LIMIT CYCLES OF PLANAR DISCONTINUOUS PIECEWISE LINEAR HAMILTONIAN SYSTEMS WITHOUT EQUILIBRIUM POINTS AND SEPARATED BY IRREDUCIBLE CUBICS

AHLAM BELFAR ${ }^{1}$, REBIHA BENTERKI ${ }^{2}$ AND JAUME LLIBRE ${ }^{3}$

Abstract

This paper is devoted to study the limit cycles of planar discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by irreducible cubics. We study the limit cycles that intersect the cubic in two or four points. We provide lower bounds for the maximum number of limit cycles intersecting the cubic either in two points, or in four points, or in both classes simultaneously. All the computations of this paper has been verified with the algebraic manipulator mathematica.

1. Introduction

We recall that a limit cycle of a differential system is an isolated periodic orbit in the set of all periodic orbits of this system. It is well-known that among the many problems of the differential systems in the plane one of the most difficult is to finding the best upper bound for the maximum number of limit cycles that a given differential system or a class of differential systems can exhibit, see for instance the 16 th Hilbert problem [12, 14, 16]. Here we consider this problem for the planar discontinuous piecewise linear Hamiltonian systems without equilibrium points and separated by irreducible cubics.

Recently an increasing interest appeared for the piecewise differential systems, mainly due to its applications in engineering, mechanics, electric circuits, ... see for instance the books of $[1,3,25]$ and the hundreds of references therein. A good deal of that interest is placed in studying the limit cycles of these piecewise differential systems. See for instance the papers dedicated to study the limit cycles of the piecewise linear differential systems separated by a straight line or by other kind of curves. See, without trying to be exhaustive, for instance $[2,6,7,8,9,10,11,17$, $18,19,20,24]$.

In particular in the papers $[4,15,21]$ the authors studied the maximum number of limit cycles of piecewise linear centers separated by algebraic curves of the form $y=x^{n}$, or by a conic, or by a reducible or irreducible cubic curve.

In this paper we consider planar discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by an irreducible cubic. It is known

[^0]and easy to prove that the Hamiltonian vector fields of such piecewise differential systems in each piece can be written into the form
$$
X_{i}(x, y)=\left(-\lambda_{i} b_{i} x+b_{i} y+\gamma_{i},-\lambda_{i}^{2} b_{i} x+\lambda_{i} b_{i} y+\delta_{i}\right),
$$
where $\delta_{i} \neq \lambda_{i} \gamma_{i}$ and $b_{i} \neq 0$ for $i=1 \ldots 4$, see for details [8]. The Hamiltonian function associated to the Hamiltonian vector field X_{i} is
$$
H_{i}(x, y)=\left(-\lambda_{i}^{2} b_{i} / 2\right) x^{2}+\lambda_{i} b_{i} x y-\left(b_{i} / 2\right) y^{2}+\delta_{i} x-\gamma_{i} y
$$
1.1. Classification of the irreducible cubics. An algebraic cubic curve or simple a cubic is the set of points $(x, y) \in \mathbb{R}^{2}$ satisfying $P(x, y)=0$ for some polynomial $P(x, y)$ of degree three. This real cubic is irreducible (respectively reducible) if the polynomial $P(x, y)$ is irreducible (respectively reducible) in the ring of all real polynomials in the variables x and y.

A point $\left(x_{0}, y_{0}\right)$ of a cubic $P(x, y)=0$ is singular if $P_{x}\left(x_{0}, y_{0}\right)=P_{y}\left(x_{0}, y_{0}\right)=0$. A cubic curve is singular if it has some singular point.

A flex of an algebraic curve C is a point p of C such that C is nonsingular at p and the tangent at p of the curve C intersects C at least three times.

Theorem 1. The following statements classify all the irreducible cubic algebraic curves.
(a) A cubic is nonsingular and irreducible if and only if it can be transformed with an affine transformation into one of the following two curves

$$
\begin{array}{ll}
c_{1}=c_{1}(x, y)=y^{2}-x\left(x^{2}+b x+1\right)=0 & \text { with } b \in(-2,2), \text { or } \\
c_{2}=c_{2}(x, y)=y^{2}-x(x-1)(x-r)=0 & \text { with } r>1
\end{array}
$$

(b) A cubic is singular and irreducible if and only if it can be transformed with an affine transformation into one of the following three curves:

$$
\begin{array}{ll}
c_{3}=c_{3}(x, y)=y^{2}-x^{3}=0, & \text { or } \\
c_{4}=c_{4}(x, y)=y^{2}-x^{2}(x-1)=0, & \text { or } \\
c_{5}=c_{5}(x, y)=y^{2}-x^{2}(x+1)=0 . &
\end{array}
$$

Statement (a) of Theorem 1 is proved in Theorem 8.3 of the book [5] under the additional assumption that the cubic has a flex, but in section 12 of that book it is shown that every nonsingular irreducible cubic curve has a flex. While statement (b) of Theorem 1 follows directly from Theorem 8.4 of [5].
1.2. Statement of the main results. We denote by C_{k} the class of planar discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by the irreducible cubic $c_{k}=0$ for $k=1, \ldots, 5$

Our first objective is to provide the maximum number of limit cycles with two points on the cubic for the discontinuous piecewise linear Hamiltonian systems separated by a cubic $c_{k}=0$, with $k=1, \ldots, 5$. We note that such limit cycles are contained only in two pieces of the discontinuous piecewise linear Hamiltonian system.

Theorem 2. For $k=1, \ldots, 5$ the maximum number of limit cycles of the discontinuous piecewise linear Hamiltonian systems intersecting the cubic $c_{k}=0$ in two points is three.

This maximum is reached in Figures 1, 2 and 3 for the classes C_{1}, C_{3} and C_{4} respectively; and in Figures 4, 5 and 6 for the class C_{2}; and in Figure 7 for the class C_{5}.

Theorem 2 is proved in section 2.
The second objective of this work is to give the maximum number of simultaneous limit cycles with two or four points on the cubic for the discontinuous piecewise linear Hamiltonian systems which intersect the cubics $c_{2}=0$ or $c_{5}=0$. We note that such limit cycles are contained in three pieces of the discontinuous piecewise linear Hamiltonian system.
Theorem 3. The following statements hold.
(a) The maximum number of limit cycles of the discontinuous piecewise linear Hamiltonian systems intersecting in four points the cubics c_{2} or c_{5} is three. See Figures 8 and 9 for the classes C_{2} and C_{5}, respectively.
(b) The maximum number of limit cycles of the discontinuous piecewise linear Hamiltonian systems intersecting simultaneously in four points and two points the cubics c_{2} or c_{5} is three.

This maximum is reached in Figures 10 and 11 for the class C_{2}, and in Figure 12 for the class C_{5} where there are examples of systems exhibiting simultaneously one limit cycle with four intersection points and two limit cycles with two intersection points with the cubic.

The maximum is also reached in Figures 13 and 14 for the class C_{2}, and in Figure 15 for the class C_{5} where there are examples of systems exhibiting simultaneously two limit cycle with four intersection points and one limit cycles with two intersection points with the cubic.

Theorem 3 is proved in section 3 .

Figure 1. The three limit cycles of the discontinuous piecewise differential systems (4)-(5).

2. Proof of Theorem 2

We shall prove that the maximum number of limit cycles of the discontinuous piecewise linear Hamiltonian systems intersecting the cubic $c_{3}=0$ in two points is three. For the other four cubics the proof is completely similar.

Figure 2. The three limit cycles of the discontinuous piecewise differential systems (7)-(8).

Figure 3. The three limit cycles of the discontinuous piecewise differential systems (9)-(10).

Figure 4. The three limit cycles of the discontinuous piecewise differential systems (12)-(13).

Figure 5. The three limit cycles of the discontinuous piecewise differential systems (14)-(15).

We consider the discontinuous piecewise linear Hamiltonian system such that in the region $R_{1}=\left\{(x, y): y^{2}-x^{3} \geq 0\right\}$ is defined as

$$
\begin{equation*}
\dot{x}=-\lambda_{1} b_{1} x+b_{1} y+\mu_{1}, \quad \dot{y}=-\lambda_{1}^{2} b_{1} x+\lambda_{1} b_{1} y+\sigma_{1} \tag{1}
\end{equation*}
$$

Figure 6. The three limit cycles of the discontinuous piecewise differential systems (16)-(17).

Figure 7. The three limit cycles of the discontinuous piecewise differential systems (19)-(20).
with $b_{1} \neq 0$ and $\sigma_{1} \neq \lambda_{1} \mu_{1}$. This system has the first integral

$$
H_{1}(x, y)=-\left(\lambda_{1}^{2} b_{1} / 2\right) x^{2}+\lambda_{1} b_{1} x y-\left(b_{1} / 2\right) y^{2}+\sigma_{1} x-\mu_{1} y
$$

In the region $R_{2}=\left\{(x, y): y^{2}-x^{3} \leq 0\right\}$ we consider the linear Hamiltonian system

$$
\begin{equation*}
\dot{x}=-\lambda_{2} b_{2} x+b_{2} y+\mu_{2}, \quad \dot{y}=-\lambda_{2}^{2} b_{2} x+\lambda_{2} b_{2} y+\sigma_{2} \tag{2}
\end{equation*}
$$

with $b_{2} \neq 0$ and $\sigma_{2} \neq \lambda_{2} \mu_{2}$. Its corresponding Hamiltonian first integral is

$$
H_{2}(x, y)=-\left(\lambda_{2}^{2} b_{2} / 2\right) x^{2}+\lambda_{2} b_{2} x y-\left(b_{2} / 2\right) y^{2}+\sigma_{2} x-\mu_{2} y
$$

In order to have a limit cycle which intersects the cubic $y^{2}-x^{3}=0$ in the points $\left(x_{i}, y_{i}\right)$ and $\left(x_{k}, y_{k}\right)$, these points must satisfy the system

$$
\begin{align*}
& H_{1}\left(x_{i}, y_{i}\right)-H_{1}\left(x_{k}, y_{k}\right)=0, \\
& H_{2}\left(x_{i}, y_{i}\right)-H_{2}\left(x_{k}, y_{k}\right)=0, \\
& y_{i}^{2}-x_{i}^{3}=0 \tag{3}\\
& y_{k}^{2}-x_{k}^{3}=0
\end{align*}
$$

Suppose that the piecewise differential system formed by the systems (1) and (2) has four limit cycles. Then system (3) must have four pairs of points of solutions of the form $p_{i}=\left(r_{i}^{2}, r_{i}^{3}\right)$ and $q_{i}=\left(s_{i}^{2}, s_{i}^{3}\right)$ for $i=1, \ldots 4$. Due to the fact that these points must satisfy the first two equations of system (3), from these two equations and for $i=1$ we get that

$$
\sigma_{1}=\frac{b_{1} r_{1}^{6}-2 b_{1} \lambda_{1} r_{1}^{5}+b_{1} \lambda_{1}^{2} r_{1}^{4}-b_{1} s_{1}^{6}+2 b_{1} \lambda_{1} s_{1}^{5}-b_{1} \lambda_{1}^{2} s_{1}^{4}+2 \mu_{1} r_{1}^{3}-2 \mu_{1} s_{1}^{3}}{2\left(r_{1}^{2}-s_{1}^{2}\right)}
$$

and σ_{2} has the same expression than σ_{1} changing $\left(b_{1}, \lambda_{1}, \mu_{1}\right)$ by $\left(b_{2}, \lambda_{2}, \mu_{2}\right)$.

Since the points $p_{2}=\left(r_{2}^{2}, r_{2}^{3}\right)$ and $q_{2}=\left(s_{2}^{2}, s_{2}^{3}\right)$ also satisfy system (3), we obtain that parameters μ_{1} and μ_{2} must be $\mu_{1}=A / B$, where

$$
\begin{aligned}
A= & -\left(b _ { 1 } \left(r_{1}^{5}\left(r_{2}+s_{2}\right)+r_{1}^{4}\left(r_{2}+s_{2}\right)\left(s_{1}-2 \lambda_{1}\right)+r_{1}^{3}\left(r_{2}+s_{2}\right)\left(s_{1}-\lambda_{1}\right)^{2}+r_{1}^{2} s_{1}\left(r_{2}\right.\right.\right. \\
& \left.+s_{2}\right)\left(s_{1}-\lambda_{1}\right)^{2}-r_{1}\left(r_{2}^{5}+r_{2}^{4}\left(s_{2}-2 \lambda_{1}\right)+r_{2}^{3}\left(s_{2}-\lambda_{1}\right)^{2}+r_{2}^{2} s_{2}\left(s_{2}-\lambda_{1}\right)^{2}+r_{2}\right. \\
& \left.\left(-s_{1}^{4}+s_{2}^{2}\left(s_{2}-\lambda_{1}\right)^{2}+2 s_{1}^{3} \lambda_{1}-s_{1}^{2} \lambda_{1}^{2}\right)+s_{2}\left(-s_{1}^{4}+s_{2}^{2}\left(s_{2}-\lambda_{1}\right)^{2}+2 s_{1}^{3} \lambda_{1}-s_{1}^{2} \lambda_{1}^{2}\right)\right) \\
& +s_{1}\left(-r_{2}^{5}-r_{2}^{4}\left(s_{2}-2 \lambda_{1}\right)-r_{2}^{3}\left(s_{2}-\lambda_{1}\right)^{2}-r_{2}^{2} s_{2}\left(s_{2}-\lambda_{1}\right)^{2}+r_{2}\left(s_{1}^{4}-s_{2}^{2}\left(s_{2}-\lambda_{1}\right)^{2}\right.\right. \\
& \left.\left.\left.-2 s_{1}^{3} \lambda_{1}+s_{1}^{2} \lambda_{1}^{2}\right)+s_{2}\left(s_{1}^{4}-s_{2}^{2}\left(s_{2}-\lambda_{1}\right)^{2}-2 s_{1}^{3} \lambda_{1}+s_{1}^{2} \lambda_{1}^{2}\right)\right)\right), \\
B= & 2\left(r_{1}^{2}\left(r_{2}+s_{2}\right)+s_{1}\left(-r_{2}^{2}+r_{2}\left(s_{1}-s_{2}\right)+\left(s_{1}-s_{2}\right) s_{2}\right)-r_{1}\left(r_{2}^{2}+r_{2}\left(-s_{1}+s_{2}\right)\right.\right. \\
& \left.\left.+s_{2}\left(-s_{1}+s_{2}\right)\right)\right) .
\end{aligned}
$$

And μ_{2} has the same expression than μ_{1} changing $\left(b_{1}, \lambda_{1}\right)$ by $\left(b_{2}, \lambda_{2}\right)$.
Again the points $p_{3}=\left(r_{3}^{2}, r_{3}^{3}\right)$ and $q_{3}=\left(s_{3}^{2}, s_{3}^{3}\right)$ satisfy system (3), then we obtain two values of λ_{1} we name them $\lambda_{1}^{(1)}$ and $\lambda_{1}^{(2)}$ and two values of λ_{2} we name them $\lambda_{2}^{(1)}$ and $\lambda_{2}^{(2)}$. The first value of λ_{1} is given by $\lambda_{1}^{(1)}=(C-(1 / 2) \sqrt{D}) / E$ and the second one is $\lambda_{1}^{(2)}=(C+(1 / 2) \sqrt{D}) / E$, where the values of C, D and E are given in the appendix. We get the expression of $\lambda_{2}^{(1)}$ and $\lambda_{2}^{(2)}$ by changing b_{1} by b_{2} in the expression of $\lambda_{1}^{(1)}$ and $\lambda_{1}^{(2)}$, respectively.

We replace $\mu_{1}, \lambda_{1}^{(i)}$ and σ_{1} in the expression of $H_{1}(x, y)$, and $\mu_{2}, \lambda_{2}^{(i)}$ and σ_{2} in the expression of $H_{2}(x, y)$ and we obtain $H_{1}(x, y)=H_{2}(x, y)$, for $i=1,2$. Hence the discontinuous piecewise linear differential system becomes a linear differential system, and consequently the system has no limit cycles. So the maximum number of limit cycles in this case is two.

Now we consider the pairs either $\lambda_{1}^{(2)}$ and $\lambda_{2}^{(1)}$, or $\lambda_{1}^{(1)}$ and $\lambda_{2}^{(2)}$. By replacing the expressions of σ_{1}, μ_{1} and $\lambda_{1}^{(2)}$ (resp. $\lambda_{1}^{(1)}$) in the expression of $H_{1}(x, y)$, and σ_{2}, μ_{2} and $\lambda_{2}^{(1)}$ (resp. $\lambda_{2}^{(2)}$) in the expression of $H_{2}(x, y)$ and we obtain that $H_{1}(x, y) \neq H_{2}(x, y)$. Since the points $p_{4}=\left(r_{4}^{2}, r_{4}^{3}\right)$ and $q_{4}=\left(s_{4}^{2}, s_{4}^{3}\right)$ satisfy system (3), then we obtain $b_{1}=0$ and $b_{2}=0$. This is a contradiction because by the assumptions they are not zero. In summary, we proved that the maximum number of limit cycles for PHS separated by a irreducible cubic curve $c_{3}=0$ is at most three.

In order to complete the proof of the theorem we shall provide discontinuous piecewise linear Hamiltonian systems without equilibrium points separated by the cubic $c_{k}=0$ with three limit cycles for $k=1, \ldots, 5$.

Example with three limit cycles when the cubic of separation is $c_{1}=0$. In the region $R_{1}=\left\{(x, y): y^{2}-x\left(x^{2}+x+1\right) \geq 0\right\}$, we consider the linear Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(-\frac{9 x}{5}+3 y+\frac{1}{5},-\frac{27 x}{25}+\frac{9 y}{5}+1\right) \tag{4}
\end{equation*}
$$

It has the Hamiltonian function $H_{1}(x, y)=-27 x^{2} / 50+9 x y / 5-3 y^{2} / 2-y / 5$. Now we consider the second linear Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=(5.54426 . . x-2 y-9.52503 . ., 15.3694 . . x-5.54426 . . y-38.5097 . .) \tag{5}
\end{equation*}
$$

in the region $R_{2}=\left\{(x, y): y^{2}-x\left(x^{2}+x+1\right) \leq 0\right\}$. This Hamiltonian system has the
Hamiltonian function $H_{2}(x, y)=7.68471 x^{2}-5.54426 x y-38.5097 x+y^{2}+9.52503 y$.

The discontinuous piecewise differential system (4)-(5) has exactly three limit cycles, because the system of equations

$$
\begin{align*}
& H_{1}(\alpha, \beta)-H_{1}(\gamma, \delta)=0 \\
& H_{2}(\alpha, \beta)-H_{2}(\gamma, \delta)=0 \\
& c_{i}(\alpha, \beta)=0 \tag{6}\\
& c_{i}(\gamma, \delta)=0
\end{align*}
$$

when $i=1$, has only three real solutions

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(0.393342 . .,-0.780303 . ., 0.908209 . ., 1.5755 . .) \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(0.558506 . .,-1.02208 . ., 1.19256 . ., 2.07625 . .) \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(0.680997,-1.20854 . ., 1.3862 . ., 2.44365 . .)
\end{aligned}
$$

see Figure 1.
Example with three limit cycles when the cubic of separation is $c_{3}=0$. In the region $R_{1}=\left\{(x, y): x^{3}-y^{2} \leq 0\right\}$ we consider the Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(-\frac{x}{2}+5 y+\frac{1}{5},-\frac{x}{20}+\frac{y}{2}+\frac{4}{5}\right) . \tag{7}
\end{equation*}
$$

It has the Hamiltonian function $H_{1}(x, y)=-x^{2} / 40+x y / 2+4 x / 5-5 y^{2} / 2-y / 5$. Now we consider the second Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(2.8254 . . x+\frac{51 y}{100}-9.47986 . .,-15.6528 . . x-2.8254 . . y-132.539 . .\right) \tag{8}
\end{equation*}
$$

in the region $R_{2}=\left\{(x, y): x^{3}-y^{2} \geq 0\right\}$. This Hamiltonian system has the Hamiltonian function $H_{2}(x, y)=-7.82638 . . x^{2}-2.8254 . . x y-132.539 . . x-\frac{51 y^{2}}{200}+$ 9.47986..y. The discontinuous piecewise differential system (7)-(8) has exactly three limit cycles, because the system of equations (6) when $i=3$ has only three real solutions

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(0.700707 . .,-0.58655 . ., 0.765078 . ., 0.669204 . .), \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(0.969795 . .,-0.955036 . .1 .06038 . ., 1.09192 . .), \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(1.13263 . .,-1.2054 . ., 1.23647 . ., 1.37492 . .),
\end{aligned}
$$

see Figure 2.
Example with three limit cycles when the cubic of separation is $c_{4}=0$. We consider the Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(-\frac{4 x}{5}+4 y+\frac{3}{10},-\frac{4 x}{25}+\frac{4 y}{5}+\frac{3}{5}\right) \tag{9}
\end{equation*}
$$

in the region $R_{1}=\left\{(x, y): y^{2}-x^{2}(x-1) \leq 0\right\}$. This Hamiltonian system has the Hamiltonian function $H_{1}(x, y)=-2 x^{2} / 25+4 x y / 5+3 x / 5-2 y^{2}-3 y / 10$. In the region $R_{2}=\left\{(x, y): y^{2}-x^{2}(x-1) \geq 0\right\}$ we consider the Hamiltonian system (10)
$(\dot{x}, \dot{y})=(-4.28711 . . x+9 y / 100-13.3828 . .,-204.215 . . x+4.28711 . . y+151.777 .),$.
which has the Hamiltonian function $H_{2}(x, y)=-102.107 . . x^{2}+4.28711 . . x y+151.777 . . x-$ $9 y^{2} / 200+13.3828 . . y$.

The discontinuous piecewise differential system (9)-(10) has exactly three limit cycles, because the system of equations (6) when $i=4$ has only three real solutions

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(1.05134 . .,-0.238211 . ., 1.24153 . ., 0.610155 . .) \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(1.21453 . .,-0.562538 . ., 1.46092 . ., 0.991826 . .) \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(1.33077 . .,-0.765367 . ., 1.59962 . ., 1.23867 . .)
\end{aligned}
$$

see Figure 3.
Three examples with three limit cycles when the cubic of separation is $c_{2}=0$. We define the following regions associated to the curve $c_{2}=0$

$$
\begin{align*}
& R_{1}=\left\{(x, y): y^{2}-x(x-1)(x-3) \geq 0\right\}, \\
& R_{2}=\left\{(x, y): y^{2}-x(x-1)(x-3) \leq 0, x \geq 3\right\}, \tag{11}\\
& R_{3}=\left\{(x, y): y^{2}-x(x-1)(x-3) \leq 0,0 \leq x \leq 1\right\} .
\end{align*}
$$

For the first configuration of limit cycles separated by the curve $c_{2}=0$ we consider the Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(-\frac{13 x}{20}+5 y+\frac{7}{10},-\frac{169 x}{2000}+\frac{13 y}{20}+\frac{19}{10}\right) \tag{12}
\end{equation*}
$$

in the region R_{1}. It has the Hamiltonian function $H_{1}(x, y)=-169 x^{2} / 4000+$ $13 x y / 20+19 x / 10-5 y^{2} / 2-7 y / 10$. In the region R_{2} we consider the Hamiltonian system
(13) $(\dot{x}, \dot{y})=(44.7429 . . x-3 y / 10+289.458 . ., 6673.09 . . x-44.7429 . . y-15544.3 .$.$) ,$
which has the Hamiltonian function $H_{2}(x, y)=3336.54 . . x^{2}-44.7429 . . x y-15544.3 . . x+$ $3 y^{2} / 20-289.458 . . y$.

The discontinuous piecewise differential system (12)-(13) has exactly three limit cycles, because the system of equations (6) when $i=2$, has only the three real solutions

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(3.00602 . .,-0.190529 . ., 3.09131 . ., 0.768297 . .) \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(3.04571 . .,-0.533662 . ., 3.18176 . ., 1.12329 . .) \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(3.09077 . .,-0.765857 . ., 3.25463 . ., 1.36691 . .)
\end{aligned}
$$

see Figure 4.
For the second configuration we consider the Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(-\frac{14 x}{5}-7 y+\frac{163}{100}, \frac{28 x}{25}+\frac{14 y}{5}+\frac{2}{5}\right) \tag{14}
\end{equation*}
$$

in the region R_{1}. It has the Hamiltonian function $H_{1}(x, y)=14 x^{2} / 25+14 x y / 5+$ $2 x / 5+7 y^{2} / 2-163 y / 100$. Now we consider the second Hamiltonian system
$(\dot{x}, \dot{y})=(-0.860462 . . x+3 y / 10+0.4357 . .,-2.46798 . . x+0.860462 . . y+0.115128 .$.$) ,$
in the region R_{3}. This Hamiltonian system has the Hamiltonian function $H_{2}(x, y)=$ $-1.23399 . . x^{2}+0.860462 . . x y+0.115128 . . x-3 y^{2} / 20-0.4357 . . y$.

The discontinuous piecewise differential sysem (14)-(15) has exactly three limit cycles, because the system of equations (6) when $i=2$, has only the three real
solutions

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(0.605489 . .,-0.756295 . ., 0.748414 . ., 0.651116 . .) \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(0.747078 . .,-0.652453 . .0 .911161 . ., 0.4112 . .) \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(0.87431 . .,-0.483319 . ., 0.988069 . ., 0.154006 . .)
\end{aligned}
$$

see Figure 5.
To obtain the third configuration we consider in the region R_{1} the Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(\frac{23 x}{100}+\frac{23 y}{10}-\frac{1}{5},-\frac{23 x}{1000}-\frac{23 y}{100}+1\right) \tag{16}
\end{equation*}
$$

which has the Hamiltonian function $H_{1}(x, y)=-23 x^{2} / 2000-23 x y / 100+x-$ $23 y^{2} / 20+y / 5$. In the region R_{2} we consider the Hamiltonian system (17)
$(\dot{x}, \dot{y})=(0.0984281 . . x+0.000233032 . . y+2,-41.574 . . x-0.0984281 . . y+96.8899 .$.$) ,$ This differential system has the Hamiltonian function $H_{2}(x, y)=-20.787 x^{2}-$ $0.0984281 x y+96.8899 x-0.000116516 y^{2}-2 y$.

When $i=2$ in the system of equations (6) the discontinuous piecewise differential system (16)-(17) has exactly three limit cycles intersecting the cubic curve $c_{2}=0$ in the points

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(3.54594 . .,-2.22005 . ., 3.35042 . ., 1.66118 . .), \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(3.63153 . .,-2.45666 . .3 .42694 . ., 1.88438 . .), \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(3.70911 . .,-2.66935 . ., 3.49745 . ., 2.08449 . .)
\end{aligned}
$$

see Figure 6.
Example with three limit cycles when the cubic of separation is $c_{5}=0$. We define the following three regions associated to the curve $c_{5}=0$

$$
\begin{align*}
& R_{1}=\left\{(x, y): y^{2}-x^{2}(x+1) \leq 0, x \geq 0\right\} \\
& R_{2}=\left\{(x, y): y^{2}-x^{2}(x+1) \geq 0\right\} \tag{18}\\
& R_{3}=\left\{(x, y): y^{2}-x^{2}(x+1) \leq 0,-1 \leq x \leq 0\right\}
\end{align*}
$$

For the class C_{5} and in the region R_{1} we consider the Hamiltonian system

$$
\begin{equation*}
(\dot{x}, \dot{y})=\left(-\frac{9 x}{10}+3 y+\frac{1}{5},-\frac{27 x}{100}+\frac{9 y}{10}+1\right) \tag{19}
\end{equation*}
$$

which has the Hamiltonian function $H_{1}(x, y)=-27 x^{2} / 200+9 x y / 10+x-3 y^{2} / 2-$ $y / 5$. Now we consider the Hamiltonian system
(20)
$(\dot{x}, \dot{y})=(-0.192471 . . x+y / 1000-6.61081 . .,-37.0449 . . x+0.192471 . . y-26.7945 .$.$) ,$ in the region R_{2}. This differential system has the Hamiltonian function $H_{2}(x, y)=$ $-18.5225 . . x^{2}+0.192471 . . x y-26.7945 . .-y^{2} / 2000+6.61081 . . y$.

The discontinuous piecewise differential system (19)-(20) has exactly three limit cycles, because the system of equations (6) when $i=5$, has the three real solutions

$$
\begin{aligned}
& \left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}\right)=(0.863262 . .,-1.17836 . ., 1.16993 . ., 1.72339 . .) \\
& \left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)=(0.986378 . .,-1.39019 . ., 1.32103 . ., 2.01258 . .) \\
& \left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)=(1.0876 . .,-1.57142 . ., 1.44408 . ., 2.25761 . .),
\end{aligned}
$$

see Figure 7.

This completes the proof of Theorem 2.

Figure 8. The three limit cycles of the discontinuous piecewise differential system (24).

Figure 9. The three limit cycles of the discontinuous piecewise differential systems (26).

Figure 10. The three limit cycles of the discontinuous piecewise differential system (27).

Figure 11. The three limit cycles of the discontinuous piecewise differential systems (28).

Figure 12. The three limit cycles of the discontinuous piecewise differential systems (29).

Figure 13. The three limit cycles of the discontinuous piecewise differential systems (30).

Figure 14. The three limit cycles of the discontinuous piecewise differential systems (31).

Figure 15. The three limit cycles of the discontinuous piecewise differential systems (32).

3. Proof of Theorem 3

We give the proof for the maximum number of limit cycles for the statements (a) and (b) of the class C_{5}, and the proof for the class C_{2} is similar.

We consider the Hamiltonian systems

$$
\begin{array}{ll}
\dot{x}=-\lambda_{1} b_{1} x+b_{1} y+\mu_{1}, & \dot{y}=-\lambda_{1}^{2} b_{1} x+\lambda_{1} b_{1} y+\sigma_{1}, \text { in the region } R_{1}, \\
\dot{x}=-\lambda_{2} b_{2} x+b_{2} y+\mu_{2}, & \dot{y}=-\lambda_{2}^{2} b_{2} x+\lambda_{2} b_{2} y+\sigma_{2}, \text { in the region } R_{2}, \tag{21}\\
\dot{x}=-\lambda_{3} b_{3} x+b_{3} y+\mu_{3}, & \dot{y}=-\lambda_{3}^{2} b_{3} x+\lambda_{3} b_{3} y+\sigma_{3}, \text { in the region } R_{3},
\end{array}
$$

with $b_{i} \neq 0$ and $\sigma_{i} \neq \lambda_{i} \mu_{i}$, when $i=1,2,3$. The regions R_{i} for $i=1,2,3$ are defined in (18). Their corresponding Hamiltonian first integrals are

$$
\begin{align*}
& H_{1}(x, y)=-\left(\lambda_{1}^{2} b_{1} / 2\right) x^{2}+\lambda_{1} b_{1} x y-\left(b_{1} / 2\right) y^{2}+\sigma_{1} x-\mu_{1} y \\
& H_{2}(x, y)=-\left(\lambda_{2}^{2} b_{2} / 2\right) x^{2}+\lambda_{2} b_{2} x y-\left(b_{2} / 2\right) y^{2}+\sigma_{2} x-\mu_{2} y \tag{22}\\
& H_{3}(x, y)=-\left(\lambda_{3}^{2} b_{3} / 2\right) x^{2}+\lambda_{3} b_{3} x y-\left(b_{3} / 2\right) y^{2}+\sigma_{3} x-\mu_{3} y
\end{align*}
$$

In order that the discontinuous piecewise differential system (21) has limit cycles which intersect the cubic $c_{5}=0$ in the points $p_{1}^{(i)}=\left(r_{i}^{2}-1, r_{i}\left(r_{i}^{2}-1\right)\right), p_{2}^{(i)}=$ $\left(s_{i}^{2}-1, s_{i}\left(s_{i}^{2}-1\right)\right), p_{3}^{(i)}=\left(f_{i}^{2}-1, f_{i}\left(f_{i}^{2}-1\right)\right)$ and $p_{4}^{(i)}=\left(h_{i}^{2}-1, h_{i}\left(h_{i}^{2}-1\right)\right)$ they must satisfy the following system

$$
\begin{align*}
& H_{1}\left(r_{i}^{2}-1, r_{i}\left(r_{i}^{2}-1\right)\right)-H_{1}\left(s_{i}^{2}-1, s_{i}\left(s_{i}^{2}-1\right)\right)=0 \\
& H_{2}\left(s_{i}^{2}-1, s_{i}\left(s_{i}^{2}-1\right)\right)-H_{2}\left(h_{i}^{2}-1, h_{i}\left(h_{i}^{2}-1\right)\right)=0 \\
& H_{2}\left(r_{i}^{2}-1, r_{i}\left(r_{i}^{2}-1\right)\right)-H_{2}\left(f_{i}^{2}-1, f_{i}\left(f_{i}^{2}-1\right)\right)=0 \tag{23}\\
& H_{3}\left(f_{i}^{2}-1, f_{i}\left(f_{i}^{2}-1\right)\right)-H_{3}\left(h_{i}^{2}-1, h_{i}\left(h_{i}^{2}-1\right)\right)=0 .
\end{align*}
$$

Now we consider the first and the last equations of system (23), by solving the first equation for $i=1,2,3$ we get the expressions of λ_{1}, μ_{1} and σ_{1}, and we get λ_{3}, μ_{3} and σ_{3} by solving the last equation. If we suppose that these two equations have a fourth solution, then from the first we get $b_{1}=0$ and from the last one we get $b_{3}=0$. This is a contradiction because by the assumptions they are not zero. Then we proved that the maximum number of limit cycles intersecting the cubic $c_{5}=0$ in four points is at most three.

Example with three limit cycles intersecting the curve $c_{2}=0$ in four points. We consider the Hamiltonian systems

$$
\begin{align*}
\dot{x}= & -9 x / 25-18 y / 5+1 / 10, \dot{y}=9 x / 250+9 y / 25-19 / 10, \text { in } R_{1}, \\
\dot{x}= & -409.623 . . x-3 y / 25-91053.6 . ., \dot{y}=1.39826 \times 10^{6} x+409.623 . . y \\
& -3.35682 \times 10^{6}, \text { in } R_{2}, \tag{24}\\
\dot{x}= & -23.0405 . . x-y-49.2425 . ., \dot{y}=530.865 . . x+23.0405 . . y \\
& -2056.81 . ., \text { in } R_{3},
\end{align*}
$$

where the regions R_{i} for $i=1,2,3$ are defined in (11). The Hamiltonian first integrals of the Hamiltonian systems (24) are

$$
\begin{aligned}
& H_{1}(x, y)=9 x^{2} / 500+9 x y / 25-19 x / 10+9 y^{2} / 5-y / 10 \\
& H_{2}(x, y)=699130 . . x^{2}+409.623 . . x y-3.35682 \times 10^{6} x+3 y^{2} / 50+91053.6 . . y, \\
& H_{3}(x, y)=265.432 . . x^{2}+23.0405 . . x y-2056.81 . . x+y^{2} / 2+49.2425 . . y
\end{aligned}
$$

In order that discontinuous piecewise differential system (24) has limit cycles which intersect the cubic $c_{2}=0$ in the points $p_{1}^{(i)}=\left(\alpha_{i}, \beta_{i}\right), p_{2}^{(i)}=\left(\gamma_{i}, \delta_{i}\right), p_{3}^{(i)}=\left(f_{i}, g_{i}\right)$
and $p_{4}^{(i)}=\left(h_{i}, k_{i}\right)$ these points must satisfy the system

$$
\begin{align*}
& H_{1}\left(\alpha_{i}, \beta_{i}\right)-H_{1}\left(\gamma_{i}, \delta_{i}\right)=0, \\
& \left.H_{2}\left(\alpha_{i}, \beta_{i}\right)\right)-H_{2}\left(a_{i}, b_{i}\right)=0, \\
& H_{2}\left(\gamma_{i}, \delta_{i}\right)-H_{2}\left(c_{i}, d_{i}\right)=0, \tag{25}\\
& H_{3}\left(a_{i}, b_{i}\right)-H_{3}\left(c_{i}, d_{i}\right)=0, \\
& c_{2}\left(a_{i}, b_{i}\right)=c_{2}\left(c_{i}, d_{i}\right)=0, \\
& c_{2}\left(\alpha_{i}, \beta_{i}\right)=c_{2}\left(\gamma_{i}, \delta_{i}\right)=0 .
\end{align*}
$$

For the discontinuos piecewise differential system (24) all the real solutions of the system of equations (25) are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (3.22996 . ., 1.28698 . .3 .45846 . .,-1.97435 . ., \\
& 0.960385 . ., 0.278564 . .0 .931044 . .,-0.364457 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}, a_{2}, b_{2}, c_{2}, d_{2}\right)= & (3.28571 . ., 1.46483 . .3 .52436 . .,-2.15987 . ., \\
& 0.763003 . ., 0.636015 . ., 0.710476 . .,-0.686261 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}, a_{3}, b_{3}, c_{3}, d_{3}\right)= & (3.33822 . ., 1.62479 . ., 3.58465 . .,-2.3274 . ., \\
& 0.400766 . ., 0.790071 . ., 0.351882 . .,-0.777131 . .),
\end{aligned}
$$

Then the discontinuous piecewise linear differential system (24) has exactly three limit cycles, see Figure 8.

Example with three limit cycles intersecting the curve $c_{5}=0$ in four points. We consider the following Hamiltonian systems

$$
\begin{align*}
\dot{x}= & -82.0596 . . x-y-176.297 . ., \dot{y}=6733.77 x+82.0596 y \\
& +333.127, \text { in } R_{1}, \\
\dot{x}= & -9 x / 25-18 y / 5+1 / 10, \dot{y}=9 x / 250+9 y / 25-19 / 10, \text { in } R_{2}, \tag{26}\\
\dot{x}= & -138.156 . . x+2 y+550.05 . ., \dot{y}=-9543.6 . . x+138.156 . . y \\
& -9983.81 . ., \text { in } R_{3} .
\end{align*}
$$

The regions R_{i} for $i=1,2,3$ are defined in (18). The Hamiltonian first integrals of the Hamiltonian systems (26) are

$$
\begin{aligned}
& H_{1}(x, y)=3366.89 . . x^{2}+82.0596 . . x y+333.127 . . x+y^{2} / 2+176.297 . . y, \\
& H_{2}(x, y)=9 x^{2} / 500+9 x y / 25-19 x / 10+9 y^{2} / 5-y / 10 \\
& H_{3}(x, y)=-4771.8 . . x^{2}+138.156 . . x y-9983.81 . . x-y^{2}-550.05 . . y
\end{aligned}
$$

respectively. For the discontinuos piecewise linear differential system (26) the real solutions of the system of equations (23) are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (0.744242 . ., 0.982918 . ., 0.834499 . .,-1.13028 . ., \\
& -0.241407 . ., 0.210259 . .,-0.211795 . .,-0.188034 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}, a_{2}, b_{2}, c_{2}, d_{2}\right)= & (0.842745 . .1 .14401 . .0 .939388 . .,-1.30821 . ., \\
& -0.462869 . ., 0.339233 . .,-0.395867 . .,-0.307691 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}, a_{3}, b_{3}, c_{3}, d_{3}\right)= & (0.92187 . ., 1.278 . ., 1.02368 . .,-1.45624 . ., \\
& -0.718929 . ., 0.381148 . .,-0.589074 . .,-0.377617 . .),
\end{aligned}
$$

where $\alpha_{i}=r_{i}^{2}-1, \beta_{i}=r_{i}\left(r_{i}^{2}-1\right), \gamma_{i}=s_{i}^{2}-1, \delta_{i}=s_{i}\left(s_{i}^{2}-1\right), a_{i}=f_{i}^{2}-1$, $b_{i}=f_{i}\left(f_{i}^{2}-1\right), c_{i}=h_{i}^{2}-1, d_{i}=h_{i}\left(h_{i}^{2}-1\right)$. Then the discontinuous piecewise linear differential system (26) has exactly three limit cycles, see Figure 9. This completes the proof of statement (a) of Theorem 3.

Now we start the proof of statement (b) of Theorem 3.

We consider the discontinuous piecewise differential system (21) with their corresponding first integrals (22). Assume that there are piecewise differential systems (21) having two limit cycles intersecting the cubic $c_{2}=0$ in four points and two limit cycles intersecingt $c_{2}=0$ in two points. Then such systems must have two solutions in system (25), and two solutions in system (6) with $i=2$ where eventually H_{1} can be permuted with H_{2}. From the fourth first equations of these two systems related with the first integral H_{1} and the fourth mentioned solutions, we obtain the expressions of the parameters $\lambda_{1}, \mu_{1}, \sigma_{1}$ and b_{1}, and it results that $b_{1}=0$, which is a contradiction.

Now assume that the discontinuous piecewise differential system (21) has one (resp. three) limit cycle intersecting the cubic $c_{2}=0$ in four points and three (resp. one) limit cycles intersecingt $c_{2}=0$ in two points, we get in the region R_{3}, defined in (11), four equations on H_{3} from which we obtain the expressions of the parameters $\lambda_{3}, \mu_{3}, \sigma_{3}$ and a zero value for b_{3}, which is again a contradiction.

In summary, we conclude that the maximum number of simultaneous limit cycles intersecting the cubic $c_{2}=0$ in four points and two points is three.

Examples with one limit cycle with four points on $c_{2}=0$ and two limit cycles with two points on $c_{2}=0$. As usual we consider the regions defined in (11). For the first possible configuration we consider the following Hamiltonian systems separated by the cubic $c_{2}=0$

$$
\begin{align*}
\dot{x}= & 308.837 x-y / 10-67017.8, \dot{y}=953806 \cdot x-308.837 y \\
& -2.2674 \times 10^{6}, \text { in } R_{1}, \\
\dot{x}= & -7 x / 10-7 y+1 / 10, \dot{y}=7 x / 100+7 y / 10-3, \text { in } R_{2}, \tag{27}\\
\dot{x}= & -4 x+2 y+3.55037, \dot{y}=-8 x+4 y+3, \text { in } R_{3} .
\end{align*}
$$

The Hamiltonian systems in (27) have the Hamiltonian first integrals

$$
\begin{aligned}
& H_{1}(x, y)=476903 . . x^{2}-308.837 . . x y-2.2674 \times 10^{6} x+y^{2} / 20+67017.8 . . y \\
& H_{2}(x, y)=7 x^{2} / 200+7 x y / 10-3 x+7 y^{2} / 2-y / 10 \\
& H_{3}(x, y)=-4 x^{2}+4 x y+3 x-y^{2}-3.55037 . . y .
\end{aligned}
$$

The discontinuos piecewise differential system (27) has one limit cycle intersecting the cubic $c_{2}=0$ in four points satisfying system (25) and two limit cycles intersecting the cubic $c_{2}=0$ in two points satisfying system (6) with $i=2$, because all the real solutions of these two systems are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (3.12267 . ., 0.901721 . ., 3.3261 . .,-1.58839 . ., \\
& 0.949883 . ., 0.312404 . ., 0.907114 . .,-0.419931 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)= & (3.15388 . ., 1.0224 . ., 3.36809 . .,-1.71344 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)= & (3.18433 . ., 1.1323 . ., 3.40728 . .,-1.82772 . .) .
\end{aligned}
$$

Then the discontinuous piecewise differential system (27) has exactly three limit cycles, see Figure 10.

For the second possible configuration we consider the following Hamiltonian systems separated by the cubic $c_{2}=0$
(28)

$$
\begin{aligned}
\dot{x}= & -1.02031 . . x+12 y-3 / 10, \dot{y}=-0.0867522 . . x+1.02031 . . y-2, \text { in } R_{1}, \\
\dot{x}= & -13 x / 5+26 y+7 / 10, \dot{y}=-13 x / 50+13 y / 5-11 / 5, \text { in } R_{2}, \\
\dot{x}= & -2.71966 . . x-y / 5+1.64749 . ., \dot{y}=36.9826 . . x+2.71966 . . y \\
& -23.1126 . ., \text { in } R_{3} .
\end{aligned}
$$

The Hamiltonian first integrals of the Hamltonian systemsn (28) are

$$
\begin{aligned}
& H_{1}(x, y)=-0.0433761 . . x^{2}+1.02031 . . x y-2 x-6 y^{2}+3 y / 10 \\
& H_{2}(x, y)=-13 x^{2} / 100+13 x y / 5-11 x / 5-13 y^{2}-7 y / 10 \\
& H_{3}(x, y)=18.4913 . x^{2}+2.71966 . . x y-23.1126 . . x+y^{2} / 10-1.64749 . . y,
\end{aligned}
$$

respectively. The discontinuos piecewise differential system (28) has one limit cycle intersecting the cubic $c_{2}=0$ in four points satisfying system (25) and two limit cycles intersecting the cubic $c_{2}=0$ in two points satisfying system (6) with $i=2$ and H_{3} instead of H_{1}, because all the real solutions of these two systems are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (3.03932 . ., 0.493657 . ., 3.00028 . ., 0.04126 . ., \\
& 0.806003 . ., 0.585712 . .0 .889093 . .,-0.456234 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)= & (0.743027 . ., 0.656462 ., 0.840689 . .,-0.537772 \ldots), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)= & (0.668452 . ., 0.718837 . ., 0.78419 . .,-0.612369 . .) .
\end{aligned}
$$

Then the discontinuous piecewise differential system (28) has exactly three limit cycles, see Figure 11.

Example with one limit cycle with four points on $c_{5}=0$ and two limit cycles with two points on $c_{5}=0$. As usual we consider the regions defined in (18). We consider the following Hamiltonian systems

$$
\begin{align*}
\dot{x}= & -12 x-4 y-3.26985 . ., \dot{y}=36 x+12 y+2, \text { in } R_{1}, \\
\dot{x}= & -16 x-40 y-41 / 5, \dot{y}=32 x / 5+16 y+699 / 100, \text { in } R_{2}, \tag{29}\\
\dot{x}= & -17.5227 . . x+20 y-2.73401 . ., \dot{y}=-15.3522 . . x \\
& +17.5227 . . y-2.04797 . ., \text { in } R_{3} .
\end{align*}
$$

The Hamiltonian first integrals of these Hamiltonian systems are

$$
\begin{aligned}
& H_{1}(x, y)=18 x^{2}+12 x y+2 x+2 y^{2}+3.26985 . . y \\
& H_{2}(x, y)=16 x^{2} / 5+16 x y+699 x / 100+20 y^{2}+41 y / 5 \\
& H_{3}(x, y)=-7.67611 . . x^{2}+17.5227 . . x y-2.04797 . . x-10 y^{2}+2.73401 . . y
\end{aligned}
$$

respectively. The discontinuos piecewise differential system (29) has one limit cycle intersecting the cubic $c_{5}=0$ in four points satisfying system (23) and two limit cycles intersecting the cubic $c_{5}=0$ in two points satisfying system (6) with $i=5$ and H_{3} instead of H_{1}, because all the real solutions of these two systems are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (0.0127029 . ., 0.0127834 . ., 0.280458 . .,-0.317359 . ., \\
& -0.14376 . ., 0.133026 . .,-0.571076 . .,-0.374011 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}\right)= & (-0.028627 . .,-0.028214 . .,-0.480257 . .,-0.346233 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)= & (-0.085601 . .,-0.081855 . .,-0.386674 . .,-0.302824 . .),
\end{aligned}
$$

where $\alpha_{1}=r_{1}^{2}-1, \beta_{1}=r_{1}\left(r_{1}^{2}-1\right), \gamma_{1}=s_{1}^{2}-1, \delta_{1}=s_{1}\left(s_{1}^{2}-1\right), a_{1}=f_{1}^{2}-1$, $b_{1}=f_{1}\left(f_{1}^{2}-1\right), c_{1}=h_{1}^{2}-1, d_{1}=h_{1}\left(h_{1}^{2}-1\right)$. Then the discontinuous piecewise differential system (29) has exactly three limit cycles, see Figure 12.

Examples with two limit cycles with four points on $c_{2}=0$ and one limit cycle with two points on $c_{2}=0$. We consider the regions defined in (11). For the first configuration of the class C_{2} we consider the following Hamiltonian systems

$$
\begin{align*}
\dot{x}= & 1937.84 . . x-7 y / 10-377775 . ., \dot{y}=5.36462 \times 10^{6} x-1937.84 . . y \\
& -1.27506 \times 10^{7}, \text { in } R_{1}, \\
\dot{x}= & -7 x / 10-7 y+1 / 10, \dot{y}=7 x / 100+7 y / 10-3, \text { in } R_{2} \tag{30}\\
\dot{x}= & -6 x+3 y-11.0527 . ., \dot{y}=-12 x+6 y-275.389 . ., \text { in } R_{3}
\end{align*}
$$

with the Hamiltonian first integrals

$$
\begin{aligned}
& H_{1}(x, y)=2.68231 \times 10^{6} x^{2}-1937.84 . . x y-1.27506 \times 10^{7} x+7 y^{2} / 20+377775 . . y \\
& H_{2}(x, y)=7 x^{2} / 200+7 x y / 10-3 x+7 y^{2} / 2-y / 10 \\
& H_{3}(x, y)=-6 x^{2}+6 x y-275.389 . . x-3 y^{2} / 2+11.0527 . . y
\end{aligned}
$$

respectively. The discontinuos piecewise differential system (30) has two limit cycles intersecting the cubic $c_{2}=0$ in four points satisfying system (25) and one limit cycle intersecting the cubic $c_{2}=0$ in two points satisfying system (6) with $i=2$ and H_{3} instead of H_{1}, because all the real solutions of these two systems are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (3.14459 . ., 0.987464 . ., 3.35582 . .,-1.67719 . ., \\
& 0.975858 . ., 0.218376 . ., 0.943351 . .,-0.331522 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}, a_{2}, b_{2}, c_{2}, d_{2}\right)= & (3.17528 . ., 1.1003 . .3 .39578 . .,-1.79441 . ., \\
& 0.881547 . ., 0.470332 . ., 0.822573 . .,-0.563727 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)= & (3.20514 . ., 1.20413 . ., 3.4333 . .,-1.9026 . .) .
\end{aligned}
$$

Then the discontinuous piecewise differential system (30) has exactly three limit cycles, see Figure 13.

For the second possible configuration of the class C_{2} we consider the following Hamiltonian systems

$$
\begin{align*}
\dot{x}= & 10 y-1.05447 . . x, \dot{y}=-0.11119 . . x+1.05447 . . y-0.426696 . ., \text { in } R_{1} \\
\dot{x}= & -29 x / 10+29 y-3 / 5, \dot{y}=-29 x / 100+29 y / 10-5 / 2, \text { in } R_{2} \\
\dot{x}= & -1.11707 . . x-y / 10+0.370838 . ., \dot{y}=12.4785 . . x+1.11707 . . y \tag{31}\\
& -6.64471 . ., \text { in } R_{3},
\end{align*}
$$

which have the Hamiltonian first integrals

$$
\begin{aligned}
& H_{1}(x, y)=-0.0555949 . . x^{2}+1.05447 . . x y-0.426696 . . x-5 y^{2} \\
& H_{2}(x, y)=-29 x^{2} / 200+29 x y / 10-5 x / 2-29 y^{2} / 2+3 y / 5 \\
& H_{3}(x, y)=6.23927 . . x^{2}+1.11707 . . x y-6.64471 . . x+y^{2} / 20-0.370838 . . y
\end{aligned}
$$

respectively. The discontinuos piecewise differential system (31) has two limit cycles intersecting the cubic $c_{2}=0$ in four points satisfying system (25) and one limit cycle intersecting the cubic $c_{2}=0$ in two points satisfying system (6) with $i=2$ and H_{3} instead of H_{1}, because all the real solutions of these two systems are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (3.03545 . ., 0.468004 . ., 3.00426 . ., 0.160123 . ., \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}, a_{2}, b_{2}, c_{2}, d_{2}\right)= & (3.06074 . ., 0.618961 . ., 3.00002 . ., 0.0115046 . .), \\
& (3.00002 . ., 0.0115046 . ., 0.854489 . .,-0.516495 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)= & (0.508698 . ., 0.789074 . ., 0.810902 . .,-0.579376 . .) .
\end{aligned}
$$

Then the discontinuous piecewise differential system (31) has exactly three limit cycles, see Figure 14.

Example with two limit cycles with four points on $c_{5}=0$ and one limit cycle with two points on $c_{5}=0$. Here we consider the regions defined in (18). We consider the Hamiltonian systems

$$
\begin{align*}
\dot{x}= & -3 x / 10-y / 10-0.0118645 . ., \dot{y}=9 x / 10+3 y / 10-0.049529 . ., \text { in } R_{1}, \tag{32}\\
\dot{x}= & -203 x / 25-29 y-5, \dot{y}=1421 x / 625+203 y / 25+5 / 2, \text { in } R_{2}, \\
\dot{x}= & -13.0887 x-2 y-23.1224 . ., \dot{y}=85.6566 \ldots x+13.0887 . . y \\
& +1.62877 . ., \text { in } R_{3} .
\end{align*}
$$

The Hamiltonian systems in (24) have the Hamiltonian first integrals

$$
\begin{aligned}
& H_{1}(x, y)=9 x^{2} / 20+3 x y / 10-0.049529 . . x+y^{2} / 20+0.0118645 . . y \\
& H_{2}(x, y)=1421 x^{2} / 1250+203 x y / 25+5 x / 2+29 y^{2} / 2+5 y \\
& H_{3}(x, y)=42.8283 . . x^{2}+13.0887 . . x y+1.62877 . . x+y^{2}+23.1224 . . y .
\end{aligned}
$$

The discontinuos piecewise differential system (32) has two limit cycles intersecting the cubic $c_{5}=0$ in four points satisfying system (23) and one limit cycle intersecting the cubic $c_{5}=0$ in two points satisfying system (6) with $i=5$ and H_{3} instead of H_{1}, because all the real solutions of these two systems are

$$
\begin{aligned}
\left(\alpha_{1}, \beta_{1}, \gamma_{1}, \delta_{1}, a_{1}, b_{1}, c_{1}, d_{1}\right)= & (0.0457703 . ., 0.0468061 . ., 0.380929 . .,-0.44764 . ., \\
& -0.0477081 . .,-0.0465562 . .,-0.322071 . .,-0.265182 . .), \\
\left(\alpha_{2}, \beta_{2}, \gamma_{2}, \delta_{2}, a_{2}, b_{2}, c_{2}, d_{2}\right)= & (0.105172 . .0 .110564 . .0 .468911 . .,-0.568314 . ., \\
& -0.134399 . .0 .125042 . .,-0.476399 \ldots .-0.344724 . .), \\
\left(\alpha_{3}, \beta_{3}, \gamma_{3}, \delta_{3}\right)= & (-0.388977 . ., 0.304056 . .,-0.647556 . .,-0.384435 . .),
\end{aligned}
$$

where $\alpha_{i}=r_{i}^{2}-1, \beta_{i}=r_{i}\left(r_{i}^{2}-1\right), \gamma_{i}=s_{i}^{2}-1, \delta_{i}=s_{i}\left(s_{i}^{2}-1\right), a_{i}=f_{i}^{2}-1$, $b_{i}=f_{i}\left(f_{i}^{2}-1\right), c_{i}=h_{i}^{2}-1, d_{i}=h_{i}\left(h_{i}^{2}-1\right)$ for $i=1,2$. Then the discontinuous piecewise differential system (32) has exactly three limit cycles, see Figure 15.

This completes the proof of statement (b) of Theorem 3.

4. The Appendix

Here we provide the values of C, D and E that appear in the proof of Theorem 2.

$$
\begin{aligned}
& C=r_{1}^{4} r_{2}^{2} r_{3}-r_{1}^{2} r_{2}^{4} r_{3}-r_{1}^{4} r_{2} r_{3}^{2}+r_{1} r_{2}^{4} r_{3}^{2}+r_{1}^{2} r_{2} r_{3}^{4}-r_{1} r_{2}^{2} r_{3}^{4}+r_{1}^{3} r_{2}^{2} r_{3} s_{1}-r_{1} r_{2}^{4} r_{3} s_{1} \\
& -r_{1}^{3} r_{2} r_{3}^{2} s_{1}+r_{2}^{4} r_{3}^{2} s_{1}+r_{1} r_{2} r_{3}^{4} s_{1}-r_{2}^{2} r_{3}^{4} s_{1}+r_{1}^{2} r_{2}^{2} r_{3} s_{1}^{2}-r_{2}^{4} r_{3} s_{1}^{2}-r_{1}^{2} r_{2} r_{3}^{2} s_{1}^{2} \\
& +r_{2} r_{3}^{4} s_{1}^{2}+r_{1} r_{2}^{2} r_{3} s_{1}^{3}-r_{1} r_{2} r_{3}^{2} s_{1}^{3}+r_{2}^{2} r_{3} s_{1}^{4}-r_{2} r_{3}^{2} s_{1}^{4}+r_{1}^{4} r_{2} r_{3} s_{2}-r_{1}^{2} r_{2}^{3} r_{3} s_{2} \\
& -r_{1}^{4} r_{3}^{2} s_{2}+r_{1} r_{2}^{3} r_{3}^{2} s_{2}+r_{1}^{2} r_{3}^{4} s_{2}-r_{1} r_{2} r_{3}^{4} s_{2}+r_{1}^{3} r_{2} r_{3} s_{1} s_{2}-r_{1} r_{2}^{3} r_{3} s_{1} s_{2}-r_{1}^{3} r_{3}^{2} s_{1} s_{2} \\
& +r_{2}^{3} r_{3}^{2} s_{1} s_{2}+r_{1} r_{3}^{4} s_{1} s_{2}-r_{2} r_{3}^{4} s_{1} s_{2}+r_{1}^{2} r_{2} r_{3} s_{1}^{2} s_{2}-r_{2}^{3} r_{3} s_{1}^{2} s_{2}-r_{1}^{2} r_{3}^{2} s_{1}^{2} s_{2}+r_{3}^{4} s_{1}^{2} s_{2} \\
& +r_{1} r_{2} r_{3} s_{1}^{3} s_{2}-r_{1} r_{3}^{2} s_{1}^{3} s_{2}+r_{2} r_{3} s_{1}^{4} s_{2}-r_{3}^{2} s_{1}^{4} s_{2}+r_{1}^{4} r_{3} s_{2}^{2}-r_{1}^{2} r_{2}^{2} r_{3} s_{2}^{2}+r_{1} r_{2}^{2} r_{3}^{2} s_{2}^{2} \\
& -r_{1} r_{3}^{4} s_{2}^{2}+r_{1}^{3} r_{3} s_{1} s_{2}^{2}-r_{1} r_{2}^{2} r_{3} s_{1} s_{2}^{2}+r_{2}^{2} r_{3}^{2} s_{1} s_{2}^{2}-r_{3}^{4} s_{1} s_{2}^{2}+r_{1}^{2} r_{3} s_{1}^{2} s_{2}^{2}-r_{2}^{2} r_{3} s_{1}^{2} s_{2}^{2} \\
& +r_{1} r_{3} s_{1}^{3} s_{2}^{2}+r_{3} s_{1}^{4} s_{2}^{2}-r_{1}^{2} r_{2} r_{3} s_{2}^{3}+r_{1} r_{2} r_{3}^{2} s_{2}^{3}-r_{1} r_{2} r_{3} s_{1} s_{2}^{3}+r_{2} r_{3}^{2} s_{1} s_{2}^{3}-r_{2} r_{3} s_{1}^{2} s_{2}^{3} \\
& -r_{1}^{2} r_{3} s_{2}^{4}+r_{1} r_{3}^{2} s_{2}^{4}-r_{1} r_{3} s_{1} s_{2}^{4}+r_{3}^{2} s_{1} s_{2}^{4}-r_{3} s_{1}^{2} s_{2}^{4}+r_{1}^{4} r_{2}^{2} s_{3}-r_{1}^{2} r_{2}^{4} s_{3}-r_{1}^{4} r_{2} r_{3} s_{3} \\
& +r_{1} r_{2}^{4} r_{3} s_{3}+r_{1}^{2} r_{2} r_{3}^{3} s_{3}-r_{1} r_{2}^{2} r_{3}^{3} s_{3}+r_{1}^{3} r_{2}^{2} s_{1} s_{3}-r_{1} r_{2}^{4} s_{1} s_{3}-r_{1}^{3} r_{2} r_{3} s_{1} s_{3}+r_{2}^{4} r_{3} s_{1} s_{3} \\
& +r_{1} r_{2} r_{3}^{3} s_{1} s_{3}-r_{2}^{2} r_{3}^{3} s_{1} s_{3}+r_{1}^{2} r_{2}^{2} s_{1}^{2} s_{3}-r_{2}^{4} s_{1}^{2} s_{3}-r_{1}^{2} r_{2} r_{3} s_{1}^{2} s_{3}+r_{2} r_{3}^{3} s_{1}^{2} s_{3}+r_{1} r_{2}^{2} s_{1}^{3} s_{3} \\
& -r_{1} r_{2} r_{3} s_{1}^{3} s_{3}+r_{2}^{2} s_{1}^{4} s_{3}-r_{2} r_{3} s_{1}^{4} s_{3}+r_{1}^{4} r_{2} s_{2} s_{3}-r_{1}^{2} r_{2}^{3} s_{2} s_{3}-r_{1}^{4} r_{3} s_{2} s_{3}+r_{1} r_{2}^{3} r_{3} s_{2} s_{3} \\
& +r_{1}^{2} r_{3}^{3} s_{2} s_{3}-r_{1} r_{2} r_{3}^{3} s_{2} s_{3}+r_{1}^{3} r_{2} s_{1} s_{2} s_{3}-r_{1} r_{2}^{3} s_{1} s_{2} s_{3}-r_{1}^{3} r_{3} s_{1} s_{2} s_{3}+r_{2}^{3} r_{3} s_{1} s_{2} s_{3} \\
& +r_{1} r_{3}^{3} s_{1} s_{2} s_{3}-r_{2} r_{3}^{3} s_{1} s_{2} s_{3}+r_{1}^{2} r_{2} s_{1}^{2} s_{2} s_{3}-r_{2}^{3} s_{1}^{2} s_{2} s_{3}-r_{1}^{2} r_{3} s_{1}^{2} s_{2} s_{3}+r_{3}^{3} s_{1}^{2} s_{2} s_{3} \\
& +r_{1} r_{2} s_{1}^{3} s_{2} s_{3}-r_{1} r_{3} s_{1}^{3} s_{2} s_{3}+r_{2} s_{1}^{4} s_{2} s_{3}-r_{3} s_{1}^{4} s_{2} s_{3}+r_{1}^{4} s_{2}^{2} s_{3}-r_{1}^{2} r_{2}^{2} s_{2}^{2} s_{3}+r_{1} r_{2}^{2} r_{3} s_{2}^{2} s_{3}
\end{aligned}
$$

```
\(-r_{1} r_{3}^{3} s_{2}^{2} s_{3}+r_{1}^{3} s_{1} s_{2}^{2} s_{3}-r_{1} r_{2}^{2} s_{1} s_{2}^{2} s_{3}+r_{2}^{2} r_{3} s_{1} s_{2}^{2} s_{3}-r_{3}^{3} s_{1} s_{2}^{2} s_{3}+r_{1}^{2} s_{1}^{2} s_{2}^{2} s_{3}-r_{2}^{2} s_{1}^{2} s_{2}^{2} s_{3}\)
\(+r_{1} s_{1}^{3} s_{2}^{2} s_{3}+s_{1}^{4} s_{2}^{2} s_{3}-r_{1}^{2} r_{2} s_{2}^{3} s_{3}+r_{1} r_{2} r_{3} s_{2}^{3} s_{3}-r_{1} r_{2} s_{1} s_{2}^{3} s_{3}+r_{2} r_{3} s_{1} s_{2}^{3} s_{3}-r_{2} s_{1}^{2} s_{2}^{3} s_{3}\)
\(-r_{1}^{2} s_{2}^{4} s_{3}+r_{1} r_{3} s_{2}^{4} s_{3}-r_{1} s_{1} s_{2}^{4} s_{3}+r_{3} s_{1} s_{2}^{4} s_{3}-s_{1}^{2} s_{2}^{4} s_{3}-r_{1}^{4} r_{2} s_{3}^{2}+r_{1} r_{2}^{4} s_{3}^{2}+r_{1}^{2} r_{2} r_{3}^{2} s_{3}^{2}\)
\(-r_{1} r_{2}^{2} r_{3}^{2} s_{3}^{2}-r_{1}^{3} r_{2} s_{1} s_{3}^{2}+r_{2}^{4} s_{1} s_{3}^{2}+r_{1} r_{2} r_{3}^{2} s_{1} s_{3}^{2}-r_{2}^{2} r_{3}^{2} s_{1} s_{3}^{2}-r_{1}^{2} r_{2} s_{1}^{2} s_{3}^{2}+r_{2} r_{3}^{2} s_{1}^{2} s_{3}^{2}\)
\(-r_{1} r_{2} s_{1}^{3} s_{3}^{2}-r_{2} s_{1}^{4} s_{3}^{2}-r_{1}^{4} s_{2} s_{3}^{2}+r_{1} r_{2}^{3} s_{2} s_{3}^{2}+r_{1}^{2} r_{3}^{2} s_{2} s_{3}^{2}-r_{1} r_{2} r_{3}^{2} s_{2} s_{3}^{2}-r_{1}^{3} s_{1} s_{2} s_{3}^{2}\)
\(+r_{2}^{3} s_{1} s_{2} s_{3}^{2}+r_{1} r_{3}^{2} s_{1} s_{2} s_{3}^{2}-r_{2} r_{3}^{2} s_{1} s_{2} s_{3}^{2}-r_{1}^{2} s_{1}^{2} s_{2} s_{3}^{2}+r_{3}^{2} s_{1}^{2} s_{2} s_{3}^{2}-r_{1} s_{1}^{3} s_{2} s_{3}^{2}-s_{1}^{4} s_{2} s_{3}^{2}\)
\(+r_{1} r_{2}^{2} s_{2}^{2} s_{3}^{2}-r_{1} r_{3}^{2} s_{2}^{2} s_{3}^{2}+r_{2}^{2} s_{1} s_{2}^{2} s_{3}^{2}-r_{3}^{2} s_{1} s_{2}^{2} s_{3}^{2}+r_{1} r_{2} s_{2}^{3} s_{3}^{2}+r_{2} s_{1} s_{2}^{3} s_{3}^{2}+r_{1} s_{2}^{4} s_{3}^{2}\)
\(+s_{1} s_{2}^{4} s_{3}^{2}+r_{1}^{2} r_{2} r_{3} s_{3}^{3}-r_{1} r_{2}^{2} r_{3} s_{3}^{3}+r_{1} r_{2} r_{3} s_{1} s_{3}^{3}-r_{2}^{2} r_{3} s_{1} s_{3}^{3}+r_{2} r_{3} s_{1}^{2} s_{3}^{3}+r_{1}^{2} r_{3} s_{2} s_{3}^{3}\)
\(-r_{1} r_{2} r_{3} s_{2} s_{3}^{3}+r_{1} r_{3} s_{1} s_{2} s_{3}^{3}-r_{2} r_{3} s_{1} s_{2} s_{3}^{3}+r_{3} s_{1}^{2} s_{2} s_{3}^{3}-r_{1} r_{3} s_{2}^{2} s_{3}^{3}-r_{3} s_{1} s_{2}^{2} s_{3}^{3}+r_{1}^{2} r_{2} s_{3}^{4}\)
\(-r_{1} r_{2}^{2} s_{3}^{4}+r_{1} r_{2} s_{1} s_{3}^{4}-r_{2}^{2} s_{1} s_{3}^{4}+r_{2} s_{1}^{2} s_{3}^{4}+r_{1}^{2} s_{2} s_{3}^{4}-r_{1} r_{2} s_{2} s_{3}^{4}+r_{1} s_{1} s_{2} s_{3}^{4}-r_{2} s_{1} s_{2} s_{3}^{4}\)
\(+s_{1}^{2} s_{2} s_{3}^{4}-r_{1} s_{2}^{2} s_{3}^{4}-s_{1} s_{2}^{2} s_{3}^{4}\),
```

$D=4\left(r_{1}^{4}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}-s_{3}\right) s_{3}\right)-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}+s_{3}\right)+s_{3}\left(-s_{2}\right.\right.\right.\right.$
$\left.\left.\left.+s_{3}\right)\right)\right)+r_{1}^{3} s_{1}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}-s_{3}\right) s_{3}\right)-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}+s_{3}\right)\right.\right.$
$\left.\left.+s_{3}\left(-s_{2}+s_{3}\right)\right)\right)+r_{1}^{2}\left(-r_{2}^{4}\left(r_{3}+s_{3}\right)-r_{2}^{3} s_{2}\left(r_{3}+s_{3}\right)+r_{2}^{2}\left(s_{1}^{2}-s_{2}^{2}\right)\left(r_{3}+s_{3}\right)+r_{2}\left(r_{3}^{4}+r_{3}^{3} s_{3}\right.\right.$
$\left.+r_{3}^{2}\left(-s_{1}^{2}+s_{3}^{2}\right)+r_{3}\left(-s_{2}^{3}+s_{1}^{2}\left(s_{2}-s_{3}\right)+s_{3}^{3}\right)+s_{3}\left(-s_{2}^{3}+s_{1}^{2}\left(s_{2}-s_{3}\right)+s_{3}^{3}\right)\right)+s_{2}\left(r_{3}^{4}+r_{3}^{3} s_{3}\right.$
$\left.\left.+r_{3}^{2}\left(-s_{1}^{2}+s_{3}^{2}\right)+r_{3}\left(-s_{2}^{3}+s_{1}^{2}\left(s_{2}-s_{3}\right)+s_{3}^{3}\right)+s_{3}\left(-s_{2}^{3}+s_{1}^{2}\left(s_{2}-s_{3}\right)+s_{3}^{3}\right)\right)\right)+r_{1}\left(r_{2}^{4}\left(r_{3}^{2}\right.\right.$
$\left.+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)+r_{2}^{3} s_{2}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{4}+r_{3}^{3} s_{3}\right.$
$\left.+r_{3}^{2}\left(-s_{2}^{2}+s_{3}^{2}\right)+r_{3}\left(-s_{1}^{3}+s_{1} s_{2}^{2}-s_{2}^{2} s_{3}+s_{3}^{3}\right)+s_{3}\left(-s_{1}^{3}+s_{1} s_{2}^{2}-s_{2}^{2} s_{3}+s_{3}^{3}\right)\right)+r_{2}\left(r_{3}^{4}\left(s_{1}\right.\right.$
$\left.-s_{2}\right)+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}+r_{3}^{2}\left(-s_{1}^{3}+s_{2}^{3}+s_{1} s_{3}^{2}-s_{2} s_{3}^{2}\right)+r_{3}\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\right.$
$\left.\left.\left(-s_{2}^{3}+s_{3}^{3}\right)\right)+s_{3}\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)\right)+s_{2}\left(r_{3}^{4}\left(s_{1}-s_{2}\right)+r_{3}^{3}\left(s_{1}\right.\right.$
$\left.-s_{2}\right) s_{3}+r_{3}^{2}\left(-s_{1}^{3}+s_{2}^{3}+s_{1} s_{3}^{2}-s_{2} s_{3}^{2}\right)+r_{3}\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)+s_{3}$
$\left.\left.\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)\right)\right)+s_{1}\left(r_{2}^{4}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)\right.$
$+r_{2}^{3} s_{2}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{4}+r_{3}^{3} s_{3}+r_{3}^{2}\left(-s_{2}^{2}+s_{3}^{2}\right)+r_{3}\left(-s_{1}^{3}+s_{1} s_{2}^{2}\right.\right.$
$\left.\left.-s_{2}^{2} s_{3}+s_{3}^{3}\right)+s_{3}\left(-s_{1}^{3}+s_{1} s_{2}^{2}-s_{2}^{2} s_{3}+s_{3}^{3}\right)\right)+r_{2}\left(r_{3}^{4}\left(s_{1}-s_{2}\right)+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}+r_{3}^{2}\left(-s_{1}^{3}+s_{2}^{3}\right.\right.$
$\left.+s_{1} s_{3}^{2}-s_{2} s_{3}^{2}\right)+r_{3}\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)+s_{3}\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}\right.\right.$
$\left.\left.\left.-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)\right)+s_{2}\left(r_{3}^{4}\left(s_{1}-s_{2}\right)+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}+r_{3}^{2}\left(-s_{1}^{3}+s_{2}^{3}+s_{1} s_{3}^{2}-s_{2} s_{3}^{2}\right)+r_{3}\left(s_{1}^{3}\right.\right.$
$\left.\left.\left.\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)+s_{3}\left(s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{2}-s_{3}^{2}\right)+s_{1}\left(-s_{2}^{3}+s_{3}^{3}\right)\right)\right)\right)^{2}$
$-4\left(r_{1}^{2}\left(-r_{2}^{3}\left(r_{3}+s_{3}\right)+r_{2}^{2}\left(s_{1}-s_{2}\right)\left(r_{3}+s_{3}\right)+r_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{2}-s_{3}\right)\left(s_{2}-s_{3}\right)+\left(s_{1}-s_{2}-s_{3}\right)\right.\right.\right.$
$\left.\left(s_{2}-s_{3}\right) s_{3}+r_{3}^{2}\left(-s_{1}+s_{3}\right)\right)+s_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{2}-s_{3}\right)\left(s_{2}-s_{3}\right)+\left(s_{1}-s_{2}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right.$
$\left.\left.+r_{3}^{2}\left(-s_{1}+s_{3}\right)\right)\right)+r_{1}^{3}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}-s_{3}\right) s_{3}\right)-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}+s_{3}\right)\right.\right.$
$\left.\left.+s_{3}\left(-s_{2}+s_{3}\right)\right)\right)+r_{1}\left(r_{2}\left(s_{1}-s_{2}\right)\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)+\left(s_{1}-s_{3}\right)\left(s_{2}\right.\right.\right.$
$\left.\left.-s_{3}\right) s_{3}\right)+\left(s_{1}-s_{2}\right) s_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)+\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right)$
$+r_{2}^{3}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{3}+r_{3}^{2}\left(-s_{2}+s_{3}\right)-r_{3}\left(s_{1}-s_{3}\right)\left(s_{1}-s_{2}+s_{3}\right)\right.$
$\left.\left.-\left(s_{1}-s_{3}\right) s_{3}\left(s_{1}-s_{2}+s_{3}\right)\right)\right)+s_{1}\left(r_{2}\left(s_{1}-s_{2}\right)\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)\right.\right.$
$\left.+\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right)+\left(s_{1}-s_{2}\right) s_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)+\left(s_{1}-s_{3}\right)\right.$
$\left.\left(s_{2}-s_{3}\right) s_{3}\right)+r_{2}^{3}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{3}+r_{3}^{2}\left(-s_{2}+s_{3}\right)-r_{3}\left(s_{1}-s_{3}\right)\left(s_{1}\right.\right.$
$\left.\left.\left.\left.-s_{2}+s_{3}\right)-\left(s_{1}-s_{3}\right) s_{3}\left(s_{1}-s_{2}+s_{3}\right)\right)\right)\right)\left(r_{1}^{5}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}-s_{3}\right) s_{3}\right)\right.\right.$
$\left.-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}+s_{3}\right)+s_{3}\left(-s_{2}+s_{3}\right)\right)\right)+r_{1}^{4} s_{1}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}-s_{3}\right)\right.\right.$
$\left.\left.s_{3}\right)-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}+s_{3}\right)+s_{3}\left(-s_{2}+s_{3}\right)\right)\right)+r_{1}^{3} s_{1}^{2}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}\right.\right.\right.$
$\left.\left.\left.-s_{3}\right) s_{3}\right)-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}+s_{3}\right)+s_{3}\left(-s_{2}+s_{3}\right)\right)\right)+r_{1}^{2}\left(-r_{2}^{5}\left(r_{3}+s_{3}\right)-r_{2}^{4} s_{2}\left(r_{3}+s_{3}\right)-r_{2}^{3} s_{2}^{2}\left(r_{3}\right.\right.$
$\left.+s_{3}\right)+r_{2}^{2}\left(s_{1}^{3}-s_{2}^{3}\right)\left(r_{3}+s_{3}\right)+r_{2}\left(r_{3}^{5}+r_{3}^{4} s_{3}+r_{3}^{3} s_{3}^{2}+r_{3}^{2}\left(-s_{1}^{3}+s_{3}^{3}\right)+r_{3}\left(-s_{2}^{4}+s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{3}^{4}\right)\right.$
$\left.+s_{3}\left(-s_{2}^{4}+s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{3}^{4}\right)\right)+s_{2}\left(r_{3}^{5}+r_{3}^{4} s_{3}+r_{3}^{3} s_{3}^{2}+r_{3}^{2}\left(-s_{1}^{3}+s_{3}^{3}\right)+r_{3}\left(-s_{2}^{4}+s_{1}^{3}\left(s_{2}-s_{3}\right)\right.\right.$
$\left.\left.\left.+s_{3}^{4}\right)+s_{3}\left(-s_{2}^{4}+s_{1}^{3}\left(s_{2}-s_{3}\right)+s_{3}^{4}\right)\right)\right)+r_{1}\left(r_{2}^{5}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)+r_{2}^{4} s_{2}\left(r_{3}^{2}\right.\right.$
$\left.+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)+r_{2}^{3} s_{2}^{2}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{5}+r_{3}^{4} s_{3}+r_{3}^{3}\right.$
$\left.s_{3}^{2}+r_{3}^{2}\left(-s_{2}^{3}+s_{3}^{3}\right)+r_{3}\left(-s_{1}^{4}+s_{1} s_{2}^{3}-s_{2}^{3} s_{3}+s_{3}^{4}\right)+s_{3}\left(-s_{1}^{4}+s_{1} s_{2}^{3}-s_{2}^{3} s_{3}+s_{3}^{4}\right)\right)+r_{2}\left(r_{3}^{5}\left(s_{1}-s_{2}\right)\right.$
$+r_{3}^{4}\left(s_{1}-s_{2}\right) s_{3}+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}^{2}+r_{3}^{2}\left(-s_{1}^{4}+s_{2}^{4}+s_{1} s_{3}^{3}-s_{2} s_{3}^{3}\right)+r_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)\right.$
$\left.\left.+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)+s_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)\right)+s_{2}\left(r_{3}^{5}\left(s_{1}-s_{2}\right)+r_{3}^{4}\left(s_{1}\right.\right.$

$$
\begin{aligned}
& \left.-s_{2}\right) s_{3}+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}^{2}+r_{3}^{2}\left(-s_{1}^{4}+s_{2}^{4}+s_{1} s_{3}^{3}-s_{2} s_{3}^{3}\right)+r_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}\right.\right. \\
& \left.\left.\left.\left.+s_{3}^{4}\right)\right)+s_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)\right)\right)+s_{1}\left(r _ { 2 } ^ { 5 } \left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}\right.\right.\right. \\
& \left.\left.+s_{3}\right)\right)+r_{2}^{4} s_{1}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)+r_{2}^{3} s_{2}^{2}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right) \\
& -r_{2}^{2}\left(r_{3}^{5}+r_{3}^{4} s_{3}+r_{3}^{3} s_{3}^{2}+r_{3}^{2}\left(-s_{2}^{3}+s_{3}^{3}\right)+r_{3}\left(-s_{1}^{4}+s_{1} s_{2}^{3}-s_{2}^{3} s_{3}+s_{3}^{4}\right)+s_{3}\left(-s_{1}^{4}+s_{1} s_{2}^{3}-s_{2}^{3} s_{3}\right.\right. \\
& \left.\left.+s_{3}^{4}\right)\right)+r_{2}\left(r_{3}^{5}\left(s_{1}-s_{2}\right)+r_{3}^{4}\left(s_{1}-s_{2}\right) s_{3}+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}^{2}+r_{3}^{2}\left(-s_{1}^{4}+s_{2}^{4}+s_{1} s_{3}^{3}-s_{2} s_{3}^{3}\right)+r_{3}\left(s _ { 1 } ^ { 4 } \left(s_{2}\right.\right.\right. \\
& \left.\left.\left.-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)+s_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)\right)+s_{2} \\
& \left(r_{3}^{5}\left(s_{1}-s_{2}\right)+r_{3}^{4}\left(s_{1}-s_{2}\right) s_{3}+r_{3}^{3}\left(s_{1}-s_{2}\right) s_{3}^{2}+r_{3}^{2}\left(-s_{1}^{4}+s_{2}^{4}+s_{1} s_{3}^{3}-s_{2} s_{3}^{3}\right)+r_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)\right.\right. \\
& \left.\left.\left.+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)+s_{3}\left(s_{1}^{4}\left(s_{2}-s_{3}\right)+s_{2} s_{3}\left(s_{2}^{3}-s_{3}^{3}\right)+s_{1}\left(-s_{2}^{4}+s_{3}^{4}\right)\right)\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
E= & r_{1}^{2}\left(-r_{2}^{3}\left(r_{3}+s_{3}\right)+r_{2}^{2}\left(s_{1}-s_{2}\right)\left(r_{3}+s_{3}\right)+r_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{2}-s_{3}\right)\left(s_{2}-s_{3}\right)+\left(s_{1}-s_{2}-s_{3}\right)\right.\right. \\
& \left.\left(s_{2}-s_{3}\right) s_{3}+r_{3}^{2}\left(-s_{1}+s_{3}\right)\right)+s_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{2}-s_{3}\right)\left(s_{2}-s_{3}\right)+\left(s_{1}-s_{2}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right. \\
& \left.\left.+r_{3}^{2}\left(-s_{1}+s_{3}\right)\right)\right)+r_{1}^{3}\left(r_{2}^{2}\left(r_{3}+s_{3}\right)+s_{2}\left(-r_{3}^{2}+r_{3}\left(s_{2}-s_{3}\right)+\left(s_{2}-s_{3}\right) s_{3}\right)-r_{2}\left(r_{3}^{2}+r_{3}\left(-s_{2}\right.\right.\right. \\
& \left.\left.\left.+s_{3}\right)+s_{3}\left(-s_{2}+s_{3}\right)\right)\right)+r_{1}\left(r _ { 2 } (s _ { 1 } - s _ { 2 }) \left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)\right.\right. \\
& \left.+\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right)+\left(s_{1}-s_{2}\right) s_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)+\left(s_{1}-s_{3}\right)\right. \\
& \left.\left(s_{2}-s_{3}\right) s_{3}\right)+r_{2}^{3}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{3}+r_{3}^{2}\left(-s_{2}+s_{3}\right)-r_{3}\left(s_{1}-s_{3}\right)\left(s_{1}\right.\right. \\
& \left.\left.\left.-s_{2}+s_{3}\right)-\left(s_{1}-s_{3}\right) s_{3}\left(s_{1}-s_{2}+s_{3}\right)\right)\right)+s_{1}\left(r _ { 2 } (s _ { 1 } - s _ { 2 }) \left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}\right.\right.\right. \\
& \left.\left.+s_{2}-s_{3}\right)+\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right)+\left(s_{1}-s_{2}\right) s_{2}\left(r_{3}^{3}+r_{3}\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right)-r_{3}^{2}\left(s_{1}+s_{2}-s_{3}\right)\right. \\
& \left.+\left(s_{1}-s_{3}\right)\left(s_{2}-s_{3}\right) s_{3}\right)+r_{2}^{3}\left(r_{3}^{2}+r_{3}\left(-s_{1}+s_{3}\right)+s_{3}\left(-s_{1}+s_{3}\right)\right)-r_{2}^{2}\left(r_{3}^{3}+r_{3}^{2}\left(-s_{2}+s_{3}\right)-r_{3}\right. \\
& \left.\left.\left(s_{1}-s_{3}\right)\left(s_{1}-s_{2}+s_{3}\right)-\left(s_{1}-s_{3}\right) s_{3}\left(s_{1}-s_{2}+s_{3}\right)\right)\right) .
\end{aligned}
$$

Acknowledgements

This work is supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

[1] A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.
[2] J.C. Artés, J. Llibre, J.C. Medrado and M.A. Teixeira, Piecewise linear differential systems with two real saddles, Math. Comput. Simul. 95 (2013), 13-22.
[3] M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications, Appl. Math. Sci. Series 163, Springer-Verlag, London, 2008.
[4] R. Benterki and J. Llibre, The limit cycles of discontinuous piecewise linear differential systems formed by centers and separated by irreducible cubic curves I, preprint, 2020.
[5] R. Bix, Conics and cubics, Undergraduat Texts in Mathematics, Second Edition, Springer, 2006.
[6] D.C. Braga and L.F.Mello, Limit cycles in a family of discontinuous piecewise linear differential systems with two zones in the plane, Nonlinear Dynam. 73 (2013) 128-1288.
[7] R.D. Euzébio and J. Llibre, On the number of limit cycles in discontinuous piecewise linear differential systems with two pieces separated by a straight line, J. Math. Anal. Appl. 424(1) (2015), 475-486.
[8] A.F. Fonseca, J. Llibre and L.F. Mello, Limit cycles in planar piecewise linear Hamiltonian systems with three zones without equilibrium points, to appear in Int. J. Bifurcation and Chaos, 2020.
[9] E. Freire, E. Ponce, F. Rodrigo and F. Torres, Bifurcation sets of continuous piecewise linear systems with two zones, Int. J. Bifurcation and Chaos 8 (1998), 2073-2097.
[10] E. Freire, E. Ponce and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst. 11(1)(2012), 181-211.
[11] M. Han and W. Zhang, On hopf bifurcation in non-smooth planar systems, J. Differential Equations 248(9) (2010), 2399-2416.
[12] D. Hilbert, Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. G"ottingen Math. Phys. KL. (1900), 253-297; English transl., Bull. Amer. Math. Soc. 8 (1902), 437-479; Bull. (New Series) Amer. Math. Soc. 37 (2000), 407-436.
[13] S.M. Huan and X.S. Yang, On the number of limit cycles in general planar piecewise linear systems, Disc. Cont. Dyn. Syst. 32(6) (2012), 2147-2164.
[14] Yu. Ilyashenko, Centennial history of Hilbert's 16 th problem, Bull. (New Series) Amer. Math. Soc. 39 (2002), 301-354.
[15] J.J. Jimenez, J. Llibre and J.C. Medrado, Crossing limit cycles for a class of piecewise linear differential centers separated by a conic, Preprint, 2019.
[16] J. Li, Hilbert's 16 th problem and bifurcations of planar polynomial vector fields, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 47-106.
[17] J. Llibre and E. Ponce, Piecewise linear feedback systems with arbitrary number of limit cycles, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), 895-904.
[18] J. Llibre, E. Ponce and X. Zhang, Existence of piecewise linear differential systems with exactly n limit cycles for all $n \in \mathbb{N}$, Nonlinear Anal. 54 (2003) 977-994.
[19] J. Llibre and E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discr. Impul. Syst., Ser. B 19 (2012), 325-335.
[20] J. Llibre and M.A. Teixeira, Piecewise linear differential systems with only centers can create limit cycles? Nonlinear Dyn. 91 (2018), 249-255.
[21] J. Llibre and X. Zhang, Limit cycles for discontinuous planar piecewise linear differential systems separated by an algebraic curve, Int. J. Bifurcation and Chaos 29 (2019), 1950017, pp. 17.
[22] R. Lum and L.O. Chua, Global propierties of continuous piecewise-linear vector fields. Part I: Simplest case in \mathbb{R}^{2}, Int. J. of Circuit Theory and Appl. 19(3) (1991), 251-307.
[23] R. Lum and L.O. Chua, Global properties of continuous piecewise linear vector fields. II. Simplest symmetric case in \mathbb{R}^{2}, Int. J. of Circuit Theory and Appl. 20(1) (1992), 9-46.
[24] D.D. Novaes and E. Ponce, A simple solution to the Braga-Mello conjecture, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 25 (2015) 1550009, pp. 7.
[25] D.J.W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol 69, World Scientific, Singapore, 2010.
${ }^{1}$ and ${ }^{2}$ Département de Mathématiques, Université Mohamed El Bachir El Ibrahimi, Bordj Bou Arréridj 34265, El Anasser, Algeria

Email address: ${ }^{1}$ ahlam.belfar@univ-bba.dz and ${ }^{2}$ r.benterki@univ-bba.dz

3 Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

Email address: jllibre@mat.uab.cat

[^0]: 2010 Mathematics Subject Classification. Primary 34C29, 34C25, 47H11.
 Key words and phrases. limit cycles, discontinuous piecewise linear differential systems, linear Hamiltonian systems, irreducible cubic curves.

