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Abstract. We characterize the bounded polynomial vector fields
in R2. Additionally we provide a necessary condition but not suffi-
cient which must be satisfied by bounded polynomial vector fields
in Rn.

1. Introduction

Many interesting problems coming from the physical and natural
sciences can be modeled by polynomial vector fields in R2 as for in-
stance the Lotka–Volterra systems, the Blausius equation, the van der
Pol equation, ... [6]. But the polynomial vector fields started to be
analyzed from a mathematical point of view in the works of Poincaré
[15], Hilbert [11], Bendixson [1], Dulac [8], ... Since the general class of
polynomial vector fields in R2 is very difficult to study, many authors
put their attention to several subclasses. Here our main objective is to
characterize the class of bounded polynomial vector fields in R2.

Bounded polynomial vector fields already have been studied by sev-
eral authors. Thus the bounded quadratic vector fields have been stud-
ied by Coll, Dickson, Dumortier, Gasull, Herssens, Li, Llibre, Perko,
Zhang, ... [4, 7, 9, 13]. Some results on the bounded polynomial vector
fields of arbitrary degree in Rn for n ≥ 2 can be found in Cima, Llibre,
Mañosas, Villadelprat, ... [2, 3, 12]. Another work on bounded vector
fields in R2 is due to Conti and Galeotti [5].

Let X = (P 1, . . . , P n) : Rn → Rn be a polynomial vector field. The
degree of X is the maximum of the degrees of the polynomials P k’s for
k = 1, . . . , n. Let p ∈ Rn and γ(t) = γ(t, p) be the integral curve of X
such that γ(0) = p and let Ip be its maximal interval of definition. We
say that X is bounded if for all p ∈ Rn, there exists some compact set
K such that γ(t) ∈ K for each t ∈ Ip ∩ (0,+∞).
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Given a vector field it is very difficult to know if it is bounded or not.
In this setting it is very interesting to provide necessary and sufficient
conditions (in terms only of the vector field) in order to ensure that
it is bounded. The goal of this paper is precisely to provide these
necessary and sufficient conditions in R2, and a necessary condition
but not sufficient which must be satisfied by bounded polynomial vector
fields in Rn.

In order to state our results on the bounded polynomial vector fields
we need to recall some basic notions of the Poincaré compactification,
introduced by Poincaré in [16].

Roughly speaking the Poincaré compactification of a polynomial vec-
tor field X = (P 1, . . . , P n) of degree d in Rn consists in extending it
to an analytic vector field p(X) in the closed unit ball Dn centered at
the origin of Rn, in such way that in the interior of that ball the vector
field p(X) is analytically equivalent to the vector field X, and conse-
quently p(X) restricted to the boundary sphere Sn−1 of Dn provides
the behavior of the vector field X at infinity. Note that in Rn there are
as many directions for going or coming from infinity as points has the
sphere Sn−1.

In order to state our main results on the bounded polynomial vector
fields we need to recall some basic notions of the Poincaré compactifi-
cation, introduced by Poincaré in [16] in R2 and extended to Rn in [2].
All the details on this compactification can be found in Chapter 5 of
[10] and in [2].

For studying the neighborhood of the boundary Sn−1 of the ball Dn

(i.e. the neighborhood of the infinity of Rn) we consider the local charts
(Uk, ϕk) and (Vk, ψk) for k = 1, 2 defined as follows

Uk = {(x1, . . . , xn) ∈ Dn : xk > 0}, Vk = {(x1, . . . , xn) ∈ Dn : xk < 0},

the ϕk : Uk → Rn for k = 1, . . . , n are

ϕk(x1, . . . , xn) =

(
x1
xk
, . . . ,

xk−1

xk
,
1

xk
,
xk+1

xk
, . . . ,

xn
xk

)
= (u1, . . . , un),

and ψk(x1, . . . , xn) = ϕk(x1, . . . , xn) for k = 1, . . . , n.

Of course the coordinates (u1, . . . , un) have different meaning in each
local chart, but the points of the infinity, i.e. the points of the boundary
Sn−1 of Dn all have the coordinate un = 0. For polynomial vector fields
in R2 we denote the coordinates in the local charts by (u, v) instead of
(u1, u2).
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We only provide the expression of the compactified analytical vector
field p(X) of the polynomial vector field X of degree d on the local
chart U1 of Dn, because here we do not need the expressions in the
other local charts. This expression is

(1) udn(−u1P 1 + P 2,−u2P 1 + P 3, . . . ,−un−1P
1 + P n,−unP 1),

where P k = P k(1/un, u1/un, . . . , un−1/un).

The singular points of p(X) which are on the boundary Sn−1 of Dn

are called infinite singular points, and the ones which are in the interior
of Dn are called finite singular points.

From (1) it follows that the infinity Sn−1 of the Poincaré ball is
invariant under the flow of the compactified vector field p(X).

The expression for p(X) in the local chart Vk is the same as in Uk

multiplied by (−1)d−1. Therefore the infinite singular points appear on
pairs diametrally opposite on Sn−1.

In [2] it has been proved that for a bounded polynomial vector field in
R2 with all the singular points of p(X) isolated, the sum of the indices
of all its finite singular points is 1. This is a necessary condition in
order that a polynomial vector field in the plane with all the singular
points of p(X) isolated be bounded, but it is not necessary. Here we
prove this result without the assumptions that there are finitely many
infinite singular points.

Theorem 1. Let X be a bounded polynomial vector field in R2 with
finitely many finite singular points. Then the sum of the indices of all
its finite singular points is 1.

In [2] it was also proved that a bounded polynomial vector field X in
Rn such that p(X) has finitely many finite and infinite singular points
and satisfies a convenient generic condition, the sum of the topological
indices of its finite singular points must be (−1)n. Here we prove a
similar result without the assumptions that there are finitely many
infinite singular points and without the generic condition, but with a
different assumption.

Theorem 2. Let X be a polynomial vector field in Rn with finitely
many finite singular points such that when the boundary Sn−1 of Dn

is collapsed to a point, this point is a repeller. Then the sum of the
indices of all its finite singular points is (−1)n.

Theorems 1 and 2 are proved in section 2. Note that under the
assumptions of Theorem 2 the polynomial vector field X is bounded.
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The condition stated in Theorems 1 and 2 is only necessary due to
the following result.

Proposition 3. The polynomial differential system

(2) ẋ1 = x1, ẋ2 = x2, ẋk = −xk for k = 3, . . . , n,

in Rn for n ≥ 2 (in the case n = 2 the system is simply ẋ1 = x1,
ẋ2 = x2) satisfies that the sum of the indices of all its finite singular
points is (−1)n, but it is not bounded.

Proposition 3 is proved in section 2.

Here a degenerate hyperbolic sector is a hyperbolic sector of an infinite
singular point having its two separatrices at infinity, i.e. contained in
the boundary S1 of D2.

In what follows we denote by Pk the homogeneous part of the poly-
nomial P of degree k, and we state our main result for the bounded
polynomial vector fields in R2, which provides a necessary and sufficient
condition in order that a polynomial vector field X in R2 be bounded
when it has all its finite and infinite singular points isolated, in other
words, when p(X) has finitely many singular points.

Theorem 4. Let X = (P 1, P 2) be a polynomial vector field of degree
d in the plane such that its Poincaré compactification p(X) has all its
finite and infinite singular points isolated. Then X is bounded if and
only if every infinite singular point q after putting q at the origin of the
local chart U1, doing a rotation of the vector field around the origin of
coordinates if necessary, q satisfies one of the following two conditions
for v > 0 sufficiently small:

(i) k odd and −vP 1
d (1, 0)− v2P 1

d−1(1, 0)− · · · − vd+1P 1
0 (1, 0) > 0;

(ii) k even and
(ii.1) either −vP 1

d (1, 0)− v2P 1
d−1(1, 0)− · · · − vd+1P 1

0 (1, 0) > 0,
(ii.2) or ak[P

2
d (1, 0) + vP 2

d−1(1, 0)) + · · ·+ vdP 2
0 (1, 0)] > 0, where

k > 0 is defined in the following expression

F (u) = −uP 1
d (1, u) + P 2

d (1, u) =
d+1∑
j=k

aju
j, ak ̸= 0,

and there is a degenerate hyperbolic sector in v > 0.

Theorem 4 is proved in section 3.

Note that the zeros u∗ of the polynomial F (u) in the statement of
Theorem 4 provides the first coordinate of the infinite singular points
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(u∗, 0) in the local chart U1 of the Poincaré compactification, and that
this polynomial in the statement of Theorem 4 has no independent
term because we have that the origin of U1 is a singular point.

2. Proof of Theorems 1, 2 and Proposition 3

In the proof of Theorems 1 and 2 we will need the following theorem,
for a proof see for instance Theorem 6.30 of [10] for the case n = 2 and
[14] for the case n > 2.

Poincaré–Hopf Theorem. For every continuous tangent vector
field on the sphere Sn with finitely many singular points, the sum of
their indices is 1 + (−1)n.

Proof of Theorem 1. Let X be a bounded polynomial vector field in
R2 with finitely many finite singular points. Since its compactification
p(X) is defined in the closed unit disc D2, the maximal interval of
definition of all the orbits of p(X) is (−∞,+∞), for more details see
Theorem 1.2 of [10]. Then all the orbits of the vector field p(X) have
α–limit and ω–limit (for definitions, if necessary, see section 1.4 of [10]).

Note that to say that X is bounded is equivalent to say that any
orbit contained in the interior of D2 has ω–limit outside S1. In other
words if we identify S1 to one point, this point is locally a repeller or a
center, whose index is one (we can do this identification in a continuous
way). After this identification we have a 2–dimensional sphere, then it
follows from the Poincaré–Hopf Theorem that the sum of the indices
of all the finite singular points of X is one. This concludes the proof
of the theorem. �

Proof of Theorem 2. Let X be a polynomial vector field in Rn with
finitely many finite singular points. Since its compactification p(X) is
defined in the closed unit ball Dn, the maximal interval of definition
of all the orbits of p(X) is (−∞,+∞). By assumptions we have that
the boundary Sn−1 of Dn is collapsed to a point, this point is a repeller
(note that in particular this implies that X is bounded). We can do
this identification in a continuous way, and we obtain an n–dimensional
topological sphere Sn. Since the index of a repeller is the same as the
index of the origin of the differential system

ż1 = z1, . . . żn = zn.

Since the identity from Sn to Sn has a unique preimage and its deter-
minant is one, the index of any repeller is one (see for more details [14].
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Applying the Poincaré–Hopf Theorem on Sn and denoting by
∑

f iX
the sum of the indices of all the finite singular points of p(X), we obtain∑

f

iX + 1 = χ(Sn) = 1 + (−1)n.

So
∑

f iX = (−1)n. This completes the proof of Theorem 2. �

Proof of Proposition 3. Note that the unique finite singular point of the
differential system (2) is the origin. To compute its index we proceed
as in the proof of Theorem 1 and since the map Sn → Sn defined
by (z1, . . . , zn) 7→ (z1, z2,−z3, . . . ,−zn) has a unique preimage whose
determinant of the Jacobian matrix has determinant (−1)n, the sum
of the indices of all the finite singular points of (2) on p(X) is indeed
(−1)n, but clearly the differential system (2) is not bounded. �

3. Proof of Theorem 4

Assume first that X is bounded. Let n be the degree of X. Without
loss of generality we can assume that the infinite singular point q is at
the origin (0, 0) in the local chart U1 (because we can always make a
rotation to place it at the origin if necessary). We separate the proof
in two cases.

Case 1: n is even. Then from the proof of Proposition 2.2 of [2]
we know that the local phase portrait of p(X) at q is topologically
equivalent to one of the local phase portraits of Figure 2.2 of [2].

We claim that all the local phase portraits of Figure 2.2 satisfy one
of the conditions (i) or (ii). Now we prove the claim. In the local chart
U1 the expression of the vector field X is

u̇ = P 2
d (1, u)− uP 1

d (1, u) + v(P 2
d−1(1, u)− uP 1

d−1(1, u)) + · · ·
+vd(P 2

0 (1, u)− uP 1
0 (1, u)),

v̇ = −vP 1
d (1, u)− v2P 1

d−1(1, u)− · · · − vd+1P 1
0 (1, u).

By looking at the phase portraits (a1), (a2), (b1) and (b2) in Figure
2.2 we can see that k odd and all the orbits in the local chart U1 have
v̇|u=0 > 0 for v > 0 sufficiently small, which is in fact statement (i).

While for the local phase portraits (c2), (c4), (d2) and (d4) in Figure
2.2 k even and all the orbits in the local chart U1 have v̇|u=0 > 0 for
v > 0 sufficiently small, which correspond to statement (ii.1)

Moreover, for the local phase portraits (c1) and (c3) in Figure 2.2 k
even, ak > 0, all the orbits in the local chart U1 have u̇|u=0 > 0 for
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v > 0 sufficiently small and there is a degenerate hyperbolic sector in
v > 0, while for the local phase portraits (d1) and (d3) in Figure 2.2 k
even, ak < 0, all the orbits in the local chart U1 satisfy u̇|u=0 < 0 for
v > 0 sufficiently small and there is a degenerate hyperbolic sector in
v > 0, which is in fact statement (ii.2).

Case 2: n is odd. Then from the proof of Proposition 2.4 of [2]
we know that the local phase portrait of p(X) at q is topologically
equivalent to one of the local phase portraits of Figure 2.4 of [2].

We claim that all the local phase portraits of Figure 2.4 satisfy one
of the conditions (i) or (ii). Now we prove the claim. By looking at
the local phase portrait (a) and at all the local phase portraits (b1) in
Figure 2.4 we see that that k is odd and all the orbits in the local chart
U1 are such that v̇|u=0 > 0 for v > 0 sufficiently small, which is in fact
statement (i).

While for the second and fourth local phase portraits (c1), the second
local phase portraits (d2), and the local phase portrait (d4) in Figure
2.4 k even and all the orbits in the local chart U1 have v̇|u=0 > 0 for
v > 0 sufficiently small, which correspond to statement (ii.1)

Moreover, for the first and third local phase portraits (c1) in Figure
2.4 k even, ak > 0, all the orbits in the local chart U1 have u̇|u=0 > 0
for v > 0 sufficiently small and there is a degenerate hyperbolic sector
in v > 0, while for the first local phase portrait (d2) and the local phase
portrait (d3) in Figure 2.4 k even, ak < 0, all the orbits in the local
chart U1 satisfy u̇|u=0 < 0 for v > 0 sufficiently small and there is a
degenerate hyperbolic sector in v > 0, which is in fact statement (ii.2).

We shall prove the converse implication. As before we can consider
the infinite singular point q at the origin of the local chart U1, doing a
rotation of the vector field with respect to the origin of coordinates if
necessary. Now we claim that there are no solutions in a neighborhood
of (0, 0) ∈ U1 contained in {v > 0} whose ω–limit is q. Consequently
the polynomial vector field will be bounded.

We prove the claim. Since

v̇|u=0 = −vP 1
d (1, 0)− v2P 1

d−1(1, 0)− · · · − vd+1P 1
0 (1, 0),

If condition (i) or (ii.1) holds then v̇|u=0 > 0 for v > 0 sufficiently
small, so in a neighborhood of the (0, 0) ∈ U1 we have that v̇ > 0, and
consequently a finite orbit contained in the interior of D2 can not have
as ω–limit the singular point (0, 0).
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Since

u̇|u=0 = P 2
d (1, 0) + vP 2

d−1(1, 0) + · · ·+ vdP 2
0 (1, 0),

and ak ̸= 0, if condition (ii.2) holds then u̇|u=0 ̸= 0 for v > 0 sufficiently
small and there is a degenerate hyperbolic sector in v > 0, and again a
finite orbit contained in the interior of D2 can not have as ω–limit the
singular point (0, 0). In summary the claim is proved, and therefore
Theorem 4.
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