E Birkhäuser

Joan C. Artés • Jaume Llibre • Dana Schlomiuk Nicolae Vulpe

Geometric Configurations of Singularities of Planar Polynomial Differential Systems

A Global Classification in the Quadratic Case

Joan C. Artés
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Barcelona, Spain
Dana Schlomiuk
Département de Mathématiques
et de Statistiques
Université de Montréal
Montréal, QC, Canada

Jaume Llibre
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Barcelona, Spain
Nicolae Vulpe
Vladimir Andrunachievici Institute of Mathematics and Computer Science
Chisinau, Moldova

ISBN 978-3-030-50569-1 ISBN 978-3-030-50570-7 (eBook)
https://doi.org/10.1007/978-3-030-50570-7
Mathematics Subject Classification (2020): 58K45, 34C05, 34A34
© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

We dedicate this book to the memory of the mathematician
Constantin Sibirschi (1928-1990)
on the occasion of the 90 th anniversary of his birth. Without the theory of algebraic invariants of polynomial differential equations, founded by Sibirschi, this book could not have been written.

Contents

Preface xi
I Polynomial differential systems with emphasis on the quadratic ones 1
1 Introduction 3
1.1 Preliminaries 3
1.2 Problems on planar polynomial differential systems 6
1.2.1 The problem of the center 6
1.2.2 Research arising from the work of Darboux and the problem on algebraic integrability 6
1.2.3 The second part of Hilbert's 16th problem 7
1.2.4 The general finiteness problem for limit cycles or the existential Hilbert's 16th problem 9
1.2.5 The infinitesimal Hilbert's 16th problem and the Hilbert-Arnold problem 10
1.3 The contents of this book 10
2 Survey of results on quadratic differential systems 17
2.1 Brief history of quadratic differential systems 17
2.2 Some basic results obtained for quadratic differential systems 20
2.3 Study of some subclasses of the family of quadratic differential systems 23
2.4 Algebraic limit cycles in quadratic systems 26
2.5 Finiteness problems for quadratic differential systems 27
2.5.1 Basic concepts and results needed for studying the general finiteness problem 27
2.5.2 The general finiteness problem for quadratic differential systems 28
2.5.3 Application of Roussarie's ideas for the quadratic case 29
2.5.4 The infinitesimal Hilbert's 16th problem and the Hilbert-Arnold problem 32
2.5.5 The infinitesimal Hilbert's 16th problem for quadratic differential systems 33
2.6 The initial steps in the global theory of quadratic differential systems 34
3 Singularities of polynomial differential systems 37
3.1 Compactification on the Poincaré sphere, Poincaré disc and projective plane 37
3.2 Classical definitions 41
3.3 New definitions 43
3.4 The blow-up technique 45
3.4.1 The polar blow-up 45
3.4.2 The blow-up using rational functions 46
3.4.3 The blow-up technique using only one direction 50
3.5 The borsec concept 64
3.6 Equivalence relations 75
3.7 Notations for singularities of polynomial differential systems 81
3.7.1 Elemental singularities 81
3.7.2 Non-elemental singularities 82
3.7.3 Lack of singularities and complex singularities 85
3.7.4 Infinite number of singularities 86
4 Invariants in mathematical classification problems 91
4.1 Basic concepts 91
4.2 Classification problems on planar polynomial vector fields 94
4.2.1 Equivalence relations for polynomial vector fields 94
4.2.2 Classifications of some families of polynomial vector fields 96
5 Invariant theory of planar polynomial vector fields 99
5.1 Classical invariant theory 99
5.2 The work of Sibirschi's school 104
5.3 Basic concepts 109
5.3.1 Group actions on polynomial vector fields 110
5.3.2 Definition of invariant polynomials for polynomial differen- tial systems 110
5.3.3 Assembling multiplicities of singularities in divisors of the line at infinity and in zero-cycles of the plane 113
5.3.4 Construction and geometric meaning of several basic invariant polynomials 114
5.4 Invariant polynomials associated to geometrical configurations 116
5.4.1 Building blocks for the construction of the invariant polynomials needed for the classification theorems of QS 117
5.4.2 The set of all invariant polynomials which classify geometrically the global configurations of singularities in QS 120
5.4.3 The influence of complex singularities in the study of the geometrical global configurations of singularities in QS 131
6 Main results on classifications of singularities in QS 133
6.1 Finite singularities 133
6.2 Finite weak singularities 144
6.3 Singularities of $\mathbf{Q S}$ with an integrable saddle 145
6.4 Infinite singularities 148
7 Classifications of quadratic systems with special singularities 163
7.1 A finite star node 164
7.1.1 Conditions for the existence of at least one finite star node 165
7.1.2 Configurations of singularities with a finite star node 168
7.2 An integrable saddle 179
7.3 A center 197
7.4 A star node at infinity and another special singularity 209
7.5 Three finite special singularities 221
7.6 A weak focus of order two or three 235
7.6.1 A weak focus of order two 236
7.6.2 A weak focus of order three 245
7.7 A weak saddle of order three 250
II Configurations of singularities of quadratic systems 261
8 QS with finite singularities of total multiplicity at most one 263
8.1 Systems without finite singularities 263
8.2 Systems with exactly one singularity 267
9 QS with finite singularities of total multiplicity two 281
9.1 Exactly one finite singularity 281
9.2 Two distinct real singularities 290
9.3 Two distinct complex singularities 323
10 QS with finite singularities of total multiplicity three 329
10.1 Exactly one singularity 329
10.2 Exactly two distinct singularities 334
10.3 Exactly three distinct singularities 345
10.3.1 Systems with zero-cycle $\mathcal{D}_{\mathbb{C}^{2}}(S)=p+q+r$ 346
10.3.2 Systems with zero-cycle $\mathcal{D}_{\mathbb{C}^{2}}(S)=p+q^{c}+r^{c}$ 371
11 QS with finite singularities of total multiplicity four 389
11.1 Exactly one singularity 390
11.2 Exactly two distinct singularities 398
11.2.1 One triple and one simple real singularities 398
11.2.2 Two double real singularities 428
11.2.3 Two double complex singularities 433
11.3 Exactly three distinct singularities 437
11.3.1 One double and two elemental real singularities 437
11.3.2 One double real and two elemental complex singularities 484
11.4 Exactly four distinct finite singularities 489
11.4.1 Four real elemental singularities 489
11.4.2 Two real and two complex elemental singularities 546
11.4.3 Four complex elemental finite singularities 608
12 Degenerate quadratic systems $\left(m_{f}=\infty\right)$ 613
13 Conclusions 629
13.1 New concepts 629
13.2 The classical versus the new way 630
13.3 Algorithm to study the singularities of quadratic differential systems 631
13.4 The topological configurations of singularities 632
13.5 The study of the quadratic differential systems modulo limit cycles 632
Appendix A Table of notation 635
Appendix B Manual of Mathematica tools 645
B. 1 How to initiate the program 646
B. 2 Notation 646
B. 3 Examples 648
Bibliography 669
Index 697

Preface

In this book we consider planar polynomial differential systems, i.e. systems of the form

$$
\frac{d x}{d t}=p(x, y), \quad \frac{d y}{d t}=q(x, y)
$$

where $p(x, y), q(x, y)$ are polynomials in x, y with real coefficients. To each such system there corresponds a point in \mathbb{R}^{N} determined by its $N=(n+1)(n+2)$ coefficients, where n is the degree of the system, i.e. $n=\max (\operatorname{deg}(p), \operatorname{deg}(q))$. A system of degree 2 is called quadratic.

The study of these differential systems always begins with the study of their singularities, finite or infinite, followed by the study of separatrix connections and of limit cycles. Also in some particular cases, the study of first integrals, algebraic invariant curves and period function is of great interest.

Our main goal in this book is to classify in a geometrical way the global schemes of singularities, finite and infinite, of quadratic differential systems and to obtain their bifurcation diagram in the 12 -dimensional space \mathbb{R}^{12}. This global classification and its bifurcation diagram is completely algebraic, and we provide the algorithm that computes, for every family of quadratic systems, the global bifurcation diagram of its corresponding schemes of singularities. The study of singularities is the first step in the topological classification of the phase portraits of these differential systems and their bifurcation diagram. The geometrical equivalence relation between singularities considered here, is deeper than the topological one, including features of an algebraic-geometric meaning that play a significant role in studying bifurcations of the systems.

This was a long-term project. Our work began seven or even eight years ago. Every year we met in the spring in Barcelona, then in the fall in Montreal, in order to work on the project. During the past three years, two of us met in late summer in Chişinău, Moldova. We were happy to have the opportunity to work together and in the acknowledgements we mention the institutions and grants that supported us.

Over the years, we published partial results such as the study of infinite singularities, then of quadratic systems with total multiplicity of finite singularities less than or equal to one, or with total multiplicity of finite singularities equal to
two or three. From the class of quadratic differential systems with total multiplicity of finite singularities equal to four, those with total number of distinct finite singularities less than or equal to three, were also published. On one of these last published articles, we worked together with Alex C. Rezende, and we thank him for his contribution to our project.

The original results appearing in the book in Chapters 7, 12 and in Section 11.4 of Chapter 11 have never been published before and so they appear here for the first time. Section 11.4 contains the most generic and most difficult cases. This classification yielded 1765 distinct geometrical configurations of singularities, finite or infinite, plus at most 8 other such configurations (sharing the same finite part) that we conjecture are not realizable.

We give in the final chapter of the book some concluding comments with a view towards the future.

We are thankful to the editors and referees for the improvements they suggested and their advice was followed by us.

Joan Carles Artés
Jaume Llibre
Dana Schlomiuk
Nicolae Vulpe
Barcelona, Montréal, Chişinău, 2020

Acknowledgements

During the years we kept working on writing this book, in addition to the support of our universities, we received support from the CRM (Centre de Recherches Mathématiques) in Montreal and from the Academy of Sciences of Moldova. We mention the following grants that supported our work: MCYT/FEDER number MTM 2008-03437, MINECO number MTM2013-40998-P and MTM2016-77278-P (FEDER), ICREA Academia, the AGAUR grants 2009SGR 410 and 2014 SGR568, the European Community grants FP7-PEOPLE-2012-IRSES 316338 and 318999, several grants of NSERC of Canada, the last one being RGPIN-2015-04558 and the grants CRDF-MRDA CERIM-1006-06 and 12.839.08.05F-SCSTD-ASM from Moldova.

