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Abstract4

The goal of this paper is to contribute to the classification of the phase portraits of pla-5

nar quadratic differential systems according to their structural stability. Artés, Kooij and Llibre6

(1998) proved that there exist 44 structurally stable topologically distinct phase portraits in the7

Poincaré disc modulo limit cycles in this family, and Artés, Llibre and Rezende (2018) showed the8

existence of at least 204 (at most 211) structurally unstable topologically distinct phase portraits9

of codimension-one quadratic systems, modulo limit cycles. In this work we begin the classifica-10

tion of planar quadratic systems of codimension two in the structural stability. Combining the11

sets of codimension-one quadratic vector fields one to each other, we obtain ten new sets. Here we12

consider set AA obtained by the coalescence of two finite singular points, yielding either a triple13

saddle, or a triple node, or a cusp point, or two saddle-nodes. We obtain all the possible topolog-14

ical phase portraits of set AA and prove their realization. We got 34 new topologically distinct15

phase portraits in the Poincaré disc modulo limit cycles. Moreover, in this paper we correct a16

mistake made by the authors in the book of Artés, Llibre and Rezende (2018) and we reduce to17

203 the number of topologically distinct phase portrait of codimension one modulo limit cycles.18

Key-words: quadratic differential systems, structural stability, codimension two, phase portrait,19

saddle-node.20

2000 Mathematics Subject Classification: 34C23, 34A3421

1 Introduction22

Mathematicians are fascinated in closing problems. Having a question solved or even sign with a23

“q.e.d” a question asked in the past is a pleasure which is directly proportional to the time elapsed24

between the formulation of the question and the moment of the answer.25
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With the advent of the differential calculus, it opened the possibility of solving many questions that1

medieval mathematicians asked, but at the same time it made the field of questions formulated even2

bigger. The search for primitive functions that could not be expressed algebraically or with a finite3

number of analytic terms complicated the future research lines, and even new areas of mathematics4

were created to give answers to these questions. And besides the problem of finding a primitive to a5

differential equation in a single dimension, if we add the possibility of more dimensions, the problem6

becomes much more difficult.7

Therefore, it took almost 200 years between the approach of the first linear differential equations8

and its complete resolution by Laplace in 1812. After the resolution of linear differential systems,9

for any dimension, it seemed natural to address the classification of quadratic differential systems.10

However, it was found that the problem would not have an easy and fast solution. Unlike the linear11

systems that can be solved analytically, quadratic systems (not even, therefore, those of higher12

degree) generically admit a solution of that kind, at least, with a finite number of terms.13

Therefore, for the resolution of non-linear differential systems, another strategy was chosen and14

it allowed the creation of a new area of knowledge in Mathematics: the Qualitative Theory of15

Differential Equations [24]. Since we are not able to give a concrete mathematical expression to16

the solution of a system of differential equations, this theory intends to express by means of a17

complete and precise drawing the behavior of any particle located in a vector field governed by such18

a differential equation, i.e. its phase portrait.19

Even with all the reductions made to the problem until now, there are still difficulties. The most20

expressive difficulty is that the phase portraits of differential systems may have invariant sets that21

are not punctual, as the limit cycles. A linear system cannot generate limit cycles; at most they22

can present a completely circular phase portrait where all the orbits are periodic. But a differential23

system in the plane, polynomial or not, and starting with the quadratic ones, may present several24

of these limit cycles. It is trivial to verify that there can be an infinite number of these cycles in25

non-polynomial problems, but the intuition seems to indicate that a polynomial system should not26

have an infinite number of limit cycle since it cannot have an infinite number of isolated singular27

points. And because the number of singular points is linked to the degree of the polynomial system,28

it also seems logical to think that the number of limit cycles could also have a similar link, either29

directly as the number of singular points, or even in an indirect way from the number the parameters30

of such systems.31

In 1900, David Hilbert [16, 17] proposed a set of 23 problems to be solved in the 20th century,32

and among them his well-known 16th problem asks for the maximum number of limit cycles H(n) a33

polynomial differential system in the plane with degree n may have. More than one hundred years34

after, we do not have an uniform upper bound for this generic problem, only for specific families of35

such a system.36

In 1966, Coppel [11] claimed to believe that the classification of quadratic systems should be able37

to be completed in purely algebraic terms. That is, by means of algebraic equalities and inequalities,38

it should be possible to determine the phase portrait of a quadratic system. His proclamation was39

not easy to refute at that time, since the unique finite singular points of a quadratic system can40

be found by means of the resultant that is of fourth degree, and its solutions can be calculated41

algebraically, like those of infinity. Moreover, it was known at that time to generate cycles limits by42
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a Hopf bifurcation, whose conditions are also determined algebraically.1

On the other hand, in 1991, Dumortier and Fiddelears [12] showed that, starting with the quadratic2

systems (and following all the higher-dimension systems), there exist geometric and topological3

phenomena in phase portraits of such a system whose determination cannot be fixed by means of4

algebraic expressions. More specifically, most part of the connections among separatrices and the5

occurrence of double or semi-stable limit cycles are not algebraically determinable.6

Therefore, the complete classification of quadratic systems is a very difficult task at the moment7

and it depends enormously of the culmination of Hilbert’s 16th problem, even at least partially for8

H(2).9

Even so, a lot of problems have been appearing related to quadratic systems and to which it has10

been possible to give an answer. In fact, there are more than one thousand articles published directly11

related to quadratic systems. John Reyn, from Delft University (Netherlands), was committed in12

preparing bibliography that was published several times until his retirement (see [25, 27, 28, 29, 30]).13

It is worth mentioning that in the last two decades many other articles related to quadratic systems14

have appeared, what figures that the mentioned amount of one thousand papers in that bibliography15

has already been widely exceeded.16

Many of the questions proposed and the problems solved have dealt with subclassifications of17

quadratic systems, that is, classifications of systems that shared some characteristic in common. For18

instance, we have systems with a center [32, 33], with a weak focus of third order [4, 20], with a19

nilpotent singularity [19], without real singular points [14], with two invariant lines [25] and so on,20

up to a thousand articles. In some of them complete answers could be given, including the problem21

of limit cycles (the existence and the number of limit cycles), but in other cases, the classification22

was done modulo limit cycles, that is, all the possible phase portraits without taking into account23

the presence and number of cycles. Since in quadratic systems a limit cycle can only surround a24

single finite singular point, and which must necessarily be a focus [11], then it is enough to identify25

the outermost limit cycle of a nesting of cycles with a point, and interpret the stability of that point26

as the outer stability of this cycle, and study everything that can happen to the phase portrait in27

the rest of the space.28

Within the families of quadratic systems that were studied in the 20th century, we would highlight29

the study of the structurally stable quadratic systems, modulo limit cycles. That is, the goal was to30

determine how many and which phase portraits of a quadratic system cannot be modified by small31

perturbations in their coefficients. To obtain a structurally stable system modulo limits cycles we32

need few conditions: we do not allow the existence of multiple singular points and the existence of33

connections of separatrices. Centers, weak foci, semi-stable cycles, and all other unstable elements34

are submerged in the quotient modulo limit cycles. This systematic analysis [3] showed that the35

structurally stable quadratic systems sum a total of 44 topologically distinct phase portraits.36

Once assumed that, if we get to obtain a global classification of quadratic systems before solv-37

ing Hilbert’s 16th problem, this will have to be modulo limit cycles. We proposed to carry out a38

systematic global classification and, for this, we cannot be attained only to the study of families of39

systems that do not give more than extremely local visions of global parameter space. Even applying40

to our quadratic system a linear change of coordinates plus a translation and a time rescaling, which41

supposes a reduction from the initial 12 parameters to a limited set of systems with 5 parameters,42
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R
5 is still a very large space.1

There are two ways to carry out a systematic study of all the phase portraits of the quadratic2

systems. One of them is the one initiated by Reyn in which he studied the phase portraits of all the3

quadratic systems in which all the finite singular points have coalesced with infinite singular points4

[26]. Later, he studied those in which exactly three finite singular points have coalesced with points5

of infinity, so there remains one finite and real. And then he completed the study of the cases in6

which two finite singular points have coalesced with points of infinity, originating two real points, or7

one double point, or two complex points. His work on finite multiplicity three was incomplete and8

finite multiplicity four was unaffordable.9

The other approach, instead of working from the highest degrees of degeneracy to the lower ones,10

is going in the contrary direction. We already know that the structurally stable quadratic systems11

sum 44 topologically distinct phase portrait, as we mentioned above. The natural problem to be12

studied after was the structurally unstable quadratic differential systems of codimension one. This13

study [5] was done in approximately 20 years and finally we obtained at least 204 (and at most 211)14

topologically phase portraits of codimension one modulo limit cycles.15

The next step is to study the structurally unstable quadratic systems of codimension two, modulo16

limit cycles. The approach is the same used in the previous two works [3, 5]. We start looking for all17

the topologically possible phase portraits of codimension two, and then try to realize all of them or18

show that some of them are impossible.19

Since there are 19 cases of codimension two to be analyzed, it should be impracticable to perform20

a single paper with all the results. So we decided to split it in several papers, and this present article21

is the first one of this series.22

In what follows, we recall some definition and notation used in this paper, and then we explain23

all these 19 cases of structurally unstable quadratic systems of codimension two, one by one, and24

present the completion of the first case.25

Let X be a vector field. A point p ∈ R
2 such that X(p) = 0 (respectively X(p) 6= 0) is called a26

singular point (respectively regular point) of the vector field X.27

Let Pn(R2) be the set of all polynomial vector fields on R
2 of the form X(x, y) = (P (x, y), Q(x, y)),28

with P and Q polynomials in the variables x and y of degree at most n (with n ∈ N). In this set29

we consider the coefficient topology by identifying each vector field X ∈ Pn(R2) with a point of30

R
(n+1)(n+2) (see more details in [5]).31

For X ∈ Pn(R2), we consider the Poincaré compactified vector field p(X) corresponding to X as32

the vector field induced on S
2 as described in [1, 5, 13, 15, 31]). Concerning this, a singular point q of33

X ∈ Pn(R2) is called infinite (respectively finite) if it is a singular point of p(X) in S
1 (respectively34

in S
2 \ S1).35

Now, we present the local classification of the singular points of p(X). Let q be a singular point36

of p(X).37

The classical definitions are:38

• q is non-degenerate if det (Dp(X)(q)) 6= 0, i.e. the determinant of the linear part of p(X) at39

the singular point q is nonzero;40
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• q is hyperbolic if the two eigenvalues of Dp(X)(q) have real part different from 0;1

• q is semi-hyperbolic if exactly one eigenvalue of Dp(X)(q) is equal to 0.2

However, we also may use new notation introduced in [6] directly related to the Jacobian matrix3

of the singularity. We have:4

• q is elemental if both of its eigenvalues are non-zero;5

• q is semi-elemental if exactly one of its eigenvalues equals to zero;6

• q is nilpotent if both of its eigenvalues are zero, but its Jacobian matrix at this point is non-7

identically zero;8

• q is intricate if its Jacobian matrix is identically zero;9

• q is an elemental saddle if det (Dp(X)(q)) < 0, i.e. the product of the eigenvalues of Dp(X)(q)10

is negative;11

• q is an elemental antisaddle if det (Dp(X)(q)) > 0 and the neighborhood of q is not formed by12

periodic orbits, in which case we would call it a center, i.e., it is either a node or a focus.13

The intricate singularities are usually called in the literature linearly zero. We use here the term14

intricate to indicate the rather complicated behavior of phase curves around such a singularity.15

Remark 1. Saddles have always (topological) index −1 and antisaddles have index +1 (see [13, 18]16

for the definition of index of a singular point).17

We encourage the reader to recall the definition of characteristic directions and finite sectorial18

decomposition of vector fields p(X) ∈ Pn(S2) (or X ∈ Pn(R2)) (for instance, see [13]).19

Let p(X) ∈ Pn(S2) (respectively X ∈ Pn(R2)). A separatrix of p(X) (respectively X) is an orbit20

which is either a singular point (respectively a finite singular point), or a limit cycle, or a trajectory21

which lies in the boundary of a hyperbolic sector at a singular point (respectively a finite singular22

point). Neumann [21] proved that the set formed by all separatrices of p(X), denoted by S(p(X)),23

is closed. The open connected components of S2 \ S(p(X)) are called canonical regions of p(X). We24

define a separatrix configuration as the union of S(p(X)) plus one representative solution chosen from25

each canonical region. Two separatrix configurations S1 and S2 of vector fields of Pn(S2) (respectively26

Pn(R2)) are said to be topologically equivalent if there is an orientation-preserving homeomorphism27

of S2 (respectively R
2) which maps the trajectories of S1 onto the trajectories of S2.28

We define skeleton of separatrices as the union of S(p(X)) without the representative solution of29

each canonical region. Thus, a skeleton of separatrices can still produce different separatrix config-30

urations.31

In this paper we call a heteroclinic orbit as a separatrix which starts and ends on different points32

and a homoclinic orbit as a separatrix which starts and ends at the same point. A loop is formed by a33

homoclinic orbit and its associated singular point. These orbits are also called separatrix connections.34

A vector field p(X) ∈ Pn(S2) is said to be structurally stable with respect to perturbations in35

Pn(S2) if there exists a neighborhood V of p(X) in Pn(S2) such that p(Y ) ∈ V implies that p(X)36
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and p(Y ) are topologically equivalent; that is, there exists a homeomorphism of S2, which preserves1

S
1, carrying orbits of the flow induced by p(X) onto orbits of the flow induced by p(Y ), preserving2

sense but not necessarily parameterization.3

Since in this paper we are interested in the classification of the structurally unstable quadratic4

vector fields of codimension two, we recall the concept of quadratic vector fields of lower codimension5

in structurally stability.6

Recalling the works of Peixoto [22], restricted to the class of the quadratic vector fields, we have7

the following result:8

Theorem 1. Consider p(X) ∈ Pn(S2) (or X ∈ Pn(R2)). This system is structurally stable if and9

only if10

(i) the finite and infinite singular points are hyperbolic;11

(ii) the limit cycles are hyperbolic;12

(iii) there are no saddle connections.13

Moreover, the structurally stable systems form an open and dense subset of Pn(S2) (or Pn(R2)).14

The studies done up to now on structurally stable systems and codimension one systems are15

modulo limit cycles, so it is sufficient to consider only conditions (i) and (iii) of Theorem 1. We refer16

to these conditions as stable objects.17

According to [3] there are 44 topologically distinct structurally stable quadratic vector fields.18

Concerning the codimension one quadratic vector fields, we allow the break of only one stable object.19

In other words, a quadratic vector field X is structurally unstable of codimension one modulo limit20

cycles if and only if21

(I) It has one and only one structurally unstable object of codimension one, i.e. one of the following22

types:23

(I.1) a saddle-node q of multiplicity two with ρ0 = (∂P/∂x + ∂Q/∂y)q 6= 0;24

(I.2) a separatrix from one saddle point to another;25

(I.3) a separatrix forming a loop for a saddle point with ρ0 6= 0 evaluated at the saddle.26

(II) It has no structurally unstable limit cycles, saddle-point separatrices forming a loop, or singular27

points other than those listed in (I).28

(III) If the vector field has a saddle-node, none of its separatrices may go to a saddle point and no29

two separatrices of the saddle-node are continuation one of the other.30

In what follows, instead of talking about codimension one modulo limit cycles, we will simply say31

codimension one∗.32

As described in Chapter 5 of [5], the codimension one∗ quadratic vector fields can be allocated33

in four sets, according to the bifurcations that occur to the singular points of structurally stable34

quadratic vector fields X.35
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(A) When a finite saddle and a finite node of X coalesce and disappear.1

(B) When an infinite saddle and an infinite node of X coalesce and disappear.2

(C) When a finite saddle (respectively node) and an infinite node (respectively saddle) of X coalesce3

and then they exchange positions.4

(D) When we have a saddle-to-saddle connection. This set is split into five subsets according to5

the type of the connection: (a) finite-finite (heteroclinic orbit), (b) loop (homoclinic orbit), (c)6

finite-infinite, (d) infinite-infinite between symmetric points and (e) infinite-infinite between7

adjacent points.8

Recalling the main result in [5], the phase portraits in all these four sets sum up 211 topological9

distinct ones, where 204 of these total are proved to be realizable and the remaining 7 are conjectured10

to be impossible.11

However, in order to prove the main result of this paper, we went back to looking at the results12

in [5] and noticed an error in the realization of phase portrait U
1
A,49. In fact, this phase portrait is13

not realizable, according to the next result.14

Proposition 1. Phase portrait U1
A,49 in [5] is not realizable. (See this phase portrait in Figure 5.)15

Remark 2. Despite the result presented by Proposition 1 eliminates phase portrait U1
A,49 from the16

classification presented in [5], and that classification is the starting point of our study in this paper,17

we will keep phase portrait U1
A,49 in our analysis and, in Section 4, we prove its impossibility and its18

consequence for the present study.19

The next step is to classify, modulo limit cycles, the codimension two quadratic vector fields.20

Since the concept of codimension applied to topological phase portraits of quadratic vector fields21

can become a little weird if we continue in this same way, we better give a better definition of22

codimension.23

Definition 1. We say that a phase portrait of a quadratic vector field is structurally stable if any24

sufficiently small perturbation in the parameter space leaves the phase portrait topologically equivalent25

the previous one.26

Definition 2. We say that a phase portrait of a quadratic vector field is structurally unstable of27

codimension k if any sufficiently small perturbation in the parameter space either leaves the phase28

portrait topologically equivalent the previous one or it moves it to a lower codimension one, and there29

is at least one perturbation that moves it to the codimension k − 1.30

Remark 3. 1. When applying these definitions, modulo limit cycles, to phase portraits with cen-31

ters, it would say that some phase portraits with centers would be of codimension as low as32

two, while geometrically they occupy a much smaller region in R
12. So, the best way to avoid33

inconsistencies in the definitions is to tear apart the phase portraits with centers, that we know34

they are in number 31 [32], and just work with systems without centers.35
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2. Starting in cubic systems, the definition of topologically equivalence, modulo limit cycles, be-1

comes more complicated since we can have limit cycles having only one singularity in its interior2

or more than one. So we cannot collapse the limit cycle because its interior is also relevant for3

the phase portrait.4

3. Moreover, our definition of codimension needs also more precision starting with cubic systems5

due to new phenomena that may happen there.6

Then, according to this definition concerning codimension two, and the previously known results7

of codimension one, we have the result:8

Theorem 2. A polynomial vector field in P2(R2) is structurally unstable of codimension two modulo9

limit cycles if and only if all its objects are stable except for the break of exactly two stable objects. In10

other words, we allow the presence of two unstable objects of codimension one or one of codimension11

two.12

Combining the sets of codimension one∗ quadratic vector fields one to each other, we obtain 1013

new sets, where one of them is split into 15 subsets, according to Tables 1 and 2.14

Table 1: Sets of structurally unstable quadratic vector fields of codimension two considered from combinations

of the sets of codimension one∗: A, B, C and D (which in turn is split into a, b, c, d and e)

A B C D

A AA - - -

B AB BB - -

C AC BC CC -

D AD (5 cases) BD (5 cases) CD (5 cases) see Table 2

Table 2: Sets of structurally unstable quadratic vector fields of codimension two in the set DD (see Table 1)

a b c d e

a (aa)

b (ab) (bb)

c (ac) (bc) (cc)

d (ad) (bd) (cd) (dd)

e (ae) (be) (ce) (de) (ee)

Analogously, instead of talking about codimension two modulo limit cycles, we will simply say15

codimension two∗.16

Geometrically, the codimension two∗ sets can be described as follows. Let X be a codimension17

one∗ quadratic vector field. We have the following sets:18

(AA) Either when a finite saddle (respectively a finite node) of X coalesces with the finite saddle-19

node, giving birth to a semi-elemental triple saddle: s(3) (respectively a triple node: n(3)), or20

when both separatrices of the saddle-node limiting its parabolic sector coalesce, giving birth21
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to a cusp of multiplicity two: ĉp(2), or when another finite saddle-node is formed, having then1

two finite saddle-nodes: sn(2)+sn(2). Since the phase portraits with s(3) and with n(3) would2

be topologically equivalent to structurally stable phase portraits and we are mainly interested3

in new phase portraits, we will skip them in this classification. Anyway, we may find them in4

the papers [8] and [9].5

(AB) When an infinite saddle and an infinite node of X coalesce plus a finite saddle-node: sn(2)+6

(0
2

)
SN .7

(AC) When we have a finite saddle-node and when a finite saddle (respectively node) and an infinite8

node (respectively saddle) of X coalesce: sn(2)+
(1
1

)
SN .9

(AD) When we have a finite saddle-node plus a separatrix connection, considering all five types of10

set D.11

(BB) When an infinite saddle (respectively an infinite node) of X coalesces with an existing infinite12

saddle-node
(0
2

)
SN , leading to a triple saddle:

(0
3

)
S (respectively a triple node:

(0
3

)
N).13

(BC) When a finite antisaddle (respectively finite saddle) of X coalesces with an existing infinite14

saddle-node
(0
2

)
SN , leading to a nilpotent elliptic saddle

(̂1
2

)
E−H (respectively nilpotent saddle15

(̂
1
2

)
HHH −H). Or it may also happen that a finite saddle (respectively node) coalesces with16

an elemental node (respectively saddle) in a phase portrait having already an
(0
2

)
SN , having17

then in total
(
1
1

)
SN +

(
0
2

)
SN .18

(BD) When we have an infinite saddle-node
(
0
2

)
SN plus a separatrix connection, considering all five19

types of set D.20

(CC) Either when a finite saddle (respectively finite node) of X coalesces with an existing infinite21

saddle-node
(1
1

)
SN , leading to an semi-elemental triple saddle

(2
1

)
S (respectively an semi-22

elemental triple node
(
2
1

)
N), or when a finite saddle (respectively node) and an infinite node23

(respectively saddle) of X coalesce plus an another existing infinite saddle-node
(1
1

)
SN , leading24

to two infinite saddle-nodes
(1
1

)
SN+

(1
1

)
SN .25

(CD) When we have an infinite saddle-node
(
1
1

)
SN plus a saddle to saddle connection, considering26

all five types of set D.27

(DD) When we have two saddle to saddle connections, which are grouped as follows:28

(aa) two finite-finite heteroclinic connections;29

(ab) a finite-finite heteroclinic connection and a loop;30

(ac) a finite-finite heteroclinic connection and a finite-infinite connection;31

(ad) a finite-finite heteroclinic connection and an infinite-infinite connection between symmet-32

ric points;33

(ae) a finite-finite heteroclinic connection and an infinite-infinite connection between adjacent34

points;35
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(bb) two loops;1

(bc) a loop and a finite-infinite connection;2

(bd) a loop and an infinite-infinite connection between symmetric points;3

(be) a loop and an infinite-infinite connection between adjacent points;4

(cc) two finite-infinite connections;5

(cd) a finite-infinite connection and an infinite-infinite connection between symmetric points;6

(ce) a finite-infinite connection and an infinite-infinite connection between adjacent points;7

(dd) two infinite-infinite connections between symmetric points;8

(de) an infinite-infinite connection between symmetric points and an infinite-infinite connection9

between adjacent points;10

(ee) two infinite-infinite connections between adjacent points.11

Some other of these cases have also been proved to be empty in an on course paper.12

The main goal of this paper is to present the global phase portraits of the vector fields X ∈ P2(R
2)13

belonging to the set AA and make sure that they are realizable.14

Let
∑2

0 denote the set of all planar structurally stable vector fields and
∑2

i (S) denote the set of15

all structurally unstable vector fields X ∈ P2(R2) of codimension i, modulo limit cycles belonging to16

the set S, where S is a set of vector field with the same type of instability, for instance, X ∈
∑2

2(AA)17

denote the set of all structurally unstable vector fields X ∈ P2(R2) of codimension two∗ belonging18

to the set AA.19

With all of these we can formulate the next theorem.20

Theorem 3. If X ∈∑2
2(AA)\∑2

0, then its phase portrait on the Poincaré disc is topologically equiv-21

alent modulo orientation and modulo limit cycles to one of the 34 phase portraits of Figures 1 and 2,22

and all of them are realizable.23

In Section 2, we make a brief description of phase portraits of codimensions zero and one that24

are needed in this paper. In Section 3, we make the list of topologically possible phase portraits of25

codimension two in set AA, removing already some which are proved impossible, and in Section 4,26

we prove the realization of all of them but one, which is proved to be impossible with a more detailed27

argument. We also prove Proposition 1 in Section 4.28

2 Quadratic vector fields of codimension zero and one29

In this section we summarize all the needed results from the book of Artés, Llibre and Rezende [5].30

The following result is a restriction of Theorem 1.1 of [5] to the set A. We denote by
∑2

1(A) the set31

of all structurally unstable vector fields X ∈ P2(R2) of codimension one∗ belonging to the set A.32

Theorem 4. If X ∈∑2
1(A), then its phase portrait on the Poincaré disc is topologically equivalent33

modulo orientation and modulo limit cycles to one of the 70 phase portraits of Figures 3 to 5, and34

all of them are realizable.35
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Figure 1: Structurally unstable quadratic phase portraits of codimension two∗ of set AA

The next result describes which phase portraits were discarded in [5] because they were not re-1

alizable, but their role now is important in the process of discarding impossible phase portraits of2

codimension two∗.3
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U
2
AA,25 U

2
AA,26 U

2
AA,27 U

2
AA,28

U
2
AA,29 U

2
AA,30 U

2
AA,31 U

2
AA,32

U2
AA,33 U

2
AA,34

Figure 2: (Cont.) Structurally unstable quadratic phase portraits of codimension two∗ of set AA

Theorem 5. In order to obtain a phase portrait of a structurally unstable quadratic vector field of1

codimension one∗ from set A it is necessary and sufficient to coalesce a finite saddle and a finite2

node from a structurally stable quadratic vector field, which leads to a finite saddle-node, and after3

some small perturbation it disappears. For the vector fields in this set, the following statements hold.4

(a) In Table 3 we may see in the first and fifth columns the structurally stable quadratic vector5

fields (following the notation present in [3, 5]) which, after the bifurcation cited above, lead to6

at least one phase portrait of codimension one∗ from set A.7

(b) Inside this set A, we have a total of 77 topologically distinct phase portraits according to the8

different α-limit or ω-limit of the separatrices of their saddles, 7 of which are non-realizable9

(they are given in Table 4). These numbers are given in the second and sixth columns of Table 3.10

(c) From these numbers of possible phase portraits, most of them are realizable. That is, even11

though there is the topological possibility of their existence, some of them break some analytical12

property which makes them not realizable inside quadratic vector fields. We have a total of 7013

realizable phase portraits. In the third and seventh columns of Table 3 we present the number14

of realizable cases coming from the bifurcation of each structurally stable phase portrait, and15

in the fourth and eighth columns we present the bifurcated phase portraits of codimension one∗16

associated to each one.17

(d) There are then 7 non-realizable cases from set A which we now collect in a single picture18

(see Figure 6) and denote by U
1
I,b, where U

1
I stands for Impossible of codimension one∗ and19

b ∈ {1, 2, 3, 103, 104, 105, 106}. These phase portraits are all drawn in [5], distributed along20
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U
1
A,1

U
1
A,2 U

1
A,3 U

1
A,4

U
1
A,5 U

1
A,6 U

1
A,7 U

1
A,8

U
1
A,9 U

1
A,10 U

1
A,11 U

1
A,12

U1
A,13 U

1
A,14 U

1
A,15 U

1
A,16

U
1
A,17 U

1
A,18 U

1
A,19 U

1
A,20

U
1
A,21 U

1
A,22 U

1
A,23 U

1
A,24

Figure 3: Unstable quadratic systems of codimension one∗ (cases with a finite saddle-node)

the paper having already the notation given above. Anyway, we provide Table 4 in order to1

relate easily (giving also the page where they appear first and the page they are proved to be2

impossible).3

An important result to study the impossibility of some phase portraits is Corollary 3.29 of [5].4
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U
1
A,25 U

1
A,26 U

1
A,27 U

1
A,28

U
1
A,29 U

1
A,30 U

1
A,31 U

1
A,32

U
1
A,33 U

1
A,34 U

1
A,35 U

1
A,36

U1
A,37 U

1
A,38 U

1
A,39 U

1
A,40

U
1
A,41 U

1
A,42 U

1
A,43 U

1
A,44

U
1
A,45 U

1
A,46 U

1
A,47 U

1
A,48

Figure 4: (Cont.) Unstable quadratic systems of codimension one∗ (cases with a finite saddle-node)

Corollary 1. If one of the structurally stable vector fields that bifurcates from a possible struc-1

turally unstable vector field of codimension one is not realizable, then this unstable system is also not2

realizable.3

This corollary can easily be adapted for higher codimensions.4

14



U
1
A,49 U

1
A,50 U

1
A,51 U

1
A,52

U
1
A,53 U

1
A,54 U

1
A,55 U

1
A,56

U
1
A,57 U

1
A,58 U1

A,59 U
1
A,60

U
1
A,61 U

1
A,62 U

1
A,63 U

1
A,64

U
1
A,65 U

1
A,66 U

1
A,67 U

1
A,68

U
1
A,69 U

1
A,70

Figure 5: (Cont.) Unstable quadratic systems of codimension one∗ (cases with a finite saddle-node)

Theorem 6. If one of the phase portraits of codimension k that bifurcates from a possible codimen-1

sion k + 1 phase portrait is not realizable, then this latter phase portrait is also not realizable.2
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Table 3: Possible and realizable bifurcated phase portraits for a given structurally stable quadratic

vector field. In this table, SSQVF stands for structurally stable quadratic vector fields, #p (re-

spectively #r) for the number of topologically possible (respectively realizable) phase portraits of

codimension one∗ bifurcated from the respective SSQVF, and SU1 for the respective phase portraits

of codimension one∗

SSQVF [3] #p #r SU1 [5] SSQVF [3] #p #r SU1 [5]

S
2
2,1 1 1 U

1
A,1 S

2
10,6 2 2 U

1
A,34,U

1
A,35

S
2
3,1 3 3 U

1
A,2,U

1
A,3,U

1
A,4 S

2
10,7 4 3 U

1
A,36,U

1
A,37,U

1
A,38

S
2
3,2 1 1 U

1
A,5 S

2
10,8 1 1 U

1
A,39

S
2
3,3 1 1 U

1
A,6 S

2
10,9 2 2 U

1
A,40,U

1
A,41

S
2
3,4 1 1 U

1
A,7 S

2
10,10 4 2 U

1
A,42,U

1
A,43

S
2
3,5 3 3 U

1
A,8,U

1
A,9,U

1
A,10 S

2
10,11 1 1 U

1
A,44

S25,1 3 3 U1
A,11,U

1
A,12,U

1
A,13 S210,12 2 2 U1

A,45,U
1
A,46

S
2
7,1 1 1 U

1
A,14 S

2
10,13 4 4 U

1
A,47,U

1
A,48,U

1
A,49,U

1
A,50

S
2
7,2 2 2 U

1
A,15,U

1
A,16 S

2
10,14 4 3 U

1
A,51,U

1
A,52,U

1
A,53

S
2
7,3 1 1 U

1
A,17 S

2
10,15 1 1 U

1
A,54

S
2
7,4 1 1 U

1
A,18 S

2
10,16 1 1 U

1
A,55

S
2
9,1 1 1 U

1
A,19 S

2
12,1 2 2 U

1
A,56,U

1
A,57

S
2
9,2 1 1 U

1
A,20 S

2
12,2 3 3 U

1
A,58,U

1
A,59,U

1
A,60

S
2
9,3 1 1 U

1
A,21 S

2
12,3 2 2 U

1
A,61,U

1
A,62

S
2
10,1 3 3 U

1
A,22,U

1
A,23,U

1
A,24 S

2
12,4 3 2 U

1
A,63,U

1
A,64

S
2
10,2 2 2 U

1
A,25,U

1
A,26 S

2
12,5 2 2 U

1
A,65,U

1
A,66

S
2
10,3 3 2 U

1
A,27,U

1
A,28 S

2
12,6 2 2 U

1
A,67,U

1
A,68

S
2
10,4 2 2 U

1
A,29,U

1
A,30 S

2
12,7 3 2 U

1
A,69,U

1
A,70

S
2
10,5 3 3 U

1
A,31,U

1
A,32,U

1
A,33

Table 4: Non-realizable phase portraits from set A which bifurcate from structurally stable quadratic

vector fields. The first and fourth columns indicate the structurally stable quadratic vector field

(SSQVF) which suffers a bifurcation, the second and fifth columns indicate the pages where they

appear in [5] and the third and sixth columns present the corresponding impossible phase portraits

SSQVF [3] Page [5] Impossible [5] SSQVF [3] Page [5] Impossible [5]

S
2
10,3 78 U

1
I,1 S

2
10,14 87 U

1
I,3

S
2
10,7 (82) 213 U

1
I,103 S

2
12,4 (90) 214 U

1
I,105

S
2
10,10 84; 215 U

1
I,2;U

1
I,104 S

2
12,7 (91) 212 U

1
I,106
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U
1
I,1 U

1
I,2 U

1
I,3 U

1
I,103

U
1
I,104 U

1
I,105 U

1
I,106

Figure 6: Phase portraits of the non-realizable structurally unstable quadratic vector fields of codimension

one∗ from set A

3 Proof of Theorem 3: the topologically possible phase portraits1

Here we consider all 70 realizable structurally unstable quadratic vector fields of codimension one∗2

from set A.3

Considering all the different ways to obtain phase portraits belonging to set AA of codimension4

two∗, it is necessary to consider all possible ways of coalescing singular points. We split set AA into5

four subsets as follows:6

(AAs) X ∈ ∑2
2(AA) possessing a triple saddle s(3), resulting from the coalescence of a finite saddle7

with the finite saddle-node in the direction of its center manifold;8

(AAn) X ∈∑2
2(AA) possessing a triple node n(3), resulting from the coalescence of a finite node with9

the finite saddle-node in the direction of its center manifold;10

(AAcp) X ∈∑2
2(AA) possessing a cusp of multiplicity two ĉp(2), resulting from the coalescence of the11

two separatrices of the saddle-node having the same stability;12

(AAsnsn) X ∈∑2
2(AA) possessing two finite saddle-nodes sn(2)+sn(2), resulting from the coalescence of13

a finite saddle with a finite node plus the existing finite saddle-node.14

The next result is a useful tool when working with structurally unstable quadratic vector fields of15

codimension two∗ possessing a triple singular point (s(3) or n(3)). Although it is stated for general16

polynomial vector fields, we will use it only for quadratic ones.17

Lemma 1. Assume that a polynomial vector field X has a finite singular point p being a semi-18

elemental triple saddle s(3) (respectively triple node n(3)), and this is the only unstable element.19

(a) Any perturbation of X in a sufficiently small neighborhood of this point will produce either20

a structurally stable system (with two saddles and one node (respectively one saddle and two21

nodes), or with only one saddle (respectively one node) in the neighborhood), or a structurally22

unstable system of codimension one (with one saddle-node and one saddle (respectively one23

saddle-node and one node)), or a system topologically equivalent to X.24

17



(b) All these possibilities of structurally stable systems and of structurally unstable systems of1

codimension one∗ are realizable.2

(c) If the triple saddle s(3) (respectively triple node n(3)) is the only unstable object of codimension3

two in the region of definition and we consider the perturbation which leaves a saddle-node and4

a saddle (respectively a saddle-node and a node) in the small neighborhood, then the parabolic5

sector of the saddle-node (respectively the node) is the ω-limit or α-limit (depending on its6

stability) of at least one of the separatrices of the saddle (respectively of the central manifold7

of the saddle-node). We will say that the saddle (respectively, the node) is linked with the8

saddle-node.9

Proof. Statement (a) is proved in [2] (Theorem 35).10

To prove statement (b) we consider system11

x′ = P (x, y),

y′ = y + Q(x, y),
(1)

with P and Q polynomials starting on degree two such that ∂2P/∂x2|(0,0) = 0, ∂2Q/∂x2|(0,0) 6= 012

and ∂2P/∂x∂y|(0,0) 6= 0. This system is the normal form for vector fields with a semi-elemental13

triple singular point at the origin. Thus, P (x, y) and Q(x, y) may be written as P (x, y) = 2hxy +14

P1(x, y) and Q(x, y) = lx2 + Q1(x, y), with hl 6= 0 and ∂2P1/∂x
2|(0,0) = 0, ∂2Q1/∂x

2|(0,0) = 0 and15

∂2P1/∂x∂y|(0,0) = 0. Then, by means of the change x → −x we may assume h > 0. It follows from16

Section 2.11 of [23] that if l > 0, we have a triple saddle, and if l < 0, we have a triple node.17

We fix l > 0, so system (1) possess a triple saddle. The case l < 0 is analogous. Then, we consider18

the perturbed system for ε > 0 small enough:19

x′ = εx2 + 2hxy + P1(x, y) = F (x, y),

y′ = y + lx2 + Q1(x, y) = G(x, y).
(2)

Then, system (2) possesses two singular points in any sufficiently small neighborhood of the origin:20

(0, 0) and (ε/(2hl)+O(ε2),−ε2/(4h2l)+O(ε3)). By the same result of [23], the origin is a saddle-node.21

Moreover, the Jacobian matrix of (2) evaluated at the other singular point is:22

(
ε2/(2hl) + O(ε3) ε/l + O(ε2)

ε/h + O(ε2) 1 + O(ε)

)
,

whose determinant is −ε2/(2hl) + O(ε3). So, for ε > 0 sufficiently small, this singular point is a23

saddle.24

In order to complete the proof of this statement, we need to guarantee that this saddle-node can25

be either split into a saddle and a node or disappear, after applying a convenient perturbation. But26

this is done in Lemma 3.24 of [5].27

Now, to prove statement (c), we recall that Lemma 3.24(c) of [5] assures that, after applying a28

convenient small perturbation to a saddle-node, it leaves a saddle and a node, in which case this node29

is the α-limit or ω-limit of at least one of the separatrices of the saddle. In this sense, having a triple30

saddle (respectively a triple node), from statement (a) above, there exists a perturbation which leaves31

18



two saddles and a node s1 +n+s2 (respectively a saddle and two nodes n1 +s+n2). Moreover, from1

this configuration of singular points, we can generate the following new configurations: s1n(2) + s2 or2

s2n(2)+s1 (respectively sn1(2)+n2 or sn2(2)+n1). Applying Lemma 3.24(c) of [5] to the saddle-node3

of each configuration, we obtain that the node n (respectively the saddle s) is linked to the saddles4

s1 and s2 (respectively the nodes n1 and n2). Then, we conclude that, after a perturbation of the5

triple saddle (respectively triple node), leading to a saddle-node and a saddle (respectively a saddle-6

node and a node), the parabolic sector of the saddle-node (respectively the node) is the α-limit or7

ω-limit of at least one of the separatrices of the saddle (respectively of the central manifold of the8

saddle-node).9

3.1 Cases AAs and AAn
10

In the classes AAs and AAn, the unstable object of codimension two∗ is either a triple saddle s(3)11

or triple node n(3).12

By Lemma 1(c), the only way we can coalesce a saddle-node and a saddle or a node is by moving13

them towards one another along the orbit linking both of them. We will name provisionally the phase14

portraits which appear here as AAs
b and AAn

b , where b is a cardinal.15

Starting from a phase portrait of codimension one∗ of set A, we coalesce the saddle-node with the16

saddle (respectively the node), obtaining a phase portrait of codimension two∗ with a triple saddle17

(respectively, with a triple node), and then separating this point into a saddle (respectively a node)18

plus a saddle-node, we get a phase portrait of codimension one∗ also belonging to set A. Moreover,19

these unfoldings of codimension one∗ appear in pairs and each pair is linked by a single codimension20

two phase portrait.21

Lemma 2. Each phase portrait from the classes AAs and AAn, shown in Figure 7, is topologically22

equivalent to one of the 44 structurally stable phase portraits in [3]. In Table 5 we present these23

equivalences, as well as the unfoldings of codimension one∗.24

Proof. Using the technique of coalescing singular points, as in [3, 5], we obtain all the topological25

phase portraits in Figure 7.26

3.2 Case AAcp
27

In the class AAcp, the unstable object of codimension two∗ is a cusp ĉp(2). It is important to mention28

that here we are using the notation used in the book [7].29

Starting from a phase portrait of codimension one∗ of set A, we coalesce the two separatrices30

of the saddle-node having the same stability, obtaining a phase portrait of codimension two∗ with31

a cusp, and then separating these separatrices, we get a phase portrait of codimension one∗ also32

belonging to set A. Moreover, these unfoldings of codimension one∗ appears in pairs in a one-to-one33

correspondence, that is, giving a phase portrait of codimension one∗ of set A, we can correspond one34

and only phase portrait of codimension one∗ by passing through the set AAcp. In order to do this35

coalescence of separatrices of the nodal sector of the saddle-node cannot receive any other separatrix.36

See for example phase portrait U
1
A,3 to find such impossibility.37
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AAs
1 AAs

2 AAs
3 AAs

4

AAs
5

AAn
1 AAn

2 AAn
3

AAn
4 AAn

5 AAn
6 AAn

7

Figure 7: Unstable phase portraits from cases AAs and AAn

Table 5: Topologically equivalence between phase portraits of codimension two∗ of classes AAs and

AAn and structurally stable phase portraits (of codimension zero) in [3]. In the third column, we

present the corresponding unfoldings of codimension one∗.
Cod-2∗ phase portrait Top. equiv. cod 0 Unfoldings of cod 1∗

AAs
1 S

2
2.1 U

1
A,3; U

1
A,4; U

1
A,7

AAs
2 S

2
6.1 U

1
A,15; U

1
A,16

AAs
3 S

2
9.3 U

1
A,23; U

1
A,24; U

1
A,49; U

1
A,50

AAs
4 S

2
9.1 U

1
A,32; U

1
A,33; U

1
A,52; U

1
A,53

AAs
5 S

2
9.2 U

1
A,47;U

1
A,48

AAn
1 S

2
2.1 U

1
A,2; U

1
A,3

AAn
2 S

2
4.1 U

1
A,11; U

1
A,12

AAn
3 S

2
9.3 U

1
A,22; U

1
A,23

AAn
4 S

2
9.1 U

1
A,27; U

1
A,28; U

1
A,31; U

1
A,32

AAn
5 S

2
11.1 U

1
A,56; U

1
A,57

AAn
6 S

2
11.3 U

1
A,58; U

1
A,60; U

1
A,61

AAn
7 S

2
11.2 U

1
A,65; U

1
A,66

All the phase portraits with a cusp were already studied in the paper of Jager [19], even of higher1

codimension than two and including other finite nilpotent singular points. So we could have relied2

on this paper and simply extract the codimension-two examples, but since we have found a gap in3

that paper and some phase portraits are missing (even though their are not of codimension two), we4

have preferred to obtain all the topological possibilities using a different proceeding and latter check5

20



that they fit with the results of Jager.1

Phase portrait U1
A,1 produces phase portrait AAcp

1 (see Figure 8) and after bifurcation we get phase2

portrait U
1
A,1.3

U
1
A,1U

1
A,1 AAcp

1

Figure 8: Unstable phase portrait AAcp
1

Phase portrait U1
A,2 produces phase portrait AAcp

2 (see Figure 9) and after bifurcation we get phase4

portrait U
1
A,9.5

U
1
A,2 U

1
A,9AAcp

2

Figure 9: Unstable phase portrait AAcp
2

Phase portrait U
1
A,5 produces phase portrait AAcp

3 (see Figure 10) and after bifurcation we get6

phase portrait U
1
A,6.7

U
1
A,5 U

1
A,6AAcp

3

Figure 10: Unstable phase portrait AAcp
3

Phase portrait U
1
A,11 produces phase portrait AAcp

4 (see Figure 11) and after bifurcation we get8

phase portrait U
1
A,11.9
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U
1
A,11U

1
A,11 AAcp

4

Figure 11: Unstable phase portrait AAcp
4

Phase portrait U
1
A,17 produces phase portrait AAcp

5 (see Figure 12) and after bifurcation we get1

phase portrait U
1
A,18.2

U
1
A,17 U

1
A,18AAcp

5

Figure 12: Unstable phase portrait AAcp
5

Phase portrait U
1
A,20 produces phase portrait AAcp

6 (see Figure 13) and after bifurcation we get3

phase portrait U
1
A,21.4

U
1
A,20 U

1
A,21AAcp

6

Figure 13: Unstable phase portrait AAcp
6

Phase portrait U
1
A,22 produces phase portrait AAcp

7 (see Figure 14) and after bifurcation we get5

phase portrait U
1
A,36.6

U
1
A,22 U

1
A,36AAcp

7

Figure 14: Unstable phase portrait AAcp
7

Phase portrait U
1
A,25 produces phase portrait AAcp

8 (see Figure 15) and after bifurcation we get7
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phase portrait U
1
A,41.1

U
1
A,25 U

1
A,41AAcp

8

Figure 15: Unstable phase portrait AAcp
8

Phase portrait U
1
A,27 produces phase portrait AAcp

9 (see Figure 16) and after bifurcation we get2

phase portrait U
1
A,42.3

U
1
A,27 U

1
A,42AAcp

9

Figure 16: Unstable phase portrait AAcp
9

Phase portrait U
1
A,29 produces phase portrait AAcp

10 (see Figure 17) and after bifurcation we get4

phase portrait U
1
A,44.5

U
1
A,29 U

1
A,44AAcp

10

Figure 17: Unstable phase portrait AAcp
10

Phase portrait U
1
A,30 produces phase portrait AAcp

11 (see Figure 18) and after bifurcation we get6

phase portrait U
1
A,39.7

U
1
A,30 U

1
A,39AAcp

11

Figure 18: Unstable phase portrait AAcp
11
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Phase portrait U
1
A,35 produces phase portrait AAcp

12 (see Figure 19) and after bifurcation we get1

phase portrait U
1
A,45.2

U
1
A,35 U

1
A,45AAcp

12

Figure 19: Unstable phase portrait AAcp
12

Phase portrait U
1
A,56 produces phase portrait AAcp

13 (see Figure 20) and after bifurcation we get3

phase portrait U
1
A,63.4

U
1
A,56 U

1
A,63AAcp

13

Figure 20: Unstable phase portrait AAcp
13

Phase portrait U
1
A,60 produces phase portrait AAcp

14 (see Figure 21) and after bifurcation we get5

phase portrait U
1
A,60.6

U
1
A,60U

1
A,60 AAcp

14

Figure 21: Unstable phase portrait AAcp
14

Phase portrait U
1
A,65 produces phase portrait AAcp

15 (see Figure 22) and after bifurcation we get7

phase portrait U
1
A,69.8
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U
1
A,65 U

1
A,69AAcp

15

Figure 22: Unstable phase portrait AAcp
15

The remaining cases of codimension one∗ do not produce any phase portrait with a cusp since we1

cannot coalesce the separatrices of the saddle-node with the same stability without affecting other2

points, which produces a higher order codimension phase portrait. These 15 topologically different3

phase portraits with a cusp of codimension two∗ correspond exactly with the phase portraits of4

codimension two in [19]. See Table 8 (Section 4.2) which relates the phase portraits in AAcp

# with5

the phase portraits of [19].6

3.3 Case AAsnsn
7

In the class AAsnsn, the unstable object of codimension two∗ is the set of two finite saddle-nodes8

sn(2)+sn(2).9

In order to obtain a phase portrait of codimension two∗ with two finite saddle-nodes starting from10

a phase portrait of codimension one∗ of set A, we keep the existing saddle-node p1 and either build11

a new one p2 by coalescing a saddle and a node, or add a new one.12

On the other hand, from the phase portraits of codimension two∗ with two saddle-nodes, there exist13

two ways of obtaining phase portraits of codimension one∗ also belonging to set A after perturbation:14

making p2 disappear or splitting each saddle-node p1 and p2 into a saddle and a node (see Remark 4).15

So it is not necessary to check the option of adding a saddle-node to a system already having one.16

We just need to seek systems A with sn(2)+ s + a and coalesce the two elemental singularities.17

Remark 4. We recall that, in quadratic differential systems, the finite singular points are zeroes of18

a polynomial of degree four. Since p1 is already a singular point of multiplicity two, the remaining19

singular points are zeroes of a quadratic polynomial. In other words, they can be two simple singular20

points (a saddle and a node), a double point (saddle-node p2) or two complex conjugate singular21

points.22

Phase portrait U
1
A,2 produces phase portrait AAsnsn

1 (see Figure 23). After bifurcation we get23

phase portraits U
1
A,1, by making the new saddle-node disappear, and U

1
A,4, by splitting the original24

saddle-node into a saddle and a node.25
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U
1
A,2

U
1
A,1

U
1
A,4

AAsnsn
1

Figure 23: Unstable system AAsnsn
1

Phase portrait U1
A,3 cannot produce a coalescence with the elemental antisaddle and the elemental1

saddle because the elemental antisaddle is surrounded by the separatrices of the saddle-node, and2

so it cannot reach the saddle. This same situation will happen in other phase portraits, such as in3

U
1
A,28, and many others, and because it is quite simple to detect this phenomena, we will simply skip4

them.5

The study of phase portrait U
1
A,4 is already contained in the study of U1

A,2.6

Phase portrait U
1
A,5 produces phase portrait AAsnsn

2 (see Figure 24). After bifurcation we get7

phase portraits U
1
A,1, by making any saddle-nodes disappear, and U

1
A,5, by splitting the original8

saddle-node into a saddle and a node.9

U
1
A,5

U
1
A,5

U
1
A,1

AAsnsn
2

Figure 24: Unstable phase portrait AAsnsn
2

Phase portrait U1
A,6 produces phase portrait AAsnsn

3 (see Figure 25). After bifurcation we get phase10

portraits U
1
A,1, by making any of the saddle-nodes disappear, and U

1
A,6, by splitting the original11

saddle-node into a saddle and a node.12
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Figure 25: Unstable phase portrait AAsnsn
3

Phase portrait U1
A,7 produces phase portrait AAsnsn

4 (see Figure 26). After bifurcation we get phase1

portraits U
1
A,1, by making any of the saddle-nodes disappear, and U

1
A,7, by splitting the original2

saddle-node into a saddle and a node.3

U
1
A,7

U
1
A,7

U
1
A,1

AAsnsn
4

Figure 26: Unstable phase portrait AAsnsn
4

Phase portrait U1
A,8 produces phase portrait AAsnsn

5 (see Figure 27). After bifurcation we get phase4

portraits U
1
A,1, by making any of the saddle-nodes disappear, and U

1
A,9, by splitting the original5

saddle-node into a saddle and a node.6
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Figure 27: Unstable phase portrait AAsnsn
5

All the possibilities concerning U
1
A,9 are already contained in the study of U1

A,8.1

Phase portrait U
1
A,22 produces phase portrait AAsnsn

6 (see Figure 28). After bifurcation we get2

phase portraits U
1
A,21, by making any of the saddle-nodes disappear, and U

1
A,24, by splitting the3

original saddle-node into a saddle and a node.4

U
1
A,22

U
1
A,21

U
1
A,24

AAsnsn
6

Figure 28: Unstable phase portrait AAsnsn
6

Phase portrait U
1
A,25 produces phase portrait AAsnsn

7 (see Figure 29). After bifurcation we get5

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,19, by making the original6

saddle-node disappear, and U
1
A,26, by splitting the original saddle-node into a saddle and a node.7
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Figure 29: Unstable phase portrait AAsnsn
7

Even though phase portrait U
1
A,26 is going to produce an equivalent diagram as in Figure 29, we1

will perform it to be sure of that, and we will avoid repeating this same case in the next similar2

steps. Phase portrait U
1
A,26 produces phase portrait AAsnsn

7 (see Figure 30). After bifurcation we3

get phase portraits U1
A,19, by making the new saddle-node disappear, U1

A,25, by splitting the original4

saddle-node into a saddle and a node, and U
1
A,21, by making the original saddle-node disappears.5

U
1
A,25

U
1
A,19

U
1
A,21U

1
A,26 AAsnsn

7

Figure 30: Unstable phase portrait AAsnsn
7

Phase portrait U
1
A,27 produces the impossible phase portrait U

2
I,1 (see Figure 31), because by6

splitting the original saddle-node into a saddle and a node we obtain the impossible phase portrait7

U
1
I,1 of codimension one∗.8
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Figure 31: Impossible unstable phase portrait U2

I,1

Phase portrait U
1
A,29 produces phase portrait AAsnsn

8 (see Figure 32). After bifurcation we get1

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,30, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.3

U
1
A,29

U
1
A,21

U
1
A,20

U
1
A,30

AAsnsn
8

Figure 32: Unstable phase portrait AAsnsn
8

Phase portrait U
1
A,31 produces phase portrait AAsnsn

9 (see Figure 33). After bifurcation we get4

phase portraits U
1
A,19, by making any of the saddle-nodes disappear, and U

1
A,33, by splitting the5

original saddle-node into a saddle and a node.6
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Figure 33: Unstable phase portrait AAsnsn
9

Phase portrait U
1
A,34 produces phase portrait AAsnsn

10 (see Figure 34). After bifurcation we get1

phase portraits U
1
A,19, by making the new saddle-node disappear, U

1
A,35, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.3

U
1
A,34 U

1
A,20

U
1
A,19

U
1
A,35

AAsnsn
10

Figure 34: Unstable phase portrait AAsnsn
10

Phase portrait U
1
A,36 produces phase portrait AAsnsn

11 (see Figure 35). After bifurcation we get4

phase portraits U
1
A,20, by making the new saddle-node disappear, U

1
A,38, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,21, by making the original saddle-node disappear6
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Figure 35: Unstable phase portrait AAsnsn
11

Phase portrait U
1
A,39 produces phase portrait AAsnsn

12 (see Figure 36). After bifurcation we get1

phase portraits U
1
A,21, by making any of the saddle-nodes disappear, and U

1
A,39, by splitting the2

original saddle-node into a saddle and a node.3

U
1
A,39

U
1
A,39

U
1
A,21

AAsnsn
12

Figure 36: Unstable phase portrait AAsnsn
12

Phase portrait U
1
A,40 produces phase portrait AAsnsn

13 (see Figure 37). After bifurcation we get4

phase portraits U
1
A,19, by making the new saddle-node disappear, U

1
A,41, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.6
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Figure 37: Unstable phase portrait AAsnsn
13

Phase portrait U
1
A,42 produces the impossible phase portrait U

2
I,2 (see Figure 38), because by1

splitting the original saddle-node into a saddle and a node we obtain the impossible phase portrait2

U
1
I,2 of codimension one∗.3

U
1
A,42 U

1
I,2U

2
I,2

Figure 38: Impossible unstable phase portrait U2

I,2

Phase portrait U
1
A,44 produces phase portrait AAsnsn

14 (see Figure 39). After bifurcation we get4

phase portraits U
1
A,20, by making any of the saddle-nodes disappear, and U

1
A,44, by splitting the5

original saddle-node into a saddle and a node.6
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Figure 39: Unstable phase portrait AAsnsn
14

Phase portrait U
1
A,45 produces phase portrait AAsnsn

15 (see Figure 40). After bifurcation we get1

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,46, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,19, by making the new saddle-node disappear.3

U
1
A,45 U

1
A,19

U
1
A,21

U
1
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AAsnsn
15

Figure 40: Unstable phase portrait AAsnsn
15

Phase portrait U
1
A,47 produces phase portrait AAsnsn

16 (see Figure 41). After bifurcation we get4

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,50, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.6
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Figure 41: Unstable phase portrait AAsnsn
16

Phase portrait U
1
A,48 produces phase portrait AAsnsn

17 (see Figure 42). After bifurcation we get1

phase portraits U
1
A,21, by making the new saddle-node disappear, U

1
A,49, by splitting the original2

saddle-node into a saddle and a node, and U
1
A,20, by making the original saddle-node disappear.3

U
1
A,48 U

1
A,20

U
1
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U
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Figure 42: Unstable phase portrait AAsnsn
17

Phase portrait U
1
A,51 produces phase portrait AAsnsn

18 (see Figure 43). After bifurcation we get4

phase portraits U
1
A,19, by making the new saddle-node disappear, U

1
A,53, by splitting the original5

saddle-node into a saddle and a node, and U
1
A,21, by making the new saddle-node disappear.6
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Figure 43: Unstable phase portrait AAsnsn
18

Phase portrait U
1
A,52 produces the impossible phase portrait U

2
I,3 (see Figure 44), because by1

splitting the original saddle-node into a saddle and a node we obtain the impossible phase portrait2

U
1
I,3 of codimension one∗.3

U
1
A,52 U

1
I,3U

2
I,3

Figure 44: Impossible unstable phase portrait U2

I,3

Phase portrait U
1
A,54 produces phase portrait AAsnsn

19 (see Figure 45). After bifurcation we get4

phase portraits U
1
A,19, by making any of the saddle-nodes disappear, and U

1
A,54, by splitting the5

original saddle-node into a saddle and a node.6

U
1
A,54

U
1
A,54

U
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Figure 45: Unstable phase portrait AAsnsn
19
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Phase portrait U
1
A,55 produces phase portrait AAsnsn

20 (see Figure 46). After bifurcation we get1

phase portraits U
1
A,19, by making any of the saddle-nodes disappear, and U

1
A,55, by splitting the2

original saddle-node into a saddle and a node.3

U
1
A,55

U
1
A,55

U
1
A,19

AAsnsn
20

Figure 46: Unstable phase portrait AAsnsn
20

The remaining cases of codimension one∗ do not produce any phase portrait with two saddle-nodes4

since either (1) they have enough finite singular points to produce another saddle-node, or (2) the5

saddle and the node are not directly linked. See Table 6 for the corresponding cases.6

Table 6: Codimension one∗ phase portraits that do not produce any phase portrait with two saddle-

nodes according to their respective reason. In the first column we present the reasons and in the

second one we list the corresponding cases

(1) U
1
A,11,U

1
A,12,U

1
A,13,U1

A,14,U
1
A,15,U

1
A,16,U

1
A,17,U

1
A,18,U

1
A,56,U

1
A,57,U

1
A,58,U

1
A,59,U

1
A,60,U

1
A,61,U1

A,62

U
1
A,63,U

1
A,64,U

1
A,65,U1

A,66,U
1
A,67,U

1
A,68,U

1
A,69,U

1
A,70

(2) U
1
A,3,U

1
A,10,U

1
A,23,U

1
A,28,U

1
A,32,U

1
A,37,U1

A,43

4 Proof of Theorem 3: the realization of the phase portraits7

4.1 Introduction8

In the previous section we have produced all the topologically possible phase portraits for structurally9

unstable quadratic systems of codimension two∗ belonging to the set
∑2

2(AA). And from them, we10

have already discarded some which are not realizable due to their unfoldings of codimensions one11

and zero are impossible. The data is summarized in Table 7.12
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Table 7: Summary of Section 3

Set # Top. Possible # Not Realizable Total

AAs 5 0 5

AAn 7 0 7

AAcp 15 0 15

AAsnsn 23 3 20

Total 50 3 47

In this section we prove that one case from AAsnsn is not realizable and we give specific examples1

for the 46 different topological classes of structurally unstable quadratic systems of codimension2

two∗.3

In [3] the authors point out that all 44 structurally stable phase portraits could be obtained without4

limit cycle and they prove this one by one. On the contrary, due to the large number of cases, in [5]5

the authors did not follow the same procedure for the 204 structurally unstable phase portraits of6

codimension one∗. Since the present paper is directly derived from this second study, we have found7

examples with no signals of limit cycles, but we have not proved the absence of infinitesimal ones.8

In the attempt of seeking for concrete examples of each of the unstable systems of codimension9

two∗ previously found, we have relied on many papers where families of quadratic systems had been10

studied, so that either from themselves, or by a perturbation of them, the wanted phase portraits11

appeared. More concretely, the useful papers have been:12

(1) [8] where the set of all real quadratic polynomial differential systems with a finite semi-elemental13

triple saddle was topologically classified, and by using the phase portraits of generic regions14

we realize the cases of set AAs.15

(2) [9] where the set of all real quadratic polynomial differential systems with a finite semi-elemental16

triple node was topologically classified, and by using the phase portraits of generic regions we17

realize the cases of set AAn.18

(3) [19] where the author classified all quadratic systems with a cusp, and by using directly some19

phase portraits of Jager’s classification we realize the cases of set AAcp.20

(4) [10] where the set of all real quadratic polynomial differential systems with a finite saddle-21

node and an infinite saddle-node
(0
2

)
SN were topologically classified, and by using the theory22

rotated vector fields on systems from surface S2 (where another finite saddle-node exists) we23

may either break the infinite saddle-node into elemental singular points, or making it disappear,24

we produce the cases of set AAsnsn.25

Using these papers we could find all possible examples from the four sets we study here. For the26

cases AAs and AAn, because of Lemma 2, we do not show the realization of such phase portraits27

here. In the next two sections we show the realization of phase portraits of cases AAcp and AAsnsn.28
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4.2 Realization of cases AA
cp

1

Now we give examples of all realizable structurally unstable phase portraits of codimension two∗ for2

quadratic systems having a cusp. Although there exist different papers having examples realizing3

these phase portraits, we chose the paper [19] from which we can obtain all of them directly.4

Consider systems5

ẋ = y + λ1x
2 + λ2xy, ẏ = x2 + λ3xy + λ4y

2, (3)

with λ4
3 − 4λ4 < 0, and6

ẋ = y + λ1x
2 + λ2xy, ẏ = x2 + 2λ3xy + (λ2

3 − 1)y2, (4)

with λ1 > 0.7

These normal forms (3) and (4) are studied in [19] and they represent quadratic systems possessing8

a cusp.9

In [19] there are many phase portraits which produce a phase portrait of set AAcp. In Table 810

we simply present one representative from generic regions of the bifurcation diagram of (3) and (4)11

corresponding to the phase portrait of codimension two∗.12

Table 8: Correspondence between codimension two∗ phase portraits of set AAc and the phase por-

traits in [19]. In the first column we present the definitive notation of the realizable phase portraits,

in the second column we present the codimension two∗ phase portraits of set AAc in the present

paper, in the third column we show the corresponding phase portraits in [19], in the fourth column

we specify the corresponding normal form and in the other columns we present the values of the

parameters of (3) and (4) which realizes such phase portrait

Cod 2∗ [19] Normal form λ1 λ2 λ3 λ4

U
2
AA,1 AAcp

1 a, Fig. 12 (3) 0 1 0 2

U
2
AA,2 AAcp

2 1, Fig. 18 (4) 0 −2 −2 -

U
2
AA,3 AAcp

3 9abc, Fig. 18 (4) 3 −11 −2 -

U
2
AA,4 AAcp

4 3abc, Fig. 18 (4) 1 −1 0 -

U
2
AA,5 AAcp

5 10, Fig. 22 (4) 1 2 0 -

U
2
AA,6 AAcp

6 c λ1 > 0, Fig. 12 (3) 1 2 1 1

U
2
AA,7 AAcp

7 31, Fig. 22 (4) 9 −3 2 -

U
2
AA,8 AAcp

8 12a, Fig. 22 (4) 2 8 3/2 -

U
2
AA,9 AAcp

9 22, Fig. 22 (4) 4 −3 0 -

U
2
AA,10 AAcp

10 12c, Fig. 22 (4) 3 14 73/20 -

U
2
AA,11 AAcp

11 14, Fig. 22 (4) 3 14 366661/100000 -

U
2
AA,12 AAcp

12 8, Fig. 22 (4) 3 14 −2 -

U
2
AA,13 AAcp

13 24a, Fig. 22 (4) 14 −10 1/2 -

U
2
AA,14 AAcp

14 29a, Fig. 22 (4) 1 −1 1/10 -

U
2
AA,15 AAcp

15 12c, Fig. 22 (4) 14 −10 4/5 -
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4.3 Realization of cases AA
snsn

1

In this section we provide examples of the realizable structurally unstable phase portraits of codi-2

mension two∗ for quadratic systems having two finite saddle-nodes. In opposite to the previous cases,3

as far as we know, this type of family of quadratic systems has not been topologically classified, so4

that we do not count with a paper which provides the desired phase portraits of codimension two∗5

in a direct way.6

In [10] the authors studied the geometry of the quadratic systems possessing a finite saddle-node7

sn(2) and an infinite saddle-node
(
0
2

)
SN . In the bifurcation diagram described in [10], the surface8

of bifurcation S2 consists on the systems with two finite saddle-nodes and the infinite saddle-node9 (0
2

)
SN .10

Moreover, we observe that if we apply some perturbation on systems belonging to this surface S211

that splits the infinite saddle-node into a saddle and a node (both infinite) and keeps untouched12

both finite saddle-nodes, we obtain all but one of the realizable cases of set AAsnsn. Thus, the way13

of providing these examples is considering a rotated family of vector fields.14

First, we prove that 19 cases are realizable using perturbations of phase portraits from [10]. We15

consider system16

ẋ = gx2 + 2hxy + (n− g − 2h)y2,

ẏ = y + lx2 + (2g + 2h− 2l − n)xy + (2h + l + 2(n− g − 2h))y2,
(5)

with g, h, l and n real constants, which is the normal form in [10] of quadratic systems possessing17

a finite saddle-node sn(2) and an infinite saddle-node
(
0
2

)
SN located at the bisector of the first and18

third quadrants.19

As mentioned above, systems of the form (5) belonging to the surface20

S2 : −12g2(g2 + 2gh + h2 − gn) = 0

possess two finite saddle-nodes and the infinite saddle-node
(0
2

)
SN .21

We consider the rotated family of vector fields22

ẋ =gx2 + 2hxy + (n− g − 2h)y2,

ẏ =y + lx2 + (2g + 2h− 2l − n)xy + (2h + l + 2(n− g − 2h))y2

+ α(gx2 + 2hxy + (n− g − 2h)y2),

(6)

with g, h, l and n real constants and α ∈ R is the parameter of rotation.23

In Table 9 we present the coefficients of system (6) which has the phase portraits of set AAsnsn,24

derived from the rotation of systems (5) on surface S2 from their bifurcation diagram.25

Now, we proceed to prove the impossibility of phase portrait AAsnsn
17 . Before we get this conclusion,26

we prove Proposition 1.27

4.3.1 Proof of Proposition 1: correcting a mistake in [5]28

In this section we point out a mistake that the authors in [5] made and its correction implies in the29

non-realization of phase portrait AAsnsn
17 .30
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Table 9: Coefficients of system (6) whose phase portrait is from set AAsnsn, derived from the rotation

of systems (5) on surface S2 from their bifurcation diagram. In the first column we present the

definitive notation of the realizable phase portraits, in the second column we present the codimension

two∗ phase portraits of set AAsnsn in the present paper, in the third column we show the derived

phase portrait in [10] before rotation and in the other columns, the coefficients of system (6)

Cod 2∗ [10] g h l n α

U
2
AA,16 AAsnsn

1 2S1 1 −1 −
√

10 18 10 −10−4

U
2
AA,17 AAsnsn

2 2S5 1 −1 −
√

10 9/10 10 −10−2

U
2
AA,18 AAsnsn

3 2S3 1 −1 −
√

10 2 10 −10−3

U
2
AA,19 AAsnsn

4 2S11 1 3 11/5 16 −10−3

U
2
AA,20 AAsnsn

5 2S10 1 3 14/5 16 −10−3

U
2
AA,21 AAsnsn

6 2S1 1 −1 −
√

10 18 10 −10−5

U
2
AA,22 AAsnsn

7 2S4 1 −1 −
√

10 11/10 10 10−3

U
2
AA,23 AAsnsn

8 2S31 1 −3/5 73/100 4/25 −10−4

U
2
AA,24 AAsnsn

9 2S6 1 −1 −
√

10 3/5 10 10−3

U
2
AA,25 AAsnsn

10 2S5 1 −1 −
√

10 9/10 10 10−3

U
2
AA,26 AAsnsn

11 2S10 1 3 14/5 16 10−3

U
2
AA,27 AAsnsn

12 2S3 1 −1 −
√

10 2 10 10−3

U
2
AA,28 AAsnsn

13 2S23 1 −1/10 4999997/5000000 81/100 −10−8

U
2
AA,29 AAsnsn

14 2S30 1 −11/20 71/100 81/400 −10−4

U
2
AA,30 AAsnsn

15 2S19 1 23/25 −50 2304/625 10−4

U
2
AA,31 AAsnsn

16 2S11 1 3 11/5 16 10−3

U
2
AA,33 AAsnsn

18 2S18 1 −1 +
√

6 12/5 6 −10−5

U
2
AA,34 AAsnsn

19 2S24 1 −1/10 7/10 81/100 −10−3

U
2
AA,35 AAsnsn

20 2S21 1 23/25 1183/1250 2304/625 −10−5

In [5] it is proved that structurally unstable quadratic differential systems of codimension one1

modulo limit cycles have up to 204 topologically different phase portraits (and at most 211, but2

these extra seven phase portrait are conjectured to be non-realizable).3

However, there exists a mistake in the book, since the example given for U
1
A,49 is wrong and,4

moreover, this phase portrait is not realizable as we will prove here.5

The new proof is based mainly on Lemmas 3.1 and 3.17 and Corollary 3.7 of [5] plus the next two6

lemmas.7

Lemma 3. A finite saddle of a quadratic system whose separatrices are not invariant straight lines,8

have both stable (respectively unstable) separatrices having the same stability on the same semi-plane9

delimited by the straight line formed by the eigenvector of the Jacobian matrix associated to the10

negative (respectively positive) eigenvalue.11

Proof. Assuming the contrary, then we would have a local phase portrait around the saddle as in12

Figure 47, and a straight line close to the line tangent to the separatrices would have three contact13

points (including the singular point).14
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Figure 47: Proof of Lemma 3

Lemma 4. An infinite saddle of a quadratic system whose finite separatrices do not form an invari-1

ant straight line have both of its finite separatrices tangent to a straight line defined by the eigenvector2

(in the affine chart). Moreover, even these saddles at infinity are in fact saddles of a cubic system,3

they also have both separatrices on the same side of this straight line on the infinite local chart. Once4

translated to the affine local chart, they stay on different semi-planes.5

Proof. The fact that the separatrices of infinite saddles remain tangent to a single straight line in6

the affine chart comes simply from the Poincaré compactification (see Figure 48(A)).7

If the separatrices in the infinite chart stay on the same semi-plane as defined by the eigenvector8

(as it happens with separatrices of finite saddles of quadratic systems), then the finite separatrices9

of infinite saddles stay in the affine plane in different semi-planes regarding the straight line defined10

by the eigenvector (see again Figure 48(A) and (B)). But being separatrices of a cubic system, they11

do not need to hold Lemma 3. Anyway, since they are separatrices of a cubic system which is the12

extension of a quadratic one under the Poincaré compactification, they must continue respecting13

Lemma 3, otherwise, on the affine chart they would be placed on the same side of the semi-plane,14

and then their curvature would produce two contact points with a parallel line close to the one15

defined by the eigenvector (see Figure 48(C)).16

(A) (B) (C)

Figure 48: Proof of Lemma 4
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Figure 49: Proof of Lemma 5

S
2
10,13

Figure 50: Phase portrait S2
10,13

Since we will strongly need Lemma 3.17 from [5], we will repeat it here and also the picture that1

gives its proof.2

Lemma 5. The α- and ω-limit of the four separatrices of a finite elementary saddle in a quadratic3

system cannot stay in the same open semi-plane delimited by a straight line passing through the4

saddle. (See Figure 49.)5

Now, in order to prove the impossibility of U1
A,49, we must start from the structurally stable phase6

portrait from which it comes from, namely S
2
10,13.7

Phase portrait S
2
10,13 has two finite saddles and two finite antisaddles, plus 3 infinite singularities8

(see Figure 50).9

Phase portrait S
2
10,13 is a very tricky one. In fact, it was the last one which was found among10

the structurally stable ones since it does not come from a simple perturbation of a system with a11

cusp (or with an invariant straight line) as many other structurally stable phase portraits, but it is12

necessary two different perturbations to obtain it. Moreover, it seems to live in a very small region13

of the parameter space. Anyway, its existence is beyond doubt and the example given in [3] is good.14

We reproduce it here:15

x′ =y + 3x2 + 11xy/8,

y′ =ε2x/5 − εy + x2 + 3xy + 5y2/4 + α(y + 3x2 + 11xy/8),

with ε = 0.2 and α = −0.017.16

Moreover, the way we draw phase portrait S
2
10,13 in Figure 50 seems to contradict Lemma 3.1717

from [5], and in fact it does. The real numerical image we obtain is topologically equivalent to this,18

but difficult to grasp.19

So, we will give now an argument so that S
2
10,13 can be drawn respecting Lemma 5 (Lemma 3.1720

from [5]).21
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(A) (B)

Figure 51: Schemes for S210,13

In Figure 51, we start by drawing the phase portrait having the infinite saddle at [1 : 0 : 0] and1

one finite saddle at the origin. This can always be done by means of a translation and a rotation.2

We draw in dashed lines the horizontal axis and the straight line defined by the eigenvector of the3

infinite saddle. We call L to this line. They cannot coincide since both separatrices from infinite have4

to split the plane in three regions leaving all finite singularities in the same region which cannot5

be the central one (see Figure 51(A)) and this is not possible if both separatrices stay on different6

semi-planes with respect to the horizontal axis. Moreover, the separatrices of the finite saddle cannot7

be tangent to the horizontal axis, because otherwise a parallel line to the axis, close to it, would8

produce too many contact points.9

So, we have the starting position given by Figure 51(B). We can assume one direction for one of10

the infinite separatrices, and then the direction of the other infinite separatrix and the line at infinity11

in Figure 51(B) is forced. We cannot guess the stabilities of the separatrices of the finite saddle yet.12

The flow on the horizontal line L must always point down, since it goes down on the right and on13

the left and it already has a contact point on the infinite singularity.14

The affine plane is divided in three horizontal bands and inside the lower one we will have only15

the separatrix from the left infinite saddle which must go to an infinite unstable node. Between this16

saddle and the infinite unstable node, there must exist an infinite stable node. In order to obtain17

phase portrait S
2
10,13 the stable infinite separatrix must come from the unstable infinite node on the18

upper half disk. So we arrive at Figure 52. We have drawn this separatrix close to the line L just19

to give space for the rest of the picture. Moreover, this separatrix cannot cross L in order to avoid20

more contact points.21

Phase portrait S
2
10,13 shows an interesting combination of separatrices. We can see as each finite22

saddle sends (or receives) a separatrix from an infinite singular point, then sends the opposite sepa-23

ratrix to a finite antisaddle which receives another separatrix from the other finite saddle, and the24

opposite separatrix to this last one goes to the original infinite singular point. And this happens not25

just once but twice. In order to give a name to this chain of separatrices, we will call it a tear, and26

the two tears linked in this way will be named chained tears.27

So we have one tear which will come from the upper stable node and a second tear from the upper28

unstable one. On the crossing point of these two tears (apart from the origin) we will have the second29
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β1 α2

β2

Figure 52: Advanced scheme for S2
10,13

(A) (B)

Figure 53: Two possibilities for S
2

10,13

finite saddle. For the moment we do not worry about where the antisaddles are. We have two ways1

to draw this: either the infinite stable node will use the separatrices α’s or the β’s. So we have the2

two possibilities drawn in Figure 53.3

In the first case, the second finite saddle stays in the lower half disk; in the second, in the upper4

half disk. The antisaddles must be then located in the middle of the curves that join both saddles5

splitting them in two separatrices each, and the orientation of all the separatrices is forced.6

Even case (B) seems more natural and less struggled, it is in fact impossible to be realized since it7

clearly violates Lemma 5. So, case (A) is the only possibility. But even case (A) also seems to violate8

Lemma 5, not with respect to the saddle at the origin but to the other saddle. Since we know that9

phase portrait S
2
10,13 is realizable, and this is the only possible scheme, we must be able to provide10

an explanation for this.11

Let us move this second saddle to the origin by means of a translation. So the saddle now at the12

origin will move to the upper semi-disk. Then we obtain Figure 54.13

The stable finite antisaddle must be in the upper semi-disk, but we have not yet drawn the14

finite unstable antisaddle on purpose. If we draw it also in the upper semi-disk, then the whole phase15

portrait will violate Lemma 5. The only way to avoid this violation is to place the unstable antisaddle16

on the lower semi-disk as in Figure 55. The only difference between Figure 54 and Figure 55 is that17

we have added the last finite antisaddle.18

Figure 55 portrays a topologically correct version of phase portrait S210,13 which is compatible with19
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Figure 54: Final scheme for S2
10,13

Figure 55: Phase portrait S2
10,13

the lemmas ruling contact points on straight lines. And the conditions deployed in this picture are1

needed in order to obtain the phase portrait.2

Now we go finally to the impossibility of U1
A,49. In [5] we tried to obtain all the phase portraits of3

structurally unstable quadratic systems of codimension one modulo limit cycles, and this work was4

divided into four sets. In set A we obtained all such phase portraits in which the only unstable object5

is a finite saddle-node. The way to obtain all the possibilities is to start from the 44 structurally stable6

quadratic systems from [3] and force a coalescence between a finite antisaddle and a finite saddle.7

In [5] we claimed that S
2
10,13 could lead to four different types of coalescences, that is, any finite8

antisaddle could coalesce with any finite saddle (two multiplied by two), being all phase portraits9

different.10

But now we see that the stable antisaddle can freely coalesce with any of the saddles, and that11

the unstable antisaddle can also coalesce with the saddle at the origin. But in order to coalesce with12

the upper saddle, it would have first to enter in the upper half disk, while still having phase portrait13

S
2
10,13. But this would violate Lemma 5. So, that coalescence is not possible and it is the one which14

would lead to phase portrait U
1
A,49. So, it is not realizable.15

Our mistake in [5] was that we started our work from the picture given in Figure 50 which already16

violates Lemma 5 and thus the arguments on the possible coalescences could not take into account17

some incompatibilities regarding contact points. Thus we obtained a possibility for U
1
A,49 for which18

we needed to find either an example or a proof of its impossibility. A second mistake was that we19

found an example which we confused with U
1
A,49 which in fact was not, then we did not look for20
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the proof of impossibility. It has been now, after stating some inconsistencies related to AAsnsn
171

and higher codimension cases, we have been forced to recheck our computation up to the mother2

case S
2
10,13.3

4.3.2 Phase portrait AAsnsn
17 is not realizable4

According to Figure 42, we observe that one of the unfoldings of AAsnsn
17 is phase portrait U1

A,49 which5

has just been proved impossible to be realizable. Then, we conclude that AAsnsn
17 is not realizable6

and Theorem 3 is proved.7
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