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Abstract. We describe completely the dynamics of the two Einstein-Friedmann

cosmological models, which can be characterized by the Hamiltonians

H =
1

2
(p2y − p2x) + e2xV (y),

whith the cosmological potentials V (y) = eλy , or V (y) = (a + by)ey with
λab 6= 0.

1. Introduction and statement of the main results

The present work is devoted to the Einstein-Friedmann cosmological models,
which can be characterized by the Hamiltonian

(1) H =
1

2
(p2y − p2x) + e2xV (y),

where V (y) = eλy or V (y) = (a + by)ey with λab 6= 0 are cosmological potentials.
For more details on these two special models see subsections 2.2 and 3.1 [10], and
for more details on the general Einstein-Friedmann cosmological models see [4, 7].

The Hamiltonian system with two degrees of freedom associated to the Hamil-
tonian

(2) H =
1

2
(p2y − p2x) + e2x+λy

is

(3)

ẋ =
∂H

∂px
= −px,

ẏ =
∂H

∂py
= py,

ṗx = −∂H
∂x

= −2e2x+yλ,

ṗy = −∂H
∂y

= −λe2x+yλ.

The above Hamiltonian H has the additional first integral

(4) F = 2py − λpx,
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as it is easy to check. The rank of the 2× 4 matrix(
2e2x+yλ λe2x+yλ −px py

0 0 −λ 2

)
is two except at a zero Lebesgue measure set in the phase space E = R4 with
coordinates (x, y, px, py). Therefore the first integrals H and F are independent.

One can verify that the Poisson bracket {H,F} = 0, so the first integrals H and
F are in involution. Therefore, the Hamiltonian system (3) is completely integrable
in the sense of the Liouville-Arnold Theorem, see for instance [1, 2]. Clearly, the
above Hamiltonian system has no equilibrium points. Therefore, all values (h, f)
for the map H × F are regular, in particular the level (H,F )−1(0, f) is regular, so
if (H,F )−1(0, f) is not empty, it is a 2-dimensional manifold, for more details see
for instance [5].

Since H and F are first integrals, the sets

(5)
Ih = {(x, y, px, py) ∈ E : H(x, y, px, py) = h},
If = {(x, y, px, py) ∈ E : F (x, y, px, py) = f},
Ihf = Ih

⋂
If .

are invariant by the Hamiltonian flow, i.e. if an orbit solution of the Hamiltonian
system has a point in one of the previous three sets, the whole orbit is contained
in that set.

From physical reasons we are only interested in the dynamics of the Hamiltonian
system (3) on the energy level H = 0, see [10]. Following the Liouville-Arnold The-
orem, since the values (0, f) are regular for all f ∈ R, every connected component
of the invariant 2-manifold I0f is diffeomorphic either to a torus, to a cylinder or
to a plane, see Theorem 3, and the dynamics on them are conjugated to a linear
flow when the flow is complete, i.e. when the orbits are defined for all time t ∈ R.

Theorem 1. The following statements hold.

(a) If f = 0 and |λ| > 2, then I0f is empty.

(b) If f 6= 0 and |λ| 6= 2, then I0f is an invariant 2-dimensional manifold
diffeomorphic to two copies of R2.

(c) Assume λ = 2. If f = 0, then I0f is empty. If f 6= 0, then I0f is an
invariant 2-dimensional manifold diffeomorphic to R2.

(d) Assume λ = −2. If f = 0, then I0f is empty. If f 6= 0, then I0f is an
invariant 2-dimensional manifold diffeomorphic to R2.

(d) All the orbits of the Hamiltonian system (3) restricted to I0f come from the
infinity and go to infinity.

Theorem 1 is proved in section 2.

Now we consider the Hamiltonians of the form

(6) H = p2y − p2x + exV (y),

that can be obtain from Hamiltonian (1) by applying canonical transformation

{x, y, px, py} → {1/2x, 1/2y, 2px, 2py}
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and substituting

{H,V (y)} → {−2H,−2V (y)}.

Following [10] we consider the potential

(7) V (y) = (a+ by)ey with ab 6= 0.

Then the Hamiltonian system with Hamiltonian (6) has the first integral

(8) F (x, y, px, py)p2y− = pxpy + ex+y(a+ b+ by)/2.

The condition {H,F} = 0 proves that F is a first integral of the following Hamil-
tonian system

(9)

ẋ =
∂H

∂px
= −2px,

ẏ =
∂H

∂py
= 2py,

ṗx = −∂H
∂x

= −ex+y(a+ by),

ṗy = −∂H
∂y

= −ex+y(a+ b+ by).

Therefore this Hamiltonian system is completely integrable in the sense of Liouville-
Arnold Theorem, because the rank of the 2× 4 matrix(

ex+y(a+ by) ex+y(a+ b+ by) −2px 2py
ex+y(a+ b+ by)/2 ex+y(a+ 2b+ by)/2 −py 2py − px

)
is two except in a zero Lebesgue measure set of the phase space E = R4 again in
the coordinates (x, y, px, py). Hence the first integrals H and F are independent.

As in the previous section the above Hamiltonian system has no equilibrium
points and the levels (H,F )−1(0, f) are regular.

Theorem 2. The following statements hold for the Hamiltonian system (9).

(a) The set I0f is empty if b < 0 and f ≤ 0, otherwise I0f is an invariant
2-dimensional manifold diffeomorphic to two copies of R2.

(b) All the orbits of the Hamiltonian system (3) restricted to I0f come from the
infinity and go to infinity.

Theorem 2 is proved in section 3.

2. Proof of Theorem 1

In order to describe the dynamics of a complete integrable Hamiltonian system
of two degrees of freedom we shall use the Liouville-Arnold Theorem, which can be
stated as follows, for more details see [1, 2, 5].

Theorem 3. Assume that a Hamiltonian system with two degrees of freedom de-
fined on the phase space E has two independent first integrals H and F in involution.
Then the following statements hold.
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(a) Suppose that (h, f) is a regular value of the function (H,F ), so I0f is a
2-dimensional submanifold of E invariant under the flow of the system.

(b) Under the hypothesis (a) if the flow on a connected component I∗hf of Ihf
is complete, then I∗hf is diffeomorphic either to the torus S1 × S1, or to the

cylinder S1 × R, or to the plane R× R.
(c) Under the hypothesis (b) the flow on I∗hf is conjugated to a linear flow on

either S1 × S1, or S1 × R, or R× R.

Unfortunately we cannot apply to our two Hamiltonian systems (3) and (9) the
results of Theorem 3 because we do not know if the flows of these Hamiltonian
systems are complete, because we cannot obtain explicitly the solutions of these
systems in function of the time. But as we shall see later on we can apply to them
the Markus–Neumann–Peixoto theorem.

From F (x, y, px, py) = f we obtain that

(10) py =
1

2
(f + λpx).

Assume that |λ| 6= 2. Then, from

H

(
x, y, px,

1

2
(f + λpx)

)
= 0,

we get that

(11) px = ±fλ− 2
√
f2 − 2 (λ2 − 4) e2x+λy

4− λ2
.

Substituting px from (11) in (10) we obtain

(12) py = ±2f − λ
√
f2 − 2 (λ2 − 4) e2x+λy

4− λ2
.

In order to prove Theorem 1 we must characterize the topology of the 2-dimensional
manifolds I0f given by
(13){(

x, y,±fλ− 2
√
f2 − 2 (λ2 − 4) e2x+λy

4− λ2
,±2f − λ

√
f2 − 2 (λ2 − 4) e2x+λy

4− λ2

)
: (x, y) ∈ R2

}
.

Note that when in the expression of py there is a plus (respectively minus) in the
expression of px there is a plus (respectively minus).

In short, when |λ| 6= 2 from (13) it follows that I0f is empty if f = 0 and |λ| > 2,
otherwise I0f is an invariant 2-dimensional manifold diffeomorphic to two copies of
R2. This completes the statements (a) and (b) of Theorem 1.

Assume λ = 2. Then from F (x, y, px, py) = f we obtain again that py = (f +

2px)/2, and fromH(x, y, px, (f+2px)/2) = 0, we have that px = −2e2(x+y))/f−f/4.
Substituting this expression of px into the previous expression of py we obtain that

py = −2e2(x+y))/f + f/4. In order to prove statement (c) of Theorem 1 we must
characterize the topology of the 2-dimensional manifolds I0f given by

(14)

{(
x, y,−2e2(x+y))

f
− 1

4
f,−2e2(x+y))

f
+

1

4
f

)
: (x, y) ∈ R2

}
.
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Therefore, when λ = 2 from (14) it follows that I0f is empty if f = 0, otherwise
I0f is an invariant 2-dimensional manifold diffeomorphic to R2. This completes the
statement (c) of Theorem 1.

Assume now λ = −2. Then from F (x, y, px, py) = f we obtain again that
py = (f − 2px)/2, and from H(x, y, px, (f − 2px)/2) = 0, we have that px =

2e2(x−y))/f + f/4. Substituting this expression of px into the previous expression
of py we obtain that py = −2e2(x−y))/f + f/4. Again in order to prove statement
(d) of Theorem 1 we must characterize the topology of the 2-dimensional manifolds
I0f given by

(15)

{(
x, y,

2e2(x−y))

f
+

1

4
f,−2e2(x−y))

f
+

1

4
f

)
: (x, y) ∈ R2

}
.

Therefore, when λ = −2 from (15) it follows that I0f is empty if f = 0, otherwise
I0f is an invariant 2-dimensional manifold diffeomorphic to R2. This completes the
statement (d) of Theorem 1.

In order to prove statement (e) we need some preliminary results. A phase
portrait of the Hamiltonian system (3) restricted to the 2-dimensional manifold I0f
is the decomposition of I0f as union of the orbits of this differential system.

Two phase portraits on I0f1 and on I0f2 are topologically equivalent if there is
a homeomorphism h : I0f1 −→ I0f2 which send orbits in I0f1 into orbits of I0f2 ,
preserving or reversing the sense of all the orbits.

A separatrix of the Hamiltonian system (3) restricted to the 2-dimensional man-
ifold I0f is one of following orbits: the equilibrium points, the limit cycles, and the
two orbits at the boundary of every hyperbolic sector of an equilibrium point, see
for more details on the separatrices [6, 8]. Recall that a limit cycle of a differential
system is a periodic orbit isolated in the set of all periodic orbits of the differential
system. For a definition of a hyperbolic sector see page 18 of [3].

The set of all separatrices of the Hamiltonian system (3) restricted to the 2-
dimensional manifold I0f , denoted by Σ0f , is a closed set (see [8]). Here

A canonical region of I0f is an open connected component of I0f \ Σ0f . The
union of the set Σ0f with an orbit of each canonical region form the separatrix con-
figuration of the Hamiltonian system (3) restricted to the 2-dimensional manifold
I0f and is denoted by Σ′0f .

We say that the flow of the Hamiltonian system (3) restricted to a 2-dimensional
manifold I0f is parallel if it is topologically equivalent to one of the following flows:

(i) The flow defined on R2 by the differential system ẋ = 1, ẏ = 0, which it is
called the strip flow.

(ii) The flow defined on R2 \ {0} by the differential system given in polar coor-
dinates by r′ = 0, θ′ = 1, which it is called the annulus flow.

(iii) The flow defined on R2 \ {0} by the differential system given in polar coor-
dinates by r′ = r, θ′ = 0, which it is called the spiral or nodal flow.
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A main result is the following: The flow at every canonical region of a flow on
a 2-dimensional manifold is parallel, given by either a strip, an annular or a spiral
flow, see [8].

Two separatrix configurations Σ′0f1 and Σ′0f2 are topologically equivalent if there

is a homeomorphism Σ′0f1 −→ Σ′0f2 such that h(Σ′0f1) = Σ′0f2 .

According to the following theorem, which was proved by Markus [6], Neumann
[8] and Peixoto [9], it is sufficient to investigate the separatrix configuration of a
differential system on a 2-dimensional manifold, for determining its phase portrait.

Theorem 4. Two phase portraits on I0f1 and on I0f2 with finitely many separatri-
ces are topologically equivalent if and only if the two separatrix configurations Σ′0f1
and Σ′0f2 are topologically equivalent.

We note that the Hamiltonian system (3) restricted to every 2-dimensional man-
ifold I0f has no separatrices because: First, these systems have no equilibrium
points. Second, these systems have no periodic orbits because in the region limited
by a periodic orbit a differential system in dimension two must have at least one
equilibrium point (see for instance Theorem 1.31 of [3]), consequently these system
have no limit cycles. Finally these systems have no hyperbolic sectors again because
they do not have equilibrium points.

In summary Σ0f is empty for all f ∈ R. Therefore, by Theorem 4 the phase
portrait of the Hamiltonian system (3) restricted to an arbitrary connected com-
ponent of a 2-dimensional manifold I0f is topologically the same for all f ∈ R, in
other words a connected component of I0f1 and a connected component of I0f2 are
topologically equivalent for all f1, f2 ∈ R. Moreover, every connected component
I0f is a canonical region. Since every one of these connected components are dif-
feomorphic to R2 it follows that the flow on each of these connected components is
strip. So their orbits come and go to the infinity of the phase space E. Therefore
statement (e) of Theorem 1 is proved.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

From F (x, y, px, py) = f we obtain that

(16) px =
ex+y(a+ b+ by)− 2f + 2p2y

2py
,

and from

H

(
x, y,

ex+y(a+ b+ by)− 2f + 2p2y
2py

, py

)
= 0,

we get that

(17) py = ±2f − ex+y(a+ b+ by)

2
√

2f − bex+y
.
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Substituting py from (17) in (16) we obtain

(18) px = ∓e
x+y(a− b+ by) + 2f

2
√

2f − bex+y
.

In order to prove Theorem 2 we must characterize the topology of the 2-dimensional
manifolds I0f given by

(19)

{(
x, y,∓e

x+y(a− b+ by) + 2f

2
√

2f − bex+y
,±2f − ex+y(a+ b+ by)

2
√

2f − bex+y

)
: (x, y) ∈ R2

}
.

Note that when in the expression of py there is a plus (respectively minus) in the
expression of px there is a minus (respectively plus).

From (19) it follows that I0f is empty if b < 0 and f ≤ 0, otherwise I0f is an
invariant 2-dimensional manifold diffeomorphic to two copies of R2. So statement
(a) of Theorem 2 is proved.

The proof of statement (b) of Theorem 2 is exactely the same than the proof of
statement (e) of Theorem 1. This completes the proof of Theorem 2.
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