 + c2(2β2(y + Y )(2γ2 + β2(y + Y )) + 1)− β2
2

(
y2 + 3yY + Y 2

)
(y

−2β2γ2 + Y )
)
+ β2

(
2c22 − 3c2 + 1

)2 (
2γ2 + β2(y + Y )

)
= 0,

e2 = 9b21(y + Y ) + 6b1
(
3c1 − 4

(
β2
1y

2 + β1y(2γ1 + β1Y ) + (γ1 + β1Y )2
))

+ β1(2γ1 + β1y + β1Y )(32γ2
1

−24c1 + 16β2
1y

2 + 32β1γ1y + 16β2
1Y

2 + 32β1γ1Y + 9) = 0.

Using Bezout theorem we know that the maximum number of solutions of system (14) when i = 2 and
j = 3 is at most fifteen. As the solutions of this system are symmetric, therefore we conclude that the
maximum number of solutions of the system (14) is at most seven. Hence the maximum number of limit

cycles of the discontinuous piecewise differential systems (C̃2)– (C̃3) is at most seven.

Now we give a class of discontinuous piecewise differential system which has exactly seven limit cycles.
In Σ+ we consider the cubic reversible isochronous center of type (C̃2)

(23)

ẋ = 0.0000870489..x3 + x2(−0.00792718..y − 0.079887..) + x(0.235678..y2 + 5.98489..y

−39.2858..)− 2.29883..y3 − 103.885..y2 + 862.313..y + 1319.27..,

ẏ = 2.963419321..× 10−6x3 + x2(−0.000241147..y − 0.00641714..) + x(0.00652981..y2

+0.351331..y + 4.42621..)− 0.0588451..y3 − 4.88435..y2 − 100.652..y − 2352.32..,

its first integral is

H̃2(x, y) =
1

(−x+ 26y + 831.968..)2
(6.5× 10−6x4 + x3(−0.000719868..y − 0.0160353..) + x2((0.0317101..y

+0.864893..)y + 44.7714..) + x(y((−0.646011..y − 15.2721..)y − 1692.73..)− 49965..) + y(y

(y(5.04228..y + 94.2432..) + 14776.6) + 1.05795...× 106) + 1.7008× 107).

In Σ− we consider the cubic reversible isochronous center of type (C̃3)

(24)

ẋ =
1

9590625
(531250x3 + 1875x2(578y − 1535) + 75x

(
9826y2 − 110160y − 65075

)
+ 167042y3

−4287315y2 + 21974850y + 37022000),

ẏ =
1

383625
(−31250x3 − 3750x2(17y + 5)− 75x

(
578y2 − 3070y − 2825

)
− 9826y3 + 165240y2

+195225y − 41500),

which has the first integral

H̃3(x, y) = 9

(
1

4
x+

17

100
y +

1

5

)2

+

(
3

(
1

10
x+

3

4
y + 1

)
− 4

(
1

4
x+

17

100
y +

1

5

)2
)2

.
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System (14) when i = 2 and j = 3 has the seven solutions (−1.9409..,−0.669484..), (−1.89267..,−0.72376..),
(−1.83955..,−0.782914..), (−1.77978..,−0.848708..), (−1.71019..,−0.924315..), (−1.62382..,−1.0167..) and
(−1.49637..,−1.15015..). Therefore the discontinuous piecewise differential system (23)–(24) has seven
limit cycles shown in Figure 3(b). Thus, the proof of this statement is done. □

Proof of statement (V I) of Theorem 4. For the discontinuous piecewise differential systems (C̃3)– ( ˜̃C3)
we obtain that the system (13) when i = 3 is given by

e1 = (y − Y )EY = 0, e2 = (y − Y )Ey = 0.

Where

EY =
(
9b21(y + Y ) + 6b1

(
3c1 − 4

(
β2
1y

2 + β1y(2γ1 + β1Y ) + (γ1 + β1Y )2
))

+ β1(2γ1 + β1y + β1Y )(
32γ2

1 − 24c1 + 16β2
1y

2 + 32β1γ1y + 16β2
1Y

2 + 32β1γ1Y + 9
) )

,

Ey =
(
9b22(y + Y ) + 6b2

(
3c2 − 4

(
β2
2y

2 + β2y(2γ2 + β2Y ) + (γ2 + β2Y )2
))

+ β2(2γ2 + β2y + β2Y )(
32γ2

2 − 24c2 + 16β2
2y

2 + 32β2γ2y + 16β2
2Y

2 + 32β2γ2Y + 9
) )

.

As in statement (IV ) and by computing the resultants, Resultant [Ey, EY , y] and Resultant [Ey, EY , Y ]
of Ey and EY with respect to y and Y , respectively. Due to the symmetry of Ey and EY with respect
to y and Y , we obtain that the resultant Ry is a polynomial of degree six. Consequently the maximum
number of solutions of system (13) is at most six. Since their solutions are symmetric we know that the

discontinuous piecewise differential systems (C̃3)– ( ˜̃C3) has at most three limit cycles.

To prove that our result is reached we give an example of discontinuous piecewise differential system
with exactly three limit cycles.

In the first half-plane Σ− we consider the cubic reversible isochronous center (C̃3)

(25)

ẋ = −0.00343827..x3 + x2(0.0908048..y − 0.258721..) + x(−0.799387..y2 + 2.20767..y

+0.10374..) + 2.34576..y3 + 0.615762..y2 + 0.895054..y − 0.0485279..,

ẏ = −0.000390563..x3 + x2(0.0103148..y − 0.0445347..) + x(−0.0908048..y2 + 0.517442..y

−1.13956..) + 0.266462..y3 − 1.10383..y2 − 0.10374..y − 0.00943529..,

with the first integral

H̃3(x, y) =

(
3(−x− 0.300305..y)− 4

(
− 1

10
x+ 0.880335..y − 0.0508927..

)2)2

+ 9
(
− 1

10
x+ 0.880335..y

−0.0508927..
)2

.

In Σ+ we consider the cubic reversible isochronous center ( ˜̃C3)

(26)

ẋ = −0.0118519..x3 + x2(0.355556..y − 0.235556..) + x(−3.55556..y2 + 2.04444..y

−0.218889..) + 11.8519..y3 + 3.11111..y2 + 4.52222..y − 0.245185..,

ẏ = −0.00118519..x3 + x2(0.0355556..y − 0.0368889..) + x(−0.355556..y2 + 0.471111..y

−0.298556..) + 1.18519..y3 − 1.02222..y2 + 0.218889..y − 0.137852..,

its corresponding first integral is

˜̃H3(x, y) = 9
(
− 1

10
x+ y − 1

10

)2
+

(
3
(
− 1

4
x− 1

2
y − 1

10

)
− 4
(
− 1

10
x+ y − 1

10
)2
)2

.
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The discontinuous piecewise differential system (25)–(26) has three limit cycles because system (13) when
i = 3 has the three real solutions (−0.333962.., 0.372192..), (−0.209785.., 0.278363..) and (−0.420112..,
0.436464..). These three limit cycles are shown in Figure 4(a). Thus, the proof of Theorem 4 is done. □
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