

Joan C. Artés • Jaume Llibre • Dana Schlomiuk Nicolae Vulpe

Geometric Configurations of Singularities of Planar Polynomial Differential Systems

A Global Classification in the Quadratic Case

Joan C. Artés Departament de Matemàtiques Universitat Autònoma de Barcelona Barcelona, Spain

Dana Schlomiuk Département de Mathématiques et de Statistiques Université de Montréal Montréal, QC, Canada Jaume Llibre Departament de Matemàtiques Universitat Autònoma de Barcelona Barcelona, Spain

Nicolae Vulpe Vladimir Andrunachievici Institute of Mathematics and Computer Science Chisinau, Moldova

ISBN 978-3-030-50569-1 ISBN 978-3-030-50570-7 (eBook) https://doi.org/10.1007/978-3-030-50570-7

Mathematics Subject Classification (2020): 58K45, 34C05, 34A34

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

We dedicate this book to the memory of the mathematician

Constantin Sibirschi (1928–1990)

on the occasion of the 90th anniversary of his birth. Without the theory of algebraic invariants of polynomial differential equations, founded by Sibirschi, this book could not have been written.

Contents

Preface						
Ι	Polynomial differential systems with emphasis on the quadratic ones					
1	Introduction					
	1.1	Preliminaries		3		
	1.2	Proble	ems on planar polynomial differential systems	6		
		$1.2.1 \\ 1.2.2$	The problem of the center	6		
			on algebraic integrability	6		
		1.2.3	The second part of Hilbert's 16th problem	7		
		1.2.4	The general finiteness problem for limit cycles or the			
			existential Hilbert's 16th problem	9		
		1.2.5	The infinitesimal Hilbert's 16th problem and the	10		
	1.3	T I	Hilbert–Arnold problem	10		
	1.5	I ne c	ontents of this book	10		
2	Surv	vey of r	esults on quadratic differential systems	17		
	2.1	Brief	history of quadratic differential systems	17		
	2.2	Some	basic results obtained for quadratic differential systems	20		
	2.3	Study	of some subclasses of the family of quadratic differential			
		system	ns	23		
	2.4	-	raic limit cycles in quadratic systems	26		
	2.5 Finiteness problems for quadratic differential systems		· · · ·	27		
		2.5.1	Basic concepts and results needed for studying the general finiteness problem	27		
		2.5.2	The general finiteness problem for quadratic differential	21		
		2.0.2	systems	28		
		2.5.3	Application of Roussarie's ideas for the quadratic case	29		

		2.5.4	The infinitesimal Hilbert's 16th problem and the	20	
		0 5 5	Hilbert–Arnold problem	32	
		2.5.5	The infinitesimal Hilbert's 16th problem for quadratic		
	າເ	The in	differential systems	33	
	2.6		nitial steps in the global theory of quadratic differential	34	
		systen	as	54	
3	Sing	ularitie	es of polynomial differential systems	37	
	3.1		actification on the Poincaré sphere, Poincaré disc and		
		projec	tive plane	37	
	3.2		cal definitions	41	
	3.3	New d	lefinitions	43	
	3.4	The b	low-up technique	45	
		3.4.1	The polar blow-up	45	
		3.4.2	The blow-up using rational functions	46	
		3.4.3	The blow-up technique using only one direction	50	
	3.5	The b	orsec concept	64	
	3.6	-	alence relations	75	
	3.7	Notati	ions for singularities of polynomial differential systems	81	
		3.7.1	Elemental singularities	81	
		3.7.2	Non-elemental singularities	82	
		3.7.3	Lack of singularities and complex singularities	85	
		3.7.4	Infinite number of singularities	86	
4	Inva	riants i	in mathematical classification problems	91	
	4.1	Basic	concepts	91	
	4.2	Classi	fication problems on planar polynomial vector fields	94	
		4.2.1	Equivalence relations for polynomial vector fields	94	
		4.2.2	Classifications of some families of polynomial vector fields .	96	
5	Inva	riant tl	neory of planar polynomial vector fields	99	
	5.1	Classi	cal invariant theory	99	
	5.2	The work of Sibirschi's school			
	5.3	Basic	concepts	109	
		5.3.1	Group actions on polynomial vector fields	110	
		5.3.2	Definition of invariant polynomials for polynomial differen-		
			tial systems	110	
		5.3.3	Assembling multiplicities of singularities in divisors of the		
			line at infinity and in zero-cycles of the plane	113	
		5.3.4	Construction and geometric meaning of several basic		
			invariant polynomials	114	
	5.4	Invaria	ant polynomials associated to geometrical configurations	116	
		5.4.1	Building blocks for the construction of the invariant		
			polynomials needed for the classification theorems of \mathbf{QS}	117	

		5.4.2 The set of all invariant polynomials which classify geometrically the global configurations of singularities in QS	120				
		5.4.3 The influence of complex singularities in the study of the geometrical global configurations of singularities in QS	131				
		Scomooriour Stopen comilgarations of omgatations in 40	-01				
6	Mair		133				
	6.1	0	133				
	6.2	8	144				
	6.3	•	145				
	6.4	Infinite singularities	148				
7	Classifications of quadratic systems with special singularities						
	7.1		164				
			165				
		6 6	168				
	7.2	0	179				
	7.3		197				
	7.4		209				
	7.5		221				
	7.6		235				
			236				
			245				
	7.7	A weak saddle of order three	250				
II	Co	onfigurations of singularities of quadratic systems 2	261				
8	QS v	with finite singularities of total multiplicity at most one	263				
	8.1		263				
	8.2	Systems with exactly one singularity	267				
9	QS v	with finite singularities of total multiplicity two	281				
	9.1	Exactly one finite singularity	281				
	9.2	Two distinct real singularities	290				
	9.3	Two distinct complex singularities	323				
10	QS with finite singularities of total multiplicity three						
			329				
			334				
	10.3	• •	345				
		· · · · · · · · · · · · · · · · · · ·	346				
		10.3.2 Systems with zero-cycle $\mathcal{D}_{\mathbb{C}^2}(S) = p + q^c + r^c$	371				

11 QS with finite singularities of total multiplicity four	389				
11.1 Exactly one singularity					
11.2 Exactly two distinct singularities					
11.2.1 One triple and one simple real singularities					
11.2.2 Two double real singularities					
11.2.3 Two double complex singularities	433				
11.3 Exactly three distinct singularities					
11.3.1 One double and two elemental real singularities .					
11.3.2 One double real and two elemental complex singu					
11.4 Exactly four distinct finite singularities					
11.4.1 Four real elemental singularities					
11.4.2 Two real and two complex elemental singularities	546				
11.4.3 Four complex elemental finite singularities	608				
12 Degenerate quadratic systems $(m_f = \infty)$					
13 Conclusions	629				
13.1 New concepts	629				
13.2 The classical versus the new way					
13.3 Algorithm to study the singularities of quadratic different	tial				
systems					
13.4 The topological configurations of singularities \ldots \ldots					
13.5 The study of the quadratic differential systems modulo li	mit cycles 632				
Appendix A Table of notation					
Appendix B Manual of Mathematica tools	645				
B.1 How to initiate the program	646				
B.2 Notation	646				
B.3 Examples	648				
Bibliography					
Index	697				

Preface

In this book we consider planar polynomial differential systems, i.e. systems of the form

$$\frac{dx}{dt} = p(x, y), \qquad \frac{dy}{dt} = q(x, y)$$

where p(x, y), q(x, y) are polynomials in x, y with real coefficients. To each such system there corresponds a point in \mathbb{R}^N determined by its N = (n + 1)(n + 2) coefficients, where n is the degree of the system, i.e. $n = \max(\deg(p), \deg(q))$. A system of degree 2 is called *quadratic*.

The study of these differential systems always begins with the study of their singularities, finite or infinite, followed by the study of separatrix connections and of limit cycles. Also in some particular cases, the study of first integrals, algebraic invariant curves and period function is of great interest.

Our main goal in this book is to classify in a geometrical way the global schemes of singularities, finite and infinite, of quadratic differential systems and to obtain their bifurcation diagram in the 12-dimensional space \mathbb{R}^{12} . This global classification and its bifurcation diagram is completely algebraic, and we provide the algorithm that computes, for every family of quadratic systems, the global bifurcation diagram of its corresponding schemes of singularities. The study of singularities is the first step in the topological classification of the phase portraits of these differential systems and their bifurcation diagram. The geometrical equivalence relation between singularities considered here, is deeper than the topological one, including features of an algebraic-geometric meaning that play a significant role in studying bifurcations of the systems.

This was a long-term project. Our work began seven or even eight years ago. Every year we met in the spring in Barcelona, then in the fall in Montreal, in order to work on the project. During the past three years, two of us met in late summer in Chişinău, Moldova. We were happy to have the opportunity to work together and in the acknowledgements we mention the institutions and grants that supported us.

Over the years, we published partial results such as the study of infinite singularities, then of quadratic systems with total multiplicity of finite singularities less than or equal to one, or with total multiplicity of finite singularities equal to two or three. From the class of quadratic differential systems with total multiplicity of finite singularities equal to four, those with total number of distinct finite singularities less than or equal to three, were also published. On one of these last published articles, we worked together with Alex C. Rezende, and we thank him for his contribution to our project.

The original results appearing in the book in Chapters 7, 12 and in Section 11.4 of Chapter 11 have never been published before and so they appear here for the first time. Section 11.4 contains the most generic and most difficult cases. This classification yielded 1765 distinct geometrical configurations of singularities, finite or infinite, plus at most 8 other such configurations (sharing the same finite part) that we conjecture are not realizable.

We give in the final chapter of the book some concluding comments with a view towards the future.

We are thankful to the editors and referees for the improvements they suggested and their advice was followed by us.

Joan Carles Artés Jaume Llibre Dana Schlomiuk Nicolae Vulpe

Barcelona, Montréal, Chişinău, 2020

Acknowledgements

During the years we kept working on writing this book, in addition to the support of our universities, we received support from the CRM (Centre de Recherches Mathématiques) in Montreal and from the Academy of Sciences of Moldova. We mention the following grants that supported our work: MCYT/FEDER number MTM 2008-03437, MINECO number MTM2013-40998-P and MTM2016-77278-P (FEDER), ICREA Academia, the AGAUR grants 2009SGR 410 and 2014 SGR568, the European Community grants FP7-PEOPLE-2012-IRSES 316338 and 318999, several grants of NSERC of Canada, the last one being RGPIN-2015-04558 and the grants CRDF-MRDA CERIM-1006-06 and 12.839.08.05F-SCSTD-ASM from Moldova.