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Abstract. In this paper we recover the best lower bound for the number of limit
cycles in the planar piecewise linear class when one vector field is defined in the first
quadrant and a second one in the others. In this class and considering a degenerated
Hopf bifurcation near families of centers we obtain again at least five limit cycles but
now from infinity, which is of monodromic type, and with simpler computations. The
proof uses a partial classification of the center problem when both systems are of
center type.

1. Introduction

The study of differential equations has been one of the most widely used tools in
modeling real phenomena. One of the most relevant problems in the qualitative theory
of differential equations is the study of the number, configuration and stability of iso-
lated periodic orbits, the so called limit cycles. These problems attracted the attention
of Hilbert and Poincaré, among other mathematicians of the late 19th century. Their
famous works opened the minds of a lot of colleagues who have carried out their research
in this field for years. The question known as the 16th Hilbert Problem is still open.
In last two decades, this question has been extended to piecewise differential equa-
tions due to they are very useful for modeling physical systems, technological devices
in engineering, mechanics, control theory, nonlinear oscillations, electronics, economics,
neuroscience, biology, etc. The first applications were using vector fields defined in two
or more zones separated by smooth manifolds. As the nonlinearity was moved to the
switching manifold, usually the vector fields were taken linear because of their simplic-
ity and the applicability to real phenomena. Recently, this nonlinearity has been taken
breaking the regularity of the switching manifold. In this paper, we deal with the study
of lower bounds for the number of limit cycles of planar piecewise linear system defined
in two sectorial zones. We write it as

ẋ = (a± + d±)x+ b±y + e±,

ẏ = c±x+ (a± − d±)y + f±,
(1)

respectively defined in Σ+ = {(x, y) ∈ R2, x > 0 and y > 0} and Σ− = {(x, y) ∈
R2, x < 0 or y > 0}. On the axis, the vector field is defined according to Filippov’s
convention. See more details in [8]. This problem was studied some years ago in [5]
providing five limit cycles of crossing type using higher order averaging analysis near
the linear center. Such isolated periodic orbits, crossing Σ, were obtained bifurcating
from the linear center and computing developments up to sixth order. Recently in [20]
the same lower bound was found with second order Melnikov bifurcation technique but
perturbing a piecewise linear Hamiltonian system. Our goal is to get the same result
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with a different approach, easier computations, and only with a first order analysis.
The bifurcation procedure used only needs a first order analysis but for a family of
centers. First we look for a good family of centers, being infinity of monodromic type,
and second, we get five limit cycles bifurcating from infinity showing that this number
depends on the parameters of the chosen center. That is, the local cyclicity depends
on the parameters of the family. In fact, the cyclicity generically takes a given value,
but for some special points it is higher. The first order analysis required to analyze the
bifurcation technique that we will use was in fact previously described in [13]. This fact
is already known and it has been used recently to increase the local cyclicity in some
families of centers. Moreover, we will follow closely the ideas given in [11] for getting
the coefficients of the Taylor series of the return map near infinity. This approach has
recently followed also in [10]. From previous works, see for example [2, 12, 18], the best
lower bound for the number of limit cycles in piecewise linear systems defined in two
zones separated by a straight line is three and, in most of the works, it is obtained when
the systems chosen in both sides have a dynamic of focus type. Although most experts
in the area think that this number will be the upper bound, this problem remains
open. The first upper bound is 8 and it has been recently obtained in [6]. Hence, we
also restrict our analysis to this special case that we expect will be the best candidate.
Without loss of generality, after a rescaling if necessary, we can take

c± = −((d±)2 + 1)/b±. (2)

The monodromy condition implies that b+b− > 0. We will neither say constantly that
this property is satisfied nor that both parameters are nonvanishing. The main advan-
tage of the study of monodromy near infinity is that we avoid the sliding or escaping
regions, having only crossing type dynamics in planar Filippov vector fields. For more
details on how to define and study the dynamics in these regions using Filippov’s con-
vention, the reader is referred again to [8]. The main goal of our work is to recover
the best lower bound but, as we have already mentioned, bifurcating from infinity, for
the number of limit cycles of piecewise linear systems with a nonregular switching line
provided firstly in [5].

Theorem 1. There exist values of the parameters such that system (1) has five limit
cycles bifurcating from infinity.

We remark that the study in the continuous class makes no sense. Because, due to
the special form of the boundary between the two zones, the continuity of system (1)
along Σ implies analiticity. That is, the system in Σ+ coincides with the one in Σ−.
Consequently, there are no limit cycles in the continuous class. An intermediate class
also interesting to be studied from the physical point of view is the refracted one. The
study of their singularities and its local behavior in this intermediate class not only in
planar but also higher dimensions can be found in [1, 4, 7, 15]. This class is defined
in general for a piecewise vector field Z = (Z+(z), Z−(z)) in two zones Σ± separated
by h(z) = 0 being z ∈ Rn, being h usually a smooth function. The vector field Z is
refracted if and only if Z+ · ∇h(z) = Z− · ∇h(z) for all z such that h(z) = 0. Hence,
the differential system (1) is refracted if and only if a := a+ = a−, d := d+ = d−,
e := e+ = e−, and f := f+ = f−. That is, (1) becomes

ẋ = (a+ d)x+ b±y + e,

ẏ = − x

b±
+ (a− d)y + f.

(3)
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The upper bound for the linear refracted family when the switching line is a straight
line reduces to one (see [17, 19]), as it occurs when continuity is imposed (see [9]). Next
result shows that, also in the refracted class, the nonregularity of the switching line
increases the number of limit cycles.

Proposition 2. There exist values of the parameters such that system (3) has at least
two limit cycles bifurcating from infinity.

In the present work we are doing only a partial classification of the center problem
of (1), but it is enough to find a simpler proof of the best lower bound for the number
of limit cycles provided in [5]. We will explain in the following the main difficulties for
solving the center problem near infinity. But, mainly, they are due to the size of the
expressions that appear during the computations. The main novelties of the present
work are the existence of an alternative proof of the best known lower bound for the
number of limit cycles of crossing type, together with the canonical form of system (1)
such that the solutions of the initial value problem writes in a good way for getting
the Taylor developments. The procedure starts knowing the limiting flying times near
infinity. Moreover, we will see in Section 2 how they depend on d±. But, in order to
simplify computations and avoid huge expressions, we will restrict our attention to the
special family d± = 0.

This paper is structured as follows. Section 2 is devoted to recall the necessary
classical results on the study of the local stability and degenerated Hopf bifurcation of
a nondegenerate monodromic equilibrium point. In Section 3 we provide the mentioned
partial classification of the center problem in the center-center case. Section 4 is devoted
to prove our main result where we have restricted, to simplify computations to the class
d± = 0. We finish studying the refracted class in Section 5.

2. The initial value problem and the difference map computation

In this section, we recall some classical concepts and bifurcation techniques that are
necessary for the proofs of our results. Taking an adequate initial value problem, we
can analyze the number of limit cycles of small amplitude instead of the ones that
bifurcate near infinity. As the linear part of equation (1) is not written in the Jordan
normal form we can not use the method described in [3]. Consequently, we will use
an alternative and more general mechanism, the one described in [11]. After moving
the infinity to the origin, we can use the usual degenerated Hopf bifurcation analysis
for piecewise monodromic equilibrium points, see more details in [14]. In the piecewise
vector fields defined in two zones, the analysis for finding crossing limit cycles near a
monodromic point can be done computing the complete return map by composition of
the two half return maps. As usual and by simplicity, instead of using this approach,
it is better to get the difference map defined by the distance of the endpoints in Σ of
the respective solutions in forward and backward times that start at the same initial
condition also in Σ. To achieve the proposal goal of this paper, we will need a precise
and accurate analysis of the perturbation of families of centers as the one presented in
[13]. In that paper, it is shown how the local cyclicity varies with the parameters of the
chosen family. In fact, the key point is to find a family of centers having special values
for the parameters that provide the highest lower bound for the number of limit cycles
of small amplitude.

To simplify writing, we will take the solution of the initial value problem defined by
system (1) with x(0, x0) = 1/x0 and y(0, x0) = 0 in a unified way, without indicating in
the superscript which one is written. We notice that, from the definition of Σ, x0 > 0.
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The next solution follows directly integrating the linear equations and imposing the
initial conditions:

x(θ, x0) =

(
abf + ade+ e

a2 + 1
+

d

x0

)
eaθ sin θ+(

ae− bf − de
a2 + 1

+
1

x0

)
eaθ cos θ − ae− bf − de

a2 + 1
,

y(θ, x0) = −
(
abdf + ad2e+ ae− bf

(a2 + 1)b
+
d2 + 1

bx0

)
eaθ sin θ+

abf + bdf + d2e+ e

(a2 + 1)b
(eaθ cos θ − 1).

(4)

Although the previous expressions are not well defined in x0 = 0, we can analyze the
behavior of infinity (x0 = 0) considering that it tends to zero. The half return maps
are defined from the flying (forward and backward) times T±(x0) associated to the first
crossing point of (4) with the positive y-axis. That is, solving x(T±(x0), x0) = 0 and
computing y(T±(x0), x0). Consequently, the difference map is defined by

∆(x0) = y+(T+(x0), x0)− y−(T−(x0), x0). (5)

Here, y± and T±(x0) mean the second components and the flying times of the solution of
(4) defined, respectively, in Σ±. Moreover, ∆(0) = 0 and from our choice of parameters
b±, we have that T+(x0) > 0 and T−(x0) < 0.

From the Taylor series of (5),

∆(x0) =
∞∑
k=1

(∆+
k −∆−k )xk0 =

∞∑
k=1

∆kx
k
0, (6)

we can get the stability of the infinity from the sign of the first nonvanishing term.
Usually the first nonvanishing coefficient of order k + 1 is known as the generalized
k-Lyapunov quantity. We notice that all ∆k depends on the parameters of system (1)
and, as we will see in the following, we need to take into account all the coefficients
for a complete unfolding and for solving the center problem. In smooth context, the
subscript k indicates the weak focus order, because it unfolds k limit cycles. In this
context, we extend this notion saying that infinity has a weak focus of order k. This
definition does not coincide with the one for general discontinuous piecewise smooth
vector fields where the sliding phenomenon appears. Because, as ∆0 can be different
from zero due to existence of a sliding or a escaping segment, we can have one more
limit cycle by a pseudo-Hopf bifurcation, see [8, 16]. We notice that this phenomenon
does not occur in our situation.

As we are interested in finding the Taylor series (6) of (5), we will first solve equations
x+(T+(x0), x0) = 0 and x−(T−(x0), x0) = 0 also in series in x0 = 0. Straightforward
computations allow us to find recursively the coefficients of the flying times

T±(x0) =
∞∑
k=0

T±k x
k
0.

The main difficulty to deal with the general case is that when x0 goes to zero the
corresponding flying times satisfy d± sin(T±0 ) + cos(T±0 ) = 0. One way to simplify the
computations is to study d± ≈ 0. Hence, the Taylor series of T±0 in d± start as T+

0 =
π/2 +d+ + · · · and T−0 = −3π/2 +d−+ · · · , respectively. As the size of the expressions
that appear during all the computations procedure are so huge, Taylor series in a± = 0
have been necessary to be used and the obtained results, up to first order analysis,
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do not provide better results than the restriction to the case d± = 0. Consequently,
from now on we will assume such particular case. Obtaining easier conditions for the
limiting flying times, that are T+

0 = π/2 and T−0 = −3π/2. These values do not depend
on the remaining parameters as it was shown also in [11]. Straightforward recursive
computations get the first values for T±k and ∆±k :

T±1 =
a±b±f± + e± − (a±e± − b±f±) e−α

±a±

(a±)2 + 1
,

T±2 =
(
− a±b±f± − e± + ((a±)2b±f± + 2a±e± − b±f±) e−α

±a±

− a±(a±e± − b±f±) e−2α
±a±

)a±e± − b±f±
((a±)2 + 1)2

,

∆±1 =− b± e−α
±a± ,

∆±2 =
(
(a±)2b±f± + 2a±e± − b±f±

− ((a±)2e± − 2a±b±f± − e±) e−α
±a±

)b± e−α
±a±

(a±)2 + 1
,

where α+ = π/2 and α− = −3π/2. We do not write here the other terms because of
their size.

3. Center classification in the center-center case

In this section, we get conditions for having a center at infinity for system (1), when we
are in the center-center case. We recall that, as we have mentioned in the introduction,
it is not restrictive in this study to assume (2) and b+b− > 0.

Proposition 3. Assuming that a± = d± = 0, system (1) satisfying (2) and b+b− > 0
has a center at infinity if and only if

F = {b− = b+, e− = b+f−, e+ = b+f+} (7)

or C = {b− = b+, e− = e+, f− = f+}.

Proof. Under the hypotheses of the statement and using the method detailed in Sec-
tion 2 the Lyapunov quantities can be written as

∆1 = −b+ + b−,

∆2 = b−((f− − f+)b− − e− + e+),

∆3 = (b+)2(f− − f+)(b+f− − e−),

and ∆k = 0 for k = 4, . . . , 7. The necessary conditions for having a center at infinity
follow vanishing all the Lyapunov quantities. We get easily only the two families of the
statement. The second one is clearly a center because it is the global linear one. For
the first one we can assume, changing time if necessary, that b± < 0. The piecewise
first integral of (1) under the conditions defined by F satisfying H±(x−10 , 0) = 0, with
x0 > 0 and small enough, is

H±(x, y) = − 1

2b+
x2 − b+

2
y2 + f±x− b+f±y − f±

x0
+

1

2b+x20
.

The next step is to look for the crossing points (0, y±0 ) of the level curves {H±(x, y) = 0}
with y±0 > 0. Straightforward computations show that for each level curve there are
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two intersection points provided by two values of y±0 that are

{
−1

b+x0
,

1

b+x0
− 2f±

}
.

The second intersection points are discarded because y±0 = (b+x0)
−1 − 2f± < 0 when

x0 > 0 and small enough. Consequently, both curves {H±(x, y) = 0} intersect at the
same point y±0 = −(b+x0)

−1 > 0, when x0 > 0 and small enough. Proving that we have
a center at infinity. �

4. Cyclicity near infinity

This section is devoted to prove Theorem 1 using the perturbation technique pre-
sented in [13] and doing an accurate analysis of the cyclicity of infinity for some of the
centers obtained in the previous section. We observe that generically the cyclicity of the
family of centers defined by F in (7) is less than the cyclicity over two special straight
lines on the parameter space as it can be seen in the next result. The fact that family C
in (7) is the linear center increases the difficulty of the cyclicity analysis and it was done
previously in [5] where developments up to order 6 were necessary. Here we will see
that only first order analysis for families is enough to get the same result. Therefore,
the advantage of study the bifurcation of families of centers is clearly guaranteed. We
remark that a first order analysis for families is in fact a second order analysis for a
fixed vector field, see again [13].

Proposition 4. Given αβγ(β − γ)ψ(β, γ) 6= 0, being ψ(β, γ) = 3(π − 2)γ − 4β, the
cyclicity of the center F in (7) defined by a± = d± = 0, b± = α, e+ = αβ, e− =
αγ, f− = γ, f+ = β and pertubed inside (1), satisfying (2), is at least 4 when ϕ5(β, γ) =
3(π− 2)γ2− 8γβ − 3(3π+ 2)β2 6= 0 and is at least 5 when ϕ5(β, γ) = 0 and ϕ6(β, γ) =
(27π − 54)γ4 − (15π + 26)γ3β − 60πγ2β2 − (45π − 26)γβ3 + (81π + 54)β4 6= 0.

Proof. After considering the perturbation a− = ε8, a
+ = ε7, b

− = α + ε1, b
+ = α +

ε2, d
− = ε10, d

+ = ε9, e
− = αγ + ε3, e

+ = αβ + ε4, f
− = γ + ε5, f

+ = β + ε6 we compute
the first order Taylor series with respect to ε = (ε1, . . . , ε10) of the first Lyapunov
quantities. Then with the linear change of variables

ε1 =(2u1 + 2ε2 − απε7 − 3ε8)πα/2,

ε2 =(−2αγu1 + 2u2 + 2αε3 − 2αε4 − 2α2ε5 + 2α2ε6

+ α2(πγ + πβ − β)ε7 + (6π + 8)α2γε8)/(2α(γ − β)),

ε3 =(α2γβu1 − α(γ + β)u2 + u3 + α2γε4 + α3βε5 − α3γε6

− α3β((π − 2)β + (π − 4)γ)ε7 − α3γ((3π + 4)β + (3π + 2)γ)ε8)/(α
2β),

ε7 =− (3α2γβu2 − 3α(β + γ)u3 + 3u4 + α4γ2((9π + 6)β + 4γ)ε8)/(α
4β2ψ(β, γ)),
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and writing ε8 = u5, ε4 = u6, ε5 = u7, ε6 = u8, ε9 = u9, ε10 = u10, the first six coefficients
write as ∆k = uk +O2(u), k = 1, 2, 3, 4, with u = (u1, . . . , u10), and

∆5 =
4α3γβ2(γ − β)

ψ(β, γ)
u2 −

α2β((3π − 2)γ2 − 4γβ − 4β2)

ψ(β, γ)
u3

+
α((3π − 6)γ(γ + β)− 8β2)

ψ(β, γ)
u4 −

4α5γ2(γ − β)ϕ5(β, γ)

3ψ(β, γ)
u5 +O2(u),

∆6 =
4α4γβ2(5γ2 + 5γβ − 9β2)

5ψ(β, γ)
u2 −

α3β(γ + β)((15π − 10)γ2 − 36β2)

5ψ(β, γ)
u3

+
α2((15π − 30)(γ2 + γβ + β2)γ − 56β3)

5ψ(β, γ)
u4 −

4α6γ2ϕ6(β, γ)

15ψ(β, γ)
u5 +O2(u).

Clearly, under the hypotheses of the statement on α, β, γ, when ϕ5(β, γ) 6= 0 the rank
of the linear part of the Taylor series of ∆1, . . . ,∆5 with respect to u at u = 0 is 5.
Hence, 4 limit cycles of small amplitude bifurcate from x0 = 0, under a degenerated
Hopf bifurcation. This proves the first part of the statement.

For the second part, we need to restrict our attention to the special perturbation
u6 = u7 = u8 = u9 = u10 = 0. In this case, when ϕ5(β, γ) = 0, that is

γ =
4±
√

27π2 − 36π − 20

3(π − 2)
β, (8)

we have

ϕ6(β, γ) =− 2

27(π − 2)3
(
−1944π4 + 9720π3 − 18000π2 + 7968π + 7360

± (405π3 − 2070π2 + 2172π + 184)
√

27π2 − 36π − 20
)
β4,

which is non zero since β 6= 0. Consequently, using the technique described in [13], we
can prove that a family of weak foci of higher degeneracy than the later case exists,
providing an unfolding of 5 limit cycles of small amplitude bifurcating from x0 = 0. We
remark that, in (8), as β 6= 0 also γ 6= 0 and, moreover, the straight lines (8) are both
real. �

5. Refracted class systems

Proposition 2 is a direct consequence of next result, where the highest order in the
chosen class of a weak focus is found in the refracted class. As we have done in the
previous sections, we restrict system (3) to d = 0. Therefore, it becomes

ẋ = ax+ b±y + e,

ẏ = − x

b±
+ ay + f.

(9)

Proposition 5. The infinity of system (9) is a weak focus of order 2 when we take
families F±R = {a = ±1, b− = b+ e∓2π, e2 + f 2 6= 0} and F0

R = {f = − e3aπ/2 e/b+, b− =
b+ e−2aπ, ae 6= 0}. Moreover, the centers corresponding to parameter values out of F±R ∩
F0
R unfold 2 limit cycles.

Proof. With this restriction on the parameters, the first Lyapunov quantities, obtained
following the procedure detailed in Section 2, are

∆1 = −b+ e−aπ/2 +b− e3aπ/2,

∆2 =
a2 − 1

a2 + 1
(e e−aπ +b+f e−5aπ/2)b+(e2aπ−1).
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It is easy to check that a 6= 0 is a necessary condition to have a weak focus at infinity,
otherwise we have a center. Consequently, we have only three factors that can vanish
∆2 and they provide the three families of the statement. The proof of the first part,
finishes checking that, in each case, ∆3 6= 0. Such values, for each family, are:

∆3,+ = −b
+

4
e−9π/2

(
e2(e3π− e7π) + 2b+ef(e2π− e3π− e4π + e5π) + (b+)2f 2(1− e4π)

)
,

∆3,− =
b+

4
e−5π/2

(
e2(1− e4π) + 2b+ef(e2π− e3π− e4π + e5π) + (b+)2f 2(e3π− e7π)

)
,

∆3,0 = (a(1− e4aπ)− e7aπ/2 + e5aπ/2 + e3aπ/2− eaπ/2)
ae3

(a2 + 1)f
.

The coefficients ∆3,± are nonvanishing because b+ 6= 0 (the monodromy condition
ensures that) and the last factor is a homogeneous polynomial of degree 2 in e, f with
negative discriminant. For ∆3,0 we need only to check that the first factor is positive
when a 6= 0. In fact, it has a minimum at a = 0. This is equivalent to prove that, as
1− e4aπ 6= 0 when a 6= 0, the function

e7aπ/2− e5aπ/2− e3aπ/2 + eaπ/2

1− e4aπ
− a

is monotonous decreasing and vanishes at the origin. The first part of the statement
follows computing the Taylor series at a = 0, that is −aπ/2 + 11π3a3/48 + O(a5), and
checking that the numerator of the first derivative writes as the polynomial πA7−2A8−
3πA5 − 3πA3 − 4A4 + πA− 2, being A = eaπ/2, which has only negative solutions.

Finally, we compute the determinants of the Jacobian matrices of (∆1,∆2) with
respect to (b−, a) on the families F±R and F0

R, which are b+ e−π(fb+ + e e±3π/2)(e2π−1)
and 3π(a2−1)(e2aπ−1) eaπ/2 eb+/(2a2+2), respectively. The proof of the second part of
the statement follows because the above determinants only vanish at their intersections.

�

Near d± = 0, straightforward computations show that the above result can not be
improved.
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