Bounded polynomial vector fields in \mathbb{R}^{2} and \mathbb{R}^{n}

Luis Barreira ${ }^{\text {a }}$, Jaume Llibre ${ }^{\mathrm{b}}$, Claudia Valls ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
${ }^{\text {b }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
Received 8 February 2019; accepted 21 October 2019
Available online 28 October 2019

Abstract

We characterize the bounded polynomial vector fields in \mathbb{R}^{2}. Additionally we provide a necessary condition but not sufficient which must be satisfied by bounded polynomial vector fields in \mathbb{R}^{n}. © 2019 Elsevier Inc. All rights reserved.

MSC: primary 34D09, 37D25, 47D06
Keywords: Bounded polynomial vector fields; Topological index; Poincaré compactification

1. Introduction

Many interesting problems coming from the physical and natural sciences can be modeled by polynomial vector fields in \mathbb{R}^{2} as for instance the Lotka-Volterra systems, the Blausius equation, the van der Pol equation, ... [6]. But the polynomial vector fields started to be analyzed from a mathematical point of view in the works of Poincaré [15], Hilbert [11], Bendixson [1], Dulac [8], ... Since the general class of polynomial vector fields in \mathbb{R}^{2} is very difficult to study, many authors put their attention to several subclasses. Here our main objective is to characterize the class of bounded polynomial vector fields in \mathbb{R}^{2}.

Bounded polynomial vector fields already have been studied by several authors. Thus the bounded quadratic vector fields have been studied by Coll, Dickson, Dumortier, Gasull, Herssens,

[^0]
[^0]: * Corresponding author.

 E-mail addresses: barreira@math.tecnico.ulisboa.pt (L. Barreira), jllibre @mat.uab.cat (J. Llibre), cvalls@math.tecnico.ulisboa.pt (C. Valls).

