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This project is devoted to the numerical computation of L1-L2 heteroclinic connections

between invariant tori in the Earth-Moon circular, spatial restricted three-body problem

(RTBP). For that purpose, we describe the parameterization method for invariant mani-

folds of fixed points of flows as an approach to estimate invariant manifolds. Specifically,

we use this method to compute Taylor expansions of invariant manifolds around the libra-

tion points. After that, an error analysis is carried out for this semi-analytical technique

and a range of energies of the Hamiltonian system. Finally, this method is applied to

approximate the center-unstable and the center-stable manifold for both of the collinear

equilibrium points as a final step to provide and estimate heteroclinic connections between

invariant tori.
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Introduction

Homoclinic and heteroclinic connections of hyperbolic invariant sets represent a key part in

the study of dynamical systems from a global point of view. In particular, astrodynamics

constitute an important example of their applications. For instance, these connections

play an essential role in mission design when a dynamical system is used to model the

gravitational effect that the presence of external bodies has on a spacecraft. An important

example of these situations is found on libration point (LP) missions, for which heteroclinic

and homoclinic connections are used in order to connect in some way the vicinity of one

or more libration points of a system.

One of the most relevant examples is found on Genesis Mission. This one was the first LP

mission that used heteroclinic connections between objects around L1 and L2 libration

points of the Sun-Earth system [1]. Whereas the LP mission called Artemis [2] used

heteroclinic connections between L1 and L2 but in this case in an Earth-Moon system.

The complexity and availability of the connections used for the design of LP missions

are restricted because of the computational constraints that are usually imposed by the

available methodology. The main motivation of this project is to contribute to develop a

systematic way to find heteroclinic connections between the collinear libration points for

a restricted three body problem (RTBP) system. The results that are included in this

work are computed for the Earth-Moon RTBP, but the methodology can be exploited for

different values of the mass parameter.

Some previous work related to the homoclinic and heteroclinic analysis in the RTBP has

done before. The first results regarding homoclinic connections in a RTBP system are

introduced in [3]. In this paper, the existence of homoclinic connections between planar

Lyapunov orbits is theoretically proven for different values of the mass parameter. Later,

some individual heteroclinic connections are computed numerically between different types

of tori in [4]. The obtained heteroclinic connections are chosen in order to be interesting

according to mission analysis. Further on, homoclinic connections of tori are computed in

[5] for the spatial Hill’s problem. The spatial Hill’s problem is a particular approximation

of the RTBP when the mass parameter is small enough. In 2007, the first description

of all the heteroclinic connections between tori around L1 and L2 for a fixed energy

level with astrodynamical interest is provided by [6] for the Hill’s problem. Additionally,
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heteroclinic connections between planar Lyapunov periodic orbits are found one by one in

[7] and also by numerical continuation in [8]. Similar computations have been carried out

during the last decades with different approaches. For instance, heteroclinic connections

between pairs of libration points are computed in [9] with focus on mission design, but

also theoretical results are obtained in [10], in this case they are oriented to compute

scattering maps in the spatial Hill’s problem.

In this work, we look for heteroclinic connections between tori around L1 and L2 by

using the parameterization method to study the invariant manifolds associated to these

libration points from the solution of invariance equation.

First, in Chapter 1 we present a theoretical basis and the main definitions of dynamical

systems theory that will appear throughout the rest of the project. The system of differ-

ential equations that describe the dynamics of the RTBP is also presented together with

some of its dynamical properties. The main notation that will be used in the following

chapters is introduced in this part.

Chapter 2 is devoted to introduce the parameterization method as an approach to study

invariant manifolds. The idea of this method is to seek for parameterization based on the

solution of invariance equation, that are simplified through changes of variables that uses

geometrical properties. The developments presented in this chapter follows the indications

found in [14] and [15]. From the invariance equation and in order to obtain the Taylor

expansions of invariant manifolds around fixed points of flows, the cohomological equation

is presented. Therefore, different ways of solving this equation are introduced including a

new style of parameterization called the mixed uncoupled style. Finally, several manners

of determining the quality of the obtained expansions are presented.

Afterwards, in Chapter 3 it is used the parameterization method to represent the center

manifold around the L1 and L2 libration points. The main goal of this part consist on

performing an error analysis for the obtained expansions for the center manifold and also

for the center-stable and center-unstable manifolds when the new style of parameterization

is used. This error analysis allows to determine the domain of validity of the expansions

in terms of energy and the order of computation.

Finally, in Chapter 4 an analysis of the heteroclinic connections between tori around L1

and L2 is carried out. This analysis uses the results from the previous chapter in order

to delimit the error associated to the expansions. The new style of parameterization

is applied, which is very useful when computing the center-stable and center-unstable

manifolds. In this chapter, heteroclinic connections for the planar Lyapunov orbits are

obtained and also four candidates of heteroclinic connections between invariant tori are

found.
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The numerical results presented in this work are firstly based on the software package

available in http://www.maia.ub.edu/dsg/param/. This package includes routines to

compute the expansions of invariant manifolds of fixed points as described in Chapter 2.

However, some of these routines had to be adapted in order to introduce this new style of

parameterization and some others had to be done from scratch. More information about

the authorship of the used programs can be found in Appendix A.

http://www.maia.ub.edu/dsg/param/
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Chapter 1

Preamble

The following chapter is devoted to present some of the key and necessary definitions

and results that will be useful later through the developments and outcomes of the next

chapters. Furthermore, we start to introduce the main notation that will be used later on

throughout the project. We start by introducing what a dynamical system is and some

of its properties and finally the restricted three body problem is introduced. The study

of this problem will be the focus of the rest of the project.

1.1 Dynamical Systems

A dynamical system can be described as a way to define the evolution with time of any

point in a given Euclidian space S, that might be Euclidian or any other open subspace

of an Euclidian one [11]. Due to the characteristics of our problem and for simplicity we

can consider S to be Rn.

Consider x = (x1, . . . , xn) that denotes the state of a point. A dynamical system in Rn

describes the evolution of this state in terms of the time t. If time is measured only using

integer time values, we talk about a discrete dynamical system which can be presented as

the iteration of a function such as [11],

xt+1 = f(xt), t ∈ Z or N. (1.1)

In this case, the sub-index t is used to emphasize that the state of the system belongs to

time t.

If time can be expressed in a continuous way with t ∈ R, then we talk about a continuous

dynamical system. In this scenario, the problem can be expressed using a system of
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autonomous Ordinary Differential Equations,
ẋ1 = X1(x1, . . . , xn)
...

ẋn = X1(xn, . . . , xn),

(1.2)

with Xi : Rn → R that are independent from time. Equation (1.2) can be described in a

more compact way as,

ẋ = X(x), (1.3)

being X : Rn → Rn. From now on, we can consider that every time we talk about a

dynamical system we will be referring to a continuous one.

In case the function X is continuously differentiable and hence the system can be in-

tegrated for all t ∈ R, it is possible to define a function called time-t flow or t-map,

φ : R × Rn → Rn with t ∈ R. This function maps the state of x to xt as the state after

moving in time until t starting from x0 at t0. Therefore, the function is usually expressed

like φ(t; t0, x0). By introducing the notation φt(x) := φ(t; 0,x), with φt : Rn → Rn, the

function can be stated in terms of the following initial value problem

d
dt
φt(x) = X(φt(x))

φ0(x) = x,

}
, (1.4)

where φt(x) can be thought as a C1 function in x and t and it is continuous in the variable

x [11]. We can assume for the rest of the project that every dynamical system can be

expressed in terms of the flow as in (1.4).

Let us introduce now some definitions regarding the flow sense and that will appear later

on. Given an initial condition x0 ∈ E ⊂ Rn, the function φt(x0) : R → E with t ∈ R
defines the orbit of the flow through the point x0 [11]. This trajectory through the initial

condition defines a motion along the curve that can be expressed as the set

γx0 = {x ∈ E |x = φt(x0), t ∈ R} ⊂ E. (1.5)

In case this set is only made of by γx0 = {x0} then x0 is called a fixed point of the

dynamical system and it also satisfies that X(x0) = 0. Another particular case for the

set γx0 is called periodic orbit with T > 0 being the period. In such a case, the flow must

fulfill these two conditions: φT (x) = x and φt(x) 6= x for any t < T .

However, if one needs to think about a continuous dynamical system in a discrete way

in order to simplify the complexity of a problem, it is possible to draw on to Poincaré
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maps. Let’s consider a dynamical system such as (1.3) and a differentiable and transversal

hypersurface Σ = {x ∈ U | g(x) = 0} to the vector field X for all x ∈ Σ. This means

that the scalar product is (∂g/∂x) ·X(x) 6= 0 for all x ∈ Σ. This section is called the

Poincaré section. Suppose that (1.3) has a periodic solution with period T denoted by

φT (x0) satisfying that x0 ∈ Σ. Then, we can find an open subset U from Σ such that the

orbits with initial conditions y ∈ U return to Σ in a certain time [11]. Then, the map

that associates the points from U with the points corresponding to the first return to Σ

is called Poincaré map. This map can be denoted by P in the following way:

P : U −→Σ

x 7−→φ(τ(x),x),
(1.6)

where τ is the first time-return map of the point x to the Poincaré section. In this way,

thanks to Poincaré map, one can turn periodic orbits into fixed points such as P (x0) = x0

by construction.

We end this section by introducing the notion of invariant manifolds associated to dynam-

ical systems. Let consider a set S ⊂ Rn such that S is an invariant set under the vector

field X from (1.3) if for any initial condition x ∈ S satisfies φt(x) ∈ S for all t ∈ R. In

case that S has the structure of a differentiable manifold, then S is an invariant manifold

[12].

We can distinguish two important types of invariant manifolds. These are the stable

manifold and the unstable manifold. Let consider an invariant manifold S of initial

conditions. Then we can denote by W s(S) (resp. W u(S)) the stable manifold formed by

a set of initial conditions such that their flows converges to the original set as t → +∞
(resp. t→ −∞). In these terms, we can write

W s(S) = {x ∈ S | d(φt(x), S)
t→+∞→ 0},

W u(S) = {x ∈ S | d(φt(x), S)
t→−∞→ 0},

(1.7)

where d denotes the Euclidian distance application in Rn.

1.2 The Restricted Three-Body Problem

The restricted three-body problem (RTBP) describes the motion of a body with a neglected

mass under the influence of two other bodies with masses m1 and m2 that are revolving

around their center of mass in circular orbits. These two bodies are called primaries and

they attract gravitationally the massless body while defining its motion. This problem
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can be stated in terms of a dynamical system and it represents one of the most important

and relevant application of the dynamical systems implemented to real life.

The problem is defined in Rn with n = 6 and the massless body state is given by

x = (x1, . . . , x6). The three first coordinates define the position of the body and they

are denoted by (x, y, z) while the rest denote the mass momentum using as notation

(px, py, pz). By performing a change of the coordinate system and choosing one that ro-

tates with the primary bodies, it is possible to obtain a system where the two primaries

are separated by only 1 unit of distance [13]. In that case, in terms of positions and

momenta, the first primary is located at (µ, 0, 0, 0, µ, 0) while the other one is fixed at

(µ−1, 0, 0, 0, µ−1, 0), being µ = m2/(m1 +m2). In such a way, one can obtain a problem

that can be described by the following Hamiltonian system

H(x, y, z, px, py, pz) =
1

2
(p2
x + p2

y + p2
z)− xpy + ypx −

1− µ
r1

− µ

r2

. (1.8)

In this case, r1 =
√

(x− µ)2 + y2 + z2 and r2 =
√

(x− µ+ 1)2 + y2 + z2 define the

distances of the particle in study to the primary bodies. The value of H is commonly

known as the energy of the body.

By taking this Hamiltonian, we can express this same problem in terms of a system of

differential equations like (1.3) using that q̇ = ∂H/∂pq and ṗq = −∂H/∂q for q ∈ {x, y, z}.
With that, one obtains a system in the form of (1.2) with

ẋ1 = px + y, ẋ4 = py −
1− µ
r3

1

(x− µ)− µ

r3
2

(x− µ+ 1),

ẋ2 = py − x, ẋ5 = −px −
1− µ
r3

1

y − µ

r3
2

y,

ẋ3 = pz, ẋ6 = −1− µ
r3

1

z − µ

r3
2

z.

(1.9)

The RTBP has only 5 fixed points also known as libration points. They are denoted by

Li with i ∈ {1, . . . , 5}. On one hand, the two latest points L4 and L5 were discovered by

Lagrange and they form an equilateral triangle with the primary ones. Their positions

in the space are given by (x, y, z) = (−1/2 + µ,∓
√

3/2, 0) respectively. While, on the

other hand, the other three points were found by Euler and they are collinear with the

primaries, so they have y = z = 0. The distance dLj for j ∈ {1, 2, 3} for any of these

libration points to the closest primary can be found by solving as the only real root of

the Euler’s quintic equation:

d5
j ∓ (3− µ)d4

j + (3− 2µ)d3
j − µd2

j ± 2µdj − µ = 0, j = 1, 2

d4
j + (2 + µ)d4

j + (1 + 2µ)d3
j − (1− µ)d2

j − 2(1− µ)dj − (1− µ) = 0 j = 3.
(1.10)



1.2. The Restricted Three-Body Problem 9

With this equation, one can find the positions xLj on the x-axis for these fixed points and

one can prove that is satisfied the condition given by

xL2 < µ− 1 < xL1 < µ < xL3 . (1.11)

This inequation tells us the relative locations of the fixed points respect to the primary

bodies. More information about the properties of RTBP and its development can be

found in [13].
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Chapter 2

The Parameterization Method

In this chapter the main core of the project is presented. The parameterization method

is an approach to obtain invariant manifolds of dynamical systems in the form of pa-

rameterizations, that are found by solving invariance equations which are first simplified

through the use of geometrical properties. Its theoretical use leads to proofs of existence

of invariant manifolds and its numerical application leads to the actual computation of

high order approximations of these manifolds.

In this case, only continuous dynamical systems will be considered as the final goal is to use

this method for the computation of invariant manifolds around fixed points of vector fields.

Particularly, it will be applied to the Earth-Moon RTBP to compute approximations of

the center-stable and the center-unstable manifolds around the collinear libration points

L1 and L2. Note that this includes the invariant stable and unstable manifolds of all the

invariant objects (such as periodic orbits and tori) inside the center manifold.

The chapter begins by defining the invariance equation for flows of continuous dynamical

systems and it follows by solving the equation using Taylor expansions around fixed points

of the system. In this way, the cohomological equation is introduced. The chapter ends by

presenting different ways of solving this equation and how to quantify the associated error

to these expansions. The contents explained below follow the theoretical explanations and

developments from [14, 15].

2.1 Invariance Equation for Invariant Manifolds

Let U be the phase space where a dynamical system described by a vector field X is

defined. Then, the vector field is defined like X : U → U and generates a continuous

dynamical system on the manifold U . The action of this system on the given manifold is

denoted by the local coordinates x ∈ U and it is also considered a system of differential

equations given by ẋ = X(x). Let denote by Φt(x) the time-t flow associated to this

dynamical system.
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Assume F ⊂ U is a submanifold that can be described by an injective immersion W :

V → U . In this case, W defines a parameterization of the submanifold F by F = W (V).

Let suppose there exists a vector field f : V → V with V being its ambient space that

describes the internal dynamics on the submanifold V by ṡ = f(s), where s are the local

coordinates on V . In the same way as before, the internal flow on V can be denoted by

φt(s).

Then, the submanifold F parameterized by W is said to be X-invariant if it satisfies the

following equation

Φt(W (s)) = W (φt(s)). (2.1)

The idea of the above equation is that given an initial condition s in the submanifold F ,

the result of taking his image in the phase space U and integrating it until a time t using

the flow Φt, must be the same as integrating in the submanifold using the internal flow

φt and then calculate its image in U through the parameterization W .

This equation can be differentiated at t = 0 by using the definition provided in (1.4).

In this way, one obtains the infinitesimal version of the invariance equation for invariant

manifolds described by the parameterization W as

X(W (s)) = DW (s)f(s). (2.2)

2.2 Invariant Manifolds of Fixed Points

In this section we would like to a compute d-dimensional manifold that contains a fixed

point p from a vector field ẋ = X(x), with X : Rn → Rn defining a n-dimensional

continuous dynamical system, and it is tangent to a d-dimensional eigenspace of the

differential of X and invariant by the flow. For that purpose, one have to solve the

invariance equation (2.2) by using changes of variables and some manipulations.

Consider p the fixed point of the system ẋ = X(x) satisfying that X(p) = 0. Assume

that the differential of the vector field DX evaluated at the fixed point has the set of

eigenvalues denoted by

SpecDX = {λ1, . . . , λn}, λi ∈ C ∀i = 1, . . . , n, (2.3)

and each one of these eigenvalues has associated an eigenvector denoted by vi ∈ Cn for

each λi. Let’s denote by Φt(x) the associated flow to this system.

Taking all of this into account, one can define the matrix P ∈ Cn×n composed by the

eigenvectors such like P = (v1, . . . ,vn). This matrix can be used to determine the change
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of variables given by

x = p+ Py, y = (y1, . . . , yn)> ∈ Rn. (2.4)

This change defines an equivalent dynamical system given by the vector field Y : Rn → Rn

with ẏ = Y (y). From the previous definitions, this system can be written as

ẏ = Y (y) = P−1X(p+ Py), (2.5)

and then it satisfies that Y (0) = 0, so the origin is a fixed point of the new dynamical

system. In the same way, by using the chain rule, one can see that the differential of the

vector field evaluated at this fixed point fulfills that

DY (y)
∣∣
y=0

= P−1DX(p+ Py)
∣∣
y=0

= P−1DX(p)P = diag{λ1, . . . , λn} = M ,

by definition of P . Then, by Taylor expansions, the system can be approximated by

ẏ = My + O(‖y‖2), being M the diagonal matrix composed by the eigenvalues of the

differential of X at p.

As we can see, our initial problem has turned out into the computation of an expansion

of a d-dimensional manifold that contains the origin, invariant by the flow associated to

Y , and is tangent to the y1, . . . , yd coordinates as the eigenspace of interest is defined by

the set {y ∈ Rn | yd+1 = · · · = yn = 0}.

So a parameterization of a manifold satisfying the above conditions is looked for and

it is denoted by W : Cd → Cd with d ≤ n. The internal dynamics in the manifold

are described by the dynamical system given by the differential equation ṡ = f(s) with

f : Cd → Cd and s ∈ Cd being the local coordinates in the manifold. The flow associated

to internal dynamics is denoted by φt(s).

Then, our goal is to find the expressions of the functions f and W . For that reason, it is

necessary to solve the invariance equation given by (2.2) and, in this particular case, can

be written as

Y (W (s)) = DW (s)f(s). (2.6)

The parameterization given by W and the internal dynamics f that are obtained by

solving the above equation are related with the y coordinates described by the change in

(2.4). If one would want to recover the original system described by the x coordinates

and obtain the parametrization W̄ of the manifold in the original system of coordinates
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is necessary to undo the change by taking

W̄ (s) = p+ PW (s). (2.7)

2.2.1 The Cohomological Equation

The goal of this section is to compute approximations of the functions W and f that

solve the invariance equation given by (2.6). For that purpose, we consider the expansions

of them in power series such like

W =
∑
k≥0

W k, f =
∑
k≥0

fk. (2.8)

In either case, each one of the summands is a vector of homogeneous polynomials of

degree k defined in the s = (s1, . . . , sd)
> coordinates associated to the dynamics reduced

to the invariant manifold. On the one hand, W k is an n-vector of this polynomials, while

on the other hand, fk is a d-dimensional vector. Taking everything into account, each

component can be written as follows

W k = (W 1
k , . . . ,W

n
k )>, W i

k =
∑

m1+···+md=k

W i
k,ms

m1
1 · · · s

md
d

fk = (f 1
k , . . . , f

d
k )>, f ik =

∑
r1+···+rd=k

f ik,rs
r1
1 · · · s

rd
d ,

(2.9)

with (m1, . . . ,md), (r1, . . . , rd) ∈ Nd.

With this assumption, one can solve the invariance equation for W and f by solving it

order by order

Y (W (s))
∣∣
k

= DW (s)f(s)
∣∣
k
, (2.10)

in this case |k denotes the part of the Taylor series that is an homogeneous polynomial of

degree k.

First of all, in order to satisfy the properties imposed by the definition of the parametriza-

tion, one can defined the two first orders. On the one hand, the independent terms of

both W 0 and f 0 must be

W 0 = 0, f 0 = 0, (2.11)

because of the manifold has to contain the fixed point and then the invariance equation

must be satisfied.

On the other hand, one have to assure that the manifold is tangent to the d-dimensional

eigenspace characterized by the first d-variables. In these terms, it is only necessary to



2.2. Invariant Manifolds of Fixed Points 15

take the first degree of the parametrization as

W 1 = (s1, . . . , sd, 0, . . . , 0). (2.12)

With that, and applying a Taylor expansion around the fixed point of the vector field Y

to the invariance equation, the value of f at first order will be deduced from

Y (W (s))
∣∣
1

= Y (0) +DY (0)DW (0)
∣∣
0
s+O(‖s‖2) = M

(
Id×d

0

)
s+O(‖s‖2)

then, as f 0 = 0, the first order must satisfy that

f 1 = (λ1s1, . . . , λdsd, 0, . . . , 0)> (2.13)

Then, assuming that at each order k the values of W<k = W0 + · · ·+W k−1 and f<k =

f 0 + · · ·+ fk−1 are known, we can construct an iterative method to solve the invariance

equation at each order k. By taking the left hand side in (2.10) and applying a Taylor

expansion at the fixed point, one obtains the expression

Y (W (s))
∣∣
k

= Y (W≤k)
∣∣
k

= Y (W<k +W k)
∣∣
k

= Y (W<k)
∣∣
k

+DY (W<k)W k +O>k
= Y (W<k)

∣∣
k

+DY (0)W k +O>k,

where for the sake of simplicity, the evaluation at the reduced coordinates s has been

omitted. Now, this expression must satisfy the right hand side of the same equation

(2.10). If we compute the order k at the right hand side by applying that the differential

of the parametrization W at order k reduces its order by 1, one obtains the following

expression

DW (s)f(s)
∣∣
k

= DW≤kf≤k
∣∣
k

=
k∑
l=1

DW k−l+1f l

= DW 1fk +
k−1∑
l=2

DW k−l+1f l +DW 1fk.

Taking these two expressions together and putting all the known terms at the right hand

side of the equation and the rest at the left hand side, we obtain

DY (0)W k −DW kf 1 −DW 1fk = −Rk,
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where Rk is the right hand side of the equation and contains all the known terms. It can

be expressed by

Rk = Y (W<k)
∣∣
k
−

k−1∑
l=2

DW k−l+1f l. (2.14)

Then, if we apply the properties at orders 0 and 1 for f and W and the definition of

DY (0), it is possible to express the above equation in terms of the coefficients of each

one of the homogeneous polynomials at order k by

(〈λ̄,m〉 − λi)W i
k,m + f ik,m = Ri

k,m, i ∈ {1, . . . , d},

(〈λ̄,m〉 − λi)W i
k,m = Ri

k,m, i ∈ {d+ 1, . . . , n},
(2.15)

where λ̄ is defined as λ̄ = (λ1, . . . , λd). Then, 〈λ̄,m〉 is the dot product between λ̄ and

m = (m1, . . . ,md) the vector of the exponents of each sj for the component i of the

parametrization W at order k.

The equation (2.15) is known as the cohomological equation at order k and it gives us

an expression to compute the values of the manifold and the vector field of the internal

dynamics at order k.

2.2.2 Styles of Parametrizations

The cohomological equation in (2.15) can be solved for the manifold provided that there

are no cross-resonances for i ∈ {d+ 1, . . . , n}. This means that it has to be satisfied that

λi 6= 〈λ̄,m〉 for any i ∈ {d+ 1, . . . , n}. The solution of the equation for i ∈ {1, . . . , d} can

be computed in many different ways. That is why there are different styles of parametriza-

tion depending on the chosen strategy to solve the cohomological equation.

The Graph Style

The graph style is the simplest way to solve the cohomological equation. In this case, one

chooses
W i
k,m = 0, f ik,m = Ri

k,m, i ∈ {1, . . . , d},

W i
k,m =

Ri
k,m

〈λ̄,m〉 − λi
, i ∈ {d+ 1, . . . , n}.

(2.16)

This choice ensure to overcome any internal resonance in the d first coordinates of the

manifold. An internal resonance takes place when 〈λ̄,m〉 − λi = 0 for i = 1, . . . , d. It is

called internal because λi is one of the components in λ̄. While a cross resonance occurs

when 〈λ̄,m〉 − λi = 0 when i = d+ 1, . . . , n.
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Hence, the manifold in those coordinates is given by the defined first order of W , being

W 1(s) = s1, . . . ,W
d(s) = sd. This method is called graph style because it defines a graph

respect to the variables (s1, . . . , sd).

The Normal Form Style

The normal style consists on taking f ik,m = 0 when there is no internal resonances. If not,

in order to overcome the problem, W i
k,m is taken as null. In such a case, the choice of the

solution is given by

W i
k,m = 0, f ik,m = Ri

k,m, if λi = 〈λ̄,m〉,

W i
k,m =

Ri
k,m

〈λ̄,m〉 − λi
, f ik,m = 0, otherwise.

(2.17)

The Mixed Style

Sometimes it is useful to use an intermediate strategy between the graph style and the

normal form style. These kind of strategies are known as mixed styles and they are used

to reveal the existence of invariant submanifolds in the reduced space.

Suppose that given the set of indexes I1, . . . , IL ⊂ {1, . . . , d} we want the submanifolds

formed by Vi = {sj = 0 | ∀j ∈ Ii} for i = 1, . . . , L to be invariant by the reduced dynamics

described by ṡ = f(s). Without lose of generality, let us consider a set given by I1 with

V1 = {si = 0 | i ∈ I1} and the same argument is valid for the remaining set of indexes.

The reduced dynamics in parameter space can be written as
ṡ1 = f 1(s1, . . . , sd),
...

ṡd = fd(s1, . . . , sd).

(2.18)

Then, to make sure that the vector field ṡ = f(s) leaves invariant the set V1 it is sufficient

that f j(s1, . . . , sd) = 0 for any s such that sj = 0 for all j ∈ I1. Given a j in I1, to satisfy

this condition we need that

f jk(s) = λjsj +
∞∑
|m|=2

fk,mm
jsm1

1 . . . smdd = 0, j ∈ I1.

But, if s fulfills that si = 0 for all i ∈ Ii, then the only summands that are not canceled

in the above equation are those that have mi = 0 for all i ∈ I1. Therefore, if we ask the

corresponding factors to be f jk,m = 0, then f jk(s) = 0.
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This means that, when the mixed style is used for a given set of indexes I1, . . . , IL, the

cohomological equation in (2.15) is solved by choosing

W i
k,m =

Ri
k,m

〈λ̄,m〉 − λi
, f ik,m = 0, if ∃l : i ∈ Il and mj = 0∀j ∈ Il,

W i
k,m = 0, f ik,m = Ri

k,m, otherwise.

(2.19)

This method can only be applied if 〈λ̄,m〉 − λj 6= 0 for all m ∈ Nd with mi = 0 for all i

in any Il, l = 1, . . . , L.

The Mixed Uncoupled Style

In some cases (as in the one presented in the next chapter), it is useful to have the first

d− 1 differential equations of the reduced dynamics uncoupled from the last one. This is

to have a system of ODE for the reduced dynamics such as

ṡ1 = f 1(s1, . . . , sd−1),
...

ṡd−1 = fd−1(s1, . . . , sd−1),

ṡd = fd(s1, . . . , sd−1, sd).

(2.20)

This means that the first d − 1 components of the reduced flow are independent of

the last component of the inditial condition. This is, the first d − 1 components of

φt(s1, . . . , sd−1, sd) and φt(s1, . . . , sd−1, 0) are equal. In order to impose the condition in

(2.20), since

f jk(s) = λjsj +
∞∑
|m|=2

f jk,ms
m1
1 . . . smdd , j = 1, . . . , d− 1, (2.21)

it is sufficient that, if md 6= 0, we choose f ik,m = 0 and W i
k,m = Ri

k,m/(〈λ̄,m〉 − λi). Again

this method can only be applied when λi − 〈λ̄,m〉 6= 0 when f ik,m needs to be zero.

2.3 Error Estimation

When the parameterization method is applied to compute numerical approximations of

the internal dynamics and the parameterization of the manifold, an error estimation

is needed in terms of evaluating the quality of the obtained expansions for W and f .

Assuming that these two expressions are computed up to a maximum order kmax, then
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we will have the truncated expansions given by

W k≤kmax := W 1 +W 2 + · · ·+W kmax , fk≤kmax := f 1 + f 2 + · · ·+ fkmax .

For the sake of notation simplicity, let’s denote by W and f these two truncated power

series for the rest of the project.

Let’s take s0 as an initial condition in parameter space, then it is fulfill that φ0(s0) = s0

and W̄ (s0) = Φ0(W̄ (s0)) in terms of the corresponding parameterization of the manifold

in the original variables given by the x coordinates. Then, by choosing an integration

time T that will depend on the study under consideration, we will have the following ways

to determine the numerical error associated to the expansion:

� Error in the invariance equation. By definition of the parameterization method,

the obtained expressions should satisfy the invariance equation given by (2.6). Then,

this expression becomes a useful method to estimate the deviation of the estimated

expansions by computing

eI(T, s0) = sup
t∈[0,T ]

∥∥X(W̄ (φt(s0)))−DW̄ (φt(s0))f(φt(s0))
∥∥ . (2.22)

� Error in the orbit. The parameterization of the manifold must satisfy the con-

dition expressed by (2.1). This means that integrating up to time T using original

coordinates must be equal to integrate until T in parameter space and computing

the image in original space through the parameterization W . This gives us a way

to estimate the error by computing

eO(T, s0) = sup
t∈[0,T ]

∥∥W̄ (φt(s0))− Φt(W̄ (s0))
∥∥ . (2.23)

� Error in the reduced first integral H. Assuming that the system ẋ = X(x)

can be written in a hamiltonian form given by H(x), then the value of H must

be constant through an orbit characterized by an initial value x0. Then, this same

behavior should be preserved when integrating in parameter space and then its

image in the original space is computed through the parameterization. Taking this

into account, another way of estimating the error is given by

eH(T, s0) = sup
t∈[0,T ]

∥∥H(W̄ (φt(s0)))−H(W̄ (s0))
∥∥ . (2.24)

For the rest of the chapters, we will refer to the error in the orbit every time we talk

about the error made in the computation of expansions. This error is the most relevant
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from the point of view of the applications.



21

Chapter 3

Accuracy tests of the invariant

manifolds expansions around the L1,2

collinear points of the Earth-Moon

RTBP

In this chapter we present two examples of manifold computations using the parametriza-

tion method explained in the last chapter. We first apply this method to compute the

center manifold of L1 and L2 of the RTBP for the Earth-Moon mass parameter µ. Later,

the same method is applied to compute the center-stable and center-unstable manifolds

of L1 and L2 respectively for the same problem. In order to do that, two styles of

parametrization are used: the mixed style and a mixed uncoupled style. A representation

of the computational error depending on the order of the computed expansions is done.

This representation allows us to determine the range of validity of each expansion in terms

of the degree and the energy of the manifold.

3.1 Computation and Representation of the Center

Manifold

We first start by computing and representing the center manifold W c of L1 and L2 of

the Earth-Moon RTBP as a 4-dimensional manifold of a 6-dimensional dynamical system

using the mixed style. This means that in our case, d = 4 and n = 6 and then the

parameterization of W c(L1,2) is1 W : R4 → R6. Let’s denote by ẋ = X(x) the system of

ODE that represents the vector field associated to the Earth-Moon RTBP given by (1.9).

1The parameterization W is defined in a neighborhood of 0 and its size is determined by the accuracy
tests.
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The eigenvalues of DX(L1,2) have the following form:

SpecDX(L1,2) = {iωp,−iωp, iωv,−iωv, λ,−λ}, (3.1)

with λ ∈ R and ωp, ωv, λ > 0. Note that we have include the sub-indexes p and v to

indicate the direction of the eigenvectors up and uv associated to the eigenvalues ±iωp
and ±iωv. In each case, p means planar as the eigenplane spanned by the vectors ūp and

ūp has components z = pz = 0 while v denotes vertical as the eigenplane corresponding

to eigenvalues ±iωv has only the vertical components non-zero (x = y = px = py = 0).

Taking (3.1) into account, the linear behavior around the L1 and L2 points is of the

type center×center×saddle [14]. Therefore, by the Lyapunov’s Center Theorem, one can

ensure that each center gives rise to a family of periodic orbits named planar and vertical

and they are part of the center manifold of the fixed point L1,2 [14].

In this way, if one wants to compute the corresponding center manifold W c by using the

parameterization method it is sufficient to choose as d the d first coordinates of X that

generate that center manifold. Hence, the obtained parameterizationW contains L1,2 and

it is tangent to the d-dimensional eigenspace of DX(L1,2) spanned by the eigenvectors

of ±ωv and ±ωp by construction and therefore, this parameterization corresponds to the

center manifold by definition of this one.

Taking everything into account, we will proceed by applying the change of coordinates in

(2.4). By doing this, the dynamical system under study turns out to be

Y (y) := P−1(X(L1,2 + Py)), (3.2)

where P is the matrix that has as columns de eigenvectors of ±ωp, ±ωp and ±λ in that

order. This change allows us to compute the center manifold of the system expressed in y

coordinates by using the parameterization method explained in Chapter 2. The method

will give a parameterization W and the reduced vector field f . In this way, by applying

the following change

W̄ (s) = L1,2 + PW (s), (3.3)

one can obtain a parameterization of the 4D center manifold of L1,2 in the original system

of coordinates.

To compute the parameterization of the center manifold W c(L1,2) we choose the mixed

style with L = 2 and a set of indexes formed by I1 = {1, 2} and I2 = {3, 4}. This choice is

numerically found to be free of resonances2. Therefore, this ensures that {W̄ (s1, s2, 0, 0)}s1,s2
will describe the 2D manifold spanned by the family of the planar Lyapunov orbits,

2This is also a requirement for the application of the Lyapunov’s Center Theorem.
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whereas {W̄ (0, 0, s3, s4)}s3,s4 describes the 2-dimensional manifold corresponding to the

vertical Lyapunov orbits. Once the parameterization is computed, our goal is to represent

Poincaré sections at Σh = {s4 = 0} of iso-energetic slices of the center manifold being h

the energy level. This means that since W c is a 4-dimensional manifold, these slices are

2D and then they can be represented on a plane as in Figure 3.1.

Given an energy level h and a Poincaré section described by Σh = {s4 = 0}, we know that

there is only one planar Lyapunov orbit, which in parameter space is given by points of

the form (s1, s2, 0, 0) for some s1 and s2 values. Then, if one considers an initial condition

of the form (0, s2, 0, 0), it is possible to adjust s2 in order to obtain the given energy level.

Then, by integrating in the reduced space using the computed expansion for f(s), the

external curves in Figure 3.1 are obtained. The rest of points in the Poincaré section of

the iso-energetic slice in the center manifold are all univocally defined by the components

(s1, s2) as s4 = 0 and the s3 component is obtained from the energy. By numerical

computation, it is found that if we start at a point (s1, s2) that is outside the region

bounded by the planar Lyapunov orbit it is not possible to find any s3 that satisfies the

given energy. This same behavior can be appreciated when these plots are computed by

using linear approximations [16]. Therefore, all te points in the Poincaré section of the

iso-energetic slice are bounded by the planar Lyapunov orbit. In particular, the point

with s1 = s2 = 0 corresponds to the vertical Lyapunov orbit.

In order to represent the dynamics inside that curve we take equally spaced initial con-

ditions over the s2 axis and we compute the s3 value from the energy. This is taking

initial conditions of the form (0, s2, s3, 0) with (0, s2) inside the region bounded by the

outer curve. Then, we can integrate each one of these initial conditions numerically using

the computed expansion for f(s) to finally represent a number of Poincaré sections large

enough in order to fill a curve inside the bounded region. In this way, we obtain all the

interior points in Figure 3.1. These invariant closed curves inside the region bounded

by the planar Lyapunov orbit correspond to the intersections of the 2D invariant tori of

W c(L1,2) at the fixed energy with the Poincaré section Σh. A more exhaustive numerical

exploration (that would also be computationally more costly) would also reveal periodic

orbits, secondary tori in an island chain structure and even chaotic dynamics.

In Table 3.1 we present the computing times that are necessary to obtain the points from

one of the plots in Figure 3.1 by integrating numerically the obtained expansion for the

reduced vector field. We get these times from the computation of iso-energetic slices at

h = −1.585 for W c(L2) at several orders of computation by taking 50 initial conditions

over the s2 axis and for each one of these points 100 of Poincaré sections are computed.



24 Chapter 3. Accuracy tests of the invariant manifold expansions

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

s
2

s1

W
c
(L1), h=-1.585

(a) W c(L1) at energy level h = −1.585.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

s
2

s1

W
c
(L1), h=-1.570

(b) W c(L1) at energy level h = −1.570.

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

s
2

s1

W
c
(L2), h=-1.585

(c) W c(L2) at energy level h = −1.585.

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

s
2

s1

W
c
(L2), h=-1.570

(d) W c(L2) at energy level h = −1.570.

Figure 3.1: Poincaré sections at Σh = {s4 = 0} of W c(L1) and W c(L2) for two fixed levels of
energy −1.580 and −1.570 of the Earth-Moon RTBP. The parameterizations are all computed
using a mixed style with I1 = {1, 2} and I2 = {3, 4} and up to a maximum order 12.

3.1.1 Error Estimation

Our next goal consists on determining the domain of validity of the expansions for W c

using the eO error estimation. This validity needs to be done for several energy levels

and for different orders of the expansions of the center manifold in order to determine

the quality of them. For that reason we need to choose the right initial conditions on the

center manifold and a consistent time Th of integration to compute the maximum error

in the orbit at each order of computation and for each valid energy value h.

The computed Poincaré sections in Figure 3.1 represent only the intersections of the

10 20 30 40
24.371 389.286 2407.5 9274.6

Table 3.1: For several orders, computing times (in seconds) of an iso-energetic slice of W c(L2)
at h = −1.585 by taking 50 initial conditions in the s2 axis and computing 100 Poincaré
sections. The results are obtained on an AMD Ryzen 7 @ 2208.649Mhz.
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10 20 30 40
3.394 51.455 304.61 1196.0

Table 3.2: For several orders, computing times (in seconds) of a set of points Sh from W c(L2)
at h = −1.580 and Sh made of 19641 points. The results are obtained on an Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz by using multi-threaded computation and 16 threads.

trajectories starting from points of the form (0, s2, s3, 0) with s2 bounded by the planar

Lyapunov orbit. However, for efficiency reasons, we would take as initial conditions a

grid of equally spaced points over the Poincaré section Σh contained inside the planar

Lyapunov orbit for a given energy value h at W c. To do that, we choose a grid of points

bounded by a square defined by the maximum and minimum s1 and s2 values of the

planar orbit. Then, given a point in the square, we need to determine if it is inside or

outside the considered region. In this way, we compute its angle θ respect the s1 axis and

its distance R to the origin. Therefore, if we take the corresponding point of the planar

orbit at the same angle θ and at distance Rp from the origin, the given point will be inside

the bounded region if R < Rp. However, since the planar orbit is computed by numerical

integration, it is not always possible to get a point on the curve at the exactly given angle

θ. To compute this point we proceed by polynomial interpolation by using Langrange

polynomials of degree 4.

Taking all of these into account, a set of n equally spaced points over the Poincaré section

Σh is obtained. Next, we integrate them using reduced dynamics until their second

intersection with Σh. Over all of these trajectories starting from the grid we take np

points and hence we have a set Sh made of n×np points over the 4-dimensional manifold

of L1,2 that represents a significant sample of the center manifold. In Table 3.2, the

computed times that are necessary to obtain these sets of points Sh for several orders

are presented. Notice that these times increase in a non linear way as the order of the

expansions is increased. In this case, the greater part of the computational effort is focused

on the numerical integration of the expansions starting from the grid of n points over the

Poincaré section Σh until the second intersection with Σh.

Finally, by choosing as the integration time Th for the error in the orbit eO the maxi-

mum of the periods of the planar and vertical Lyapunov periodic orbits of energy h, we

compute the value of eO(Th, s) for all the points s ∈ Sh. Figure 3.2 shows the maximum

ε(Th, Sh) value in a logarithmic scale of all the computed eO(Th, s) at each energy level

and for different orders of the expansions. As we can see, for small energy values, the

obtained improvement by increasing the order of expansions is null as the observed error

corresponds to the error made during the integration procedure. Both plots shows that

the expansions computed at order 20 provides a precision of ∼ 10−6 up to energy −1.580.

The rest of the errors increase as the energy is larger and finally they all collapse.
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Figure 3.2: For the expansions of W c(L1) and W c(L2) for the Earth-Moon RTBP, computed
up to orders indicated, evaluation of the maximum error estimate ε(Th, Sh) for different energy
values.

Lastly, for some energy values of h, the error eO(Th, s) is represented in terms of the

initial condition s for all the points in the set Sh such that s4 = 0. This means that the

point s belongs to the computed grid on the Poincaré section Σh. The Figure 3.3 shows

the variation of the error in terms of the initial conditions on the 2D Poincaré section for

the center manifold of L1 and L2 in a logarithmic scale. Both results are computed up

to order 20 for the energy levels −1.585 and −1.578 using the expansions for L1 and L2

respectively. As we know for the plots in 3.2, these expansions give us a precision by 10−4.

However, Figure 3.3a only shows errors eO less than approximately 10−7. This means that

the obtained ε(Th, Sh) corresponds to a point si with s4 6= 0, this si is obtained through

one of the trajectories starting at Σh. Another significant thing that is displayed in Figure

3.3 is that the error made in the expansions is not homogeneous over the Poincaré section

{s4 = 0}, but the larger errors are obtained on the outer initial conditions inside the

region bounded by the planar Lyapunov orbit. Notice that the error estimations from

[15], that are obtained by choosing initial conditions just on the s2 axis, turn out to be

too optimistic.

3.2 Computation of the Center-Stable and Center-

Unstable Manifolds

We have seen how the parameterization method can be used to compute the center man-

ifold of the collinear libration points L1 and L2. By changing the way of choosing the

set of indexes the value of d and the matrix P , it can be used as well to compute the

center-stable and center-unstable manifolds of those fixed points. On the one hand, the

center-unstable manifold W cu(L1,2) of any of these libration points is an invariant manifold
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Figure 3.3: For the expansions of W c(L1) and W c(L2) for the Earth-Moon RTBP, computed
up to order 20 and for the indicated energy level, evaluation of the error in the orbit eO(Th, s)
for all the points s ∈ Sh such that s4 = 0.

that is tangent to eigenspace spanned by the eigenvectors with eigenvalues

iω1,2
p , −iω1,2

p , iω1,2
v , −iω1,2

v , λ1,2, (3.4)

while on the other hand, the center-stable manifold W cs(L1,2) is tangent to the directions

given by the eigenvectors with eigenvalues

iω1,2
p , −iω1,2

p , iω1,2
v , −iω1,2

v , −λ1,2. (3.5)

Note that we have recovered the notation in (3.1) but adding the superscript 1, 2 according

to which libration point they belong.

So, in order to get a parameterization of the 5D center-unstable manifold of L2 and the 5D

center-stable manifold of L1 we proceed by taking d = 5 and n = 6 with the correct choice

of the matrix P depending on the manifold we want to compute. On the one hand, the

matrix P for the center stable-manifold will be made of the eigenvectors corresponding

to the eigenvalues in (3.5), while on the other hand, the columns of P for the center

unstable-manifold have to be the eigenvectors of the eigenvalues in (3.4). Then, in order

to adapt the dynamics in parameter space to get that s1, s2 are related with the planar

Lyapunov family, s3, s4 to the vertical one, s1, s2, s3, s4 to the center manifold and s5 with

the normal hyperbolic part, we choose a mixed uncoupled style respect the s5 coordinate

with a set of L = 3 indexes [15]. This means that the reduced vector field needs to satisfy
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that 

ṡ1 = f 1(s1, s2, s3, s4),

ṡ2 = f 2(s1, s2, s3, s4),

ṡ3 = f 3(s1, s2, s3, s4),

ṡ4 = f 4(s1, s2, s3, s4),

ṡ5 = f 5(s1, s2, s3, s4, s5).

(3.6)

The set of indexes to generate the parameterizations and reduced vector fields of the

invariant center-stable and center-unstable manifold of L1 and L2 of the RTBP for the

Earth-Moon mass parameter is made of I1 = {1, 2, 5}, I2 = {3, 4, 5} and I3 = {5}.
In this way, one obtains two parameterizations for W cs and W cu such that in any case

{W̄ (s1, s2, 0, 0, 0)}s1,s2 describes the 2-dimensional manifold spanned by the planar Lya-

punov family of orbits, {W̄ (0, 0, s3, s4, 0)}s3,s4 describes the 2D manifold corresponding

to the vertical Lyapunov family of periodic orbits and {W̄ (s1, s2, s3, s4, 0)}s1,s2,s3,s4 cor-

responds to the center manifold of L1,2 thanks to the choice of the indexes I1, I2 and I3

respectively.

Notice that we do not need to define an extra index set I = {1, 2, 3, 4} that would made

the points of the form {W̄ (0, 0, 0, 0, s5)}s5 to describe the normal hyperbolic part in all

the objects of the center manifold. Since we use the mixed uncoupled style to get that

s1, . . . , s5 are related with the center-stable (resp. center-unstable) manifold of L1 (resp.

L2) by solving (3.6) and imposing that {s5 = 0} to be invariant then, automatically points

of the form {W̄ (0, 0, 0, 0, s5)}s5 give the stable (resp. unstable) manifold of L1 (resp. L2).

The mixed uncoupled style can be applied since, for i = 1, . . . , 4, it is satisfied that

λi − (m1λ1 + · · ·+m4λ4 +m5λ5) 6= 0,

because m1λ1 + · · · + m4λ4 is a pure imaginary number while m5λ5 is always real and

different from zero.

In this way, considering the reduced flow φt for the center-stable manifold of L1 (resp.

ϕt for the center-unstable manifold of L2), by applying that (s1, s2, s3, s4, s5) represents

the center sable manifold (resp. center-unstable) while (s1, s2, s3, s4) describes the center

manifold because the choice of I3, one obtains that for any given point in parameter space

such (s1, s2, s3, s4, s5) with s5 6= 0 it is satisfied that

φt(s1, . . . , s5)
t→∞−−−→ W c(L1) (resp. ϕt(s1, . . . , s5)

t→−∞−−−−→ W c(L2)). (3.7)

Therefore, thanks to the mixed uncoupled style which ensures that the first 4 components
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10 20 30 40
15.096 343.91 3249.0 14525.286

Table 3.3: For several orders, computing times (in seconds) of a set of points S2
h from

W cu(L2) at h = −1.580 and Sh made of 19641 points. The results are obtained on an Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40GHz by using multi-threaded computation and 16 threads.

of φt(s1, . . . , s5) and φt(s1, . . . , s4, 0) are equal (resp. ϕt(s1, . . . , s5) and ϕt(s1, . . . , s4, 0))

we have that

‖φt(s1, . . . , s5)− φt(s1, . . . , s4, 0)‖ =
∥∥φ5

t (s1, . . . , s5)
∥∥ t→∞−−−→ 0, (3.8)

resp.

‖ϕt(s1, . . . , s5)−ϕt(s1, . . . , s4, 0)‖ =
∥∥ϕ5

t (s1, . . . , s5)
∥∥ t→−∞−−−−→ 0, (3.9)

because the center manifold is given by s5 = 0.

Consequently, (s1, . . . , s5) belongs to the fiber of (s1, . . . , s4) of the invariant stable (resp.

unstable) manifold of the object that contains (s1, . . . , s4, 0).

3.2.1 Error Estimation

Once the expansions for f and W are computed, we need to determine their domain of

validity in terms of energy and the order of these expansions in a similar way to Section

3.1.1. However, we need to take now initial conditions with s5 6= 0 and integrate backward

and forward in time in order to test both the stable and unstable center manifolds of L1

and L2 respectively. For that reason, for each center manifold and a given energy level h,

we start by generating a set of points S1
h for L1 and S2

h for L2 using the same strategy as in

Section 3.1.1 with the form s = (s1, s2, s3, s4, 0). Those points, as discussed above, belongs

to center submanifolds belonging to the center-stable and center-unstable manifolds of L1

and L2 respectively. In this way, thanks to the decoupling of the last coordinate, we can

modify the value of s5 in each one of the points in Sih with i = 1, 2 and changing s5 = 0

for a value δ and they still belong to the same energy value h.

The necessary computing times to obtain one of the Sih for i = 2 are presented in Table

3.3. In this case, compared to 3.2, the order 20 is almost as computationally expensive as

the order 20 used to compute W c(L2). This is due to the integration of one extra equation

that appears with the choice of d = 5.

Consider the center-stable manifold of L1. With the choice of the eigenvector correspond-

ing to −λ1 we see that orbits with s5 < 0 go from the vicinity of L2 to the vicinity of L1

[15]. While, by taking the center-unstable manifold of L2, the choice of the eigenvector
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Figure 3.4: For the expansions of W cs(L1) and W cu(L2) for the Earth-Moon RTBP, com-
puted up to orders indicated, evaluation of the maximum error estimate ε(Th, S

i
h) for different

energy levels and s5 = ±10−3 with i = 1, 2.

corresponding to λ2 shows that the trajectories that come from the vicinity of L1 corre-

spond to points with the form s5 > 0. Then, for a given energy value h, by choosing the

integration time Th to be the maximum of the periods of the planar and vertical Lyapunov

orbits we integrate the points in S1
h backward in time and S2

h forward in time to determine

the domain of validity of the expansions when approximating the corresponding invariant

manifolds.

Let us take δ1 = −10−3 for the expansion corresponding to W cs(L1) and δ2 = 10−3 for

W cu(L2). For these values, the maximum of the errors in the orbit ε(Th, S
1
h) and ε(Th, S

2
h)

is computed for different energy levels and several orders for the expansions. In Figure 3.4

we present the obtained results for the indicated orders of the expansions in a logarithmic

scale. Notice that the obtained errors are slightly larger than the ones resulting from the

center manifold computation because one extra equation have been added. However, for

expansions computed up to orders 20 and 30 we can ensure a precision of ∼ 10−5 up to

energy −1.580. In a similar way than we did in Section 3.1.1, we present the error in the

center-stable and center-unstable manifolds in terms of the initial conditions s restricted

to the Poincaré section Σh = {s4 = 0} and the same value of δi for i = 1, 2. Again, the

results shows that the error made is not homogeneous over the center manifold, but it is

larger in the outer regions of the grid.

Notice that the range of energies used for the computation of the plot in 3.4a is selected in

such a way that coincide with the energy ranges of W cu(L2). In this case, the whole range

of valid energies is not checked since the computational effort is high as we have seen in

Table 3.3. In addition, we are interested on the study of heteroclinic connections so this

analysis will be carried out for the same energy values that are valid in both libration

points.
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Figure 3.5: For the expansions of W cs(L1) and W cu(L2) for the Earth-Moon RTBP, com-
puted up to order 20 and for the indicated energy level, evaluation of the error in the orbit
eO(Th, s) for all the points s ∈ Sh such that s4 = 0 and s5 = ±10−3.
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Chapter 4

Numerical computation of

heteroclinic connections

This chapter is focused on computing heteroclinic connections between the invariant tori

around the L1 and L2 libration points of the Earth-Moon RTBP. An heteroclinic con-

nection is a trajectory that links two different objects by tending backward in time to

the departure object and forward in time to the arrival object. Besides, an homoclinic

connection is a trajectory that connects an object with itself, meaning that tends to the

same object backward and forward in time [14]. In the RTBP, these connections play an

important role in terms of computing transfers between objects and mission analysis.

For a given dynamical system ẋ = X(x) with an associated flow φt, let’s consider a

parameterization of the unstable manifold W u(K) for a given departure object K which

is denoted by W̄ u and the parameterization of the stable manifold W s(C) for a given

arrival object C denoted by W̄ s. Notice that these two objects could be the same in case

we want to compute homoclinic connections. Then, let’s take a Poincaré section given

by Σh := {g(x) = 0} for a given energy h and that it is intersected transversely by both

of the manifolds. Let us also denote two time-return maps denoted by τ+(x) and τ−(x)

to the Poincaré section. On the one hand, τ+(x) is always positive and gives the time

t > 0 to reach the Poincaré section by integrating forward in time. On the other hand,

τ−(x) corresponds to the time t < 0 to reach the Poincaré section and it is obtained by

integrating backward in time.

Consequently, the two associated Poincaré maps to these manifolds are denoted by

PΣ+(x) = φτ+(x)(x), PΣ−(x) = φτ−(x)(x), (4.1)

where PΣ+ results from the integration forward in time starting at K, whereas PΣ− is

computed by integrating backward in time starting from C. In this way, these two sets
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of points satisfy that g(φτ+(x)(x)) = g(φτ−(x)(x)) = 0 for all x in W u(K) ∪W s(C). Note

that the sub-index h at PΣ+ and PΣ− is not included for the sake of notation simplicity.

Therefore, the intersections of homoclinic or heteroclinic connections with the Poincaré

section Σ are given by the zeros of the following function [14],

F (su, ss) = PΣ+(W̄ u(su))− PΣ−(W̄ s(ss)), (4.2)

where ss is a point that belongs to the stable manifold and su belongs to unstable man-

ifold, both in terms of parameter space coordinates.

4.1 Determining Energies in Order to Look for Con-

nections

As we have said before, our goal is to compute heteroclinic connections between the

invariant tori from L1 and L2. These tori are contained in the center manifold of L1 and

L2 so we need to compute the stable and unstable manifolds these objects. But all the

stable and unstable manifolds of invariant objects of the center manifold are contained in

the center stable and center unstable manifolds of L1 and L2 respectively.

Therefore, we need to compute the center-stable and center-unstable manifolds of L1 and

L2 respectively, so that the first one contains the arrival object and the second one the

departure object. However, it is necessary to determine those energy levels for which

heteroclinic connections can be observed and that are included in the domain of validity

of the expansions for f and W . In our case, due to the cost of computation we select

the order 20 for these expansions. This choice ensures that the computed expansions

provide an approximation of the corresponding manifolds with a tolerance of 10−5 for any

energy level between −1.586 and −1.584 in both libration points, as observed in 3.4. In

this way, we start by computing the corresponding expansions W̄ s and fs for the the

center-stable manifold of L1, W cs(L1), and W̄ u and fu for the center-unstable manifold

of L2, W cu(L2). Both parameterizations are computed using the mixed uncoupled style

and following the indications in 3.2.

Consider the planar Lyapunov orbits in W cs(L1) and W cu(L2) for different energies h and

a Poincaré section given by Σh := {x = µ − 1} that is located between both libration

points and particularly it is set at the same position on the x axis of the second primary,

in this case the Moon. As we have seen in Section 3.1, the rest of the points of the iso-

energetic slice of the Poincaré section {s4 = 0} of the center manifold will be contained

inside the region defined by the planar Lyapunov orbit. The points that describes the

planar Lyapunov orbits are of the form s = (s1, s2, 0, 0, 0) given by the choice of the
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parameterization and as discussed in 3.2. By construction of the parameterization, this

points are contained in the center manifold. It has also been seen that, in order to take

into account only the trajectories that go from L1 to L2 and vice-versa, it is necessary

to take the correct sign for the s5 value. This means that we need to take the changes

given by s5 = α for the center-stable manifold of L1 with α < 0, and s5 = β for the

center-unstable manifold of L2 with β > 0.

Consider an initial condition from the planar Lyapunov orbit with the form (0, s2, 0, 0, 0)

that it is obtained as discussed in 3.1. The integration until Th, which is the period of

this orbit, by using the reduced flow φt gives a set of n points of the form (s1, s2, 0, 0, 0)

that belongs to the center manifold. These points describe the planar Lyapunov orbit

in W cs(L1) and W cu(L2) respectively and are obtained from φiTh/n(0, s2, 0, 0, 0) for j =

0, . . . , n−1. Therefore, by applying the change in the s5 coordinate, we obtain two sets of

points denoted by s1,i
δ = (si1, s

i
2, s

i
3, s

i
4, δ) the ones from W cs(L1) and s2,i

δ = (si1, s
i
2, s

i
3, s

i
4, δ)

the ones from W cu(L2) for i = 1, . . . , n. After that, we apply the respective expansions

for the parameterization to all of these n points. In this way, we obtain the following

points in the original space {W̄ s(s1,i
α )}i=1,...,n and {W̄ u

(s2,i
β )}i=1,...,n for α = −10−3 and

β = 103. Then, the intersection with Σh is computed by integrating in the original space

of coordinates backward and forward in time. Therefore the sets C1 = {PΣ−(W̄ s(s1,i
α ))}i

and C2 = {PΣ+(W̄ u(s2,i
β ))}i for i = 1, . . . , n are obtained.

Both the planar Lyapunov orbits and their invariant manifolds satisfy z = pz = 0. There-

fore, their heteroclinic connections can be computed in the planar RTBP, so we only need

to consider the coordinates x, y, px, py. At Σh, the intersections of the trajectories that

come from L1 and the ones from L2 have the same value of x = µ− 1. There is another

component that can be determined from the selected energy, in this case let it be the

component px. Therefore, the computation of connections is reduced to determine those

points ps = (xs, ys, zs, psx, p
s
y, p

s
z) ∈ C1 and pu = (xu, yu, zu, pux, p

u
y , p

u
z ) ∈ C2 with yu = ys

and puy = psy.

The manifold tubes of the planar Lyapunov orbits around L1 and L2 are visualized in

Figure 4.1 and also their intersections with Σh for three different energy levels and using

expansions computed up to order 20. Note that the computation of PΣ+ represents the

fifth cut with Σ as we have seen by numerical exploration that the two manifold tubes

do not intersect in the plane x − y for any number of cuts less than the selected. Right

figures in 4.1 shows that at least there exists two heteroclinic connections for the given

energy levels.

In the next section we look for heteroclinic connections between tori around L1 and L2 at

the energies that we have just found that there are heteroclinic connections between the

planar Lyapunov orbits. According to the representation of the center manifold presented



36 Chapter 4. Numerical computation of heteroclinic connections

in 3.1, there exists tori that are arbitrarily close to the planar Lyapunov orbits and,

therefore, there are heteroclinic connections.

4.2 Computation of Connections Between Tori

Once the energy levels for which exist heteroclinic connections are determined from the

projections to the Poincaré section Σ of the planar Lyapunov orbits by following the

Figure in 4.1, we search for connections between the tori in the center-stable and the

center-unstable manifolds of L1 and L2 respectively. For doing that, we proceed in the

same way as before, but now we consider the whole W cs(L1) and W cu(L2), in the sense

that we need to compute the intersections of these two objects with the Poincaré section

given by Σh at an energy level h.

Let’s consider a set of ns points Ss from the center-stable manifold around L1 and another

set of nu points Su from the center-unstable manifold around L2 at an energy level given

by h = −1.585. These points are denoted by s1,i
α = (si1, s

i
2, s

i
3, s

i
4, α) the ones from Ss

and s2,j
β = (sj1, s

j
2, s

j
2, s

j
3, s

j
4, β) the ones from Su for i = 1, . . . , ns and j = 1, . . . , nu. From

Figure 4.1, we know that for this exact energy h there exist at least two heteroclinic

connections. The two sets S2 and Ss are computed by following the same method as in

section 3.2 from the application of the mixed uncoupled style of parameterization. The

method gives us the two expansions for the parameterizations W̄ s and W̄ s corresponding

to the center-unstable and center-stable manifolds of L2 and L1 respectively. Again, the

sign of s5 is determined from the direction of the chosen eigenvector in order to get

trajectories susceptible to connect L1 and L2. In this way, the Poincaré maps PΣ+ and

PΣ− of these two sets of points are computed with Σh = {x = µ − 1} and PΣ+ and PΣ−

are the intersections in the original space of the trajectories after integrating forward and

backward in time starting from W cs(L1) and W cu(L2) respectively. This means that, from

Ss and Su, two sets of points M1 = {PΣ−(W̄ s(s1,i
α ))}i and M2 = {PΣ+(W̄ u(s2,j

β ))}j are

obtained. M1 and M2 are points that are located at Σh in the original space of coordinates.

Therefore, in order to find the zeros of the function in (4.2), we can compute the minimum

distances between the manifold tubes at the intersection for any point from the arrival

object respect to the departure object and vice-versa. This is given by the functions

ds(s
1,i
α ) = min

s2,jβ ∈Su
dist

(
PΣ−(W̄ s(s1,i

α )), PΣ+(W̄ u(s2,j
β ))

)
,

du(s
2,j
β ) = min

s1,iα ∈Ss
dist

(
PΣ+(W̄ u(s2,j

β )), PΣ−(W̄ s(s1,i
α ))

)
,

(4.3)

for any s1,i
α in Ss and s2,j

β in Su. The results of this evaluation are plotted in Figure 4.2

for values of α = −10−3 and β = 10−3.. As we can see, there exist a region where this
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Figure 4.1: Left: manifold tubes (green: unstable, violet: stable) of a planar Lyapunov
orbit around L1 of the Earth-Moon RTBP using x and y coordinates. Right: intersection of
the manifold tubes with the section Σh = {x = µ− 1} using y and py coordinates.
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Figure 4.2: Intersection of the manifold tubes from W cu(L2) and W cs(L1) with the section
Σh = {x = µ − 1} using y and py coordinates. It plots the minimum distance of each one of
the points from one side respect to the other.

distance is minimum and could exists good candidates to become heteroclinic connections.

However, we need further information than the one provided by Figure 4.2 in order to

compute these heteroclinic connections. For that reason we plot the same values obtained

from (4.3) in terms of the initial conditions s1,i
α and s2,j

β from W cs(L1) and W cu(L2)

respectively. Figure 4.3 shows the projections of these initial conditions to the Poincaré

section given by Ωh := {s4 = 0} at an energy level h. These plots show that exist

zones inside the region bounded by the planar Lyapunov orbit that are more suitable to

be the initial conditions to get heteroclinic connections. Nevertheless, due to the way

of computing the sets of points Ss and Su, these projections to Ωh do not allow us to

refine these sets in order to make zoom at these suitable regions. In our case, as we first

compute a grid of points over the Poincaré section Ωh and then we take the points after

computing two Poincaré sections, we need to determine to which initial points over Ωh

belong the corresponding region of minimum distances. In this way, we plot in Figure

4.4 the minimum distances provided by (4.3) for all the points in Ss and Su in terms of

their retractions to the initial conditions over the grid of points taken at Ωh before the

numerical integration.

The plot in 4.4 shows that we can make a zoom over the Poincaré sections Ωh in both

W cs(L1) and W cu(L2) at the moment of the grid computation. By taking more initial

conditions over the marked region, it is possible to get two other sets of points Ss and
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(a) W cs(L1). (b) W cu(L2).

Figure 4.3: Projections of the initial conditions of W cs(L1) and W cu(L2) to the Poincaré
section Ωh := {s4 = 0} in terms of the minimum distances given by (4.3) with h = −1.585.

(a) W cs(L1). (b) W cu(L2).

Figure 4.4: Retractions of the initial conditions of W cs(L1) and W cu(L2) to the grid of
points over the Poincaré section Ωh := {s4 = 0} in terms of the minimum distances given by
(4.3) with h = −1.585.

Su from W cu(L1) and W cs(L2) in parameter space. With these new sets of points we

compute again the sets M1 and M2 that corresponds to PΣ+ and PΣ− . By checking all

points of PΣ+(Su) against all points of PΣ−(Ss), we can obtain pairs su ∈ Su, ss ∈ Ss

for which ‖F (su, ss)‖ is under a given tolerance, for F defined as in (4.2). These pairs

provide heteroclinic connection candidates. With a tolerance of 10−3, we get 4 different

initial conditions in the center-stable manifold around L1 and other 4 initial conditions in

the center-unstable manifold around L2. We can integrate them forward and backward

in time until the intersection with Σh starting from the arrival and the departure object

respectively. By doing this, one obtains the trajectories displayed in Figure 4.5 that

correspond to heteroclinic connections candidates since they are zeros of the function

(4.2) within a tolerance set at 10−3.
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Figure 4.5: Heteroclinic connections corresponding to the zoom in 4.4 within a tolerance of
10−3 using x, y coordinates.
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Conclusions

Once the analysis of heteroclinic connections between invariant tori around the two

collinear libration points of the Earth-Moon RTBP has been carried out, there are few

main points to be concluded.

The parameterization method provides a technique to reach for Taylor expansions of

invariant manifolds around fixed points of flows and the corresponding reduced vector

field. This method can be applied in order to obtain the center manifold, the center-stable

manifold or the center-unstable manifold in different contexts of dynamical systems by

choosing correctly the style of parametrization. The advantage of this method is related

with the computational speed and also with its generality and flexibility in the sense

that the implementation of the method is independent of the dynamical system and the

coordinates of the manifold can be adapted to the dynamics by choosing a proper style

of parameterization.

The implementation of one extra style of parameterization has been discussed: the mixed

uncoupled style. This one allows the user to uncouple the first d − 1 coordinates of the

reduced vector field respect to the last one. As we haven seen, this style is specially useful

to compute the center-stable and the center-unstable manifolds.

In this way, an extensive representation of the central manifolds of both collinear libration

points of the Earth-Moon RTBP has been carried out. These representations are also

used to approximate the error in the manifold expansions that are obtained from the

parameterization method with the correct way of choosing the style. This analysis of the

error are more exhaustive than the ones that have been developed so far in the literature.

This same exhaustive analysis of the error is also taken for the center-stable and center-

unstable manifolds around these points by using the new mixed uncoupled style. The

error analysis results, together with the ones of the center manifold, constitute one of the

contributions of this work.

Finally, an analysis of heteroclinic connections between tori around collinear libration

points is performed. This analysis uses the information obtained from the previous results

in order to take into account the error in the expansions for different orders and depending

on the energy level that it is studied. In this way, heteroclinic connections between planar
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Lyapunov orbits have been found. Further, we have built an strategy to obtain a certain

number of candidates of heteroclinic connections between these tori.

A natural continuation of this work would be to refine these candidates in order to get

heteroclinic connections by solving numerically the equation (4.2) and using as initial

guesses the obtained approximations that have been found in this project. Another way to

get more accurate results would be to take more extensive zooms over the center manifold.

However, due to the high computational cost related with the numerical integration of

the reduced vector field, it would be convenient to explore other strategies that would

allow us to obtain grids of points over the iso-energetic slices at the center manifold but

avoiding the numerical integration.
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Appendix A

Comments on the Implementation

The computation of the numerical explorations that are included in this dissertation bases

its programming core in the numerical routines that are included in the software package

available in http://www.maia.ub.edu/dsg/param/. This software includes a C routine

that computes expansions of invariant manifolds of fixed points of flows as described

in Chapter 2. It also includes programs to evaluate the reduced field at the manifold

from the obtained expansion for a given initial condition and to compute the change of

the coordinates from parameter space to original space for any given initial condition in

parameter space.

In addition, some other programs are provided by Josep-Maria Mondelo in order to ma-

nipulate dynamical systems. First of all, a routine that implements the Runge-Kutta-

Felhberg method of order 7 and 8 is given. This program is used in another routine that

it is also provided and its function consists on computing the flow for a given vector field

at a time t. Next, a routine to compute the Poincaré sections for a given a vector field,

a set of initial conditions and a Poincaré section Σ is given. This routine is very useful

to compute the intersection of the tubes included in Figure 4.1a, 4.1c and 4.1e. Finally,

we receive a routine that computes the value of one of the components of any initial

guess from parameter space in order to get an initial condition that satisfies a fixed en-

ergy. This is obtained from the implementation of a version corresponding to the Brent’s

Method included in [17]. This routine allows us to compute the initial conditions to get

the iso-energetic slices in 3.1. Mondelo also assists in the development of a program to

compute the minimum distance between two sets of points which is used in the results

corresponding to Figures 4.2, 4.3 and 4.4.

The rest of the programs used to obtain the results included in the current project are

original. They include the modification of the software package to provide tools in order

to obtain the parameterization expansions corresponding to a mixed uncoupled style.

This modification allows the user to uncouple the d − 1 first components from the last

one and it is very useful when computing center-stable and center-unstable manifolds. It

http://www.maia.ub.edu/dsg/param/
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is also developed a program to compute a grid of equally spaced points inside a region

bounded by the planar Lyapunov orbit by looking for points that satisfy the given energy

value. This program uses parallel routines from the library omp.h in order to reduce the

computational time. This program includes some optional input arguments in order to

make zooms inside the bounded region. These routines are complemented with a program

focused on computing the error in the orbit from a set of initial conditions and a given

expansion. These programs allow us to obtain the results included in Figures 3.2, 3.3, 3.4

and 3.5.
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