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A B S T R A C T

The dynamics of many epidemic compartmental models for infectious diseases that spread in a single host
population present a second-order phase transition. This transition occurs as a function of the infectivity
parameter, from the absence of infected individuals to an endemic state. Here, we study this transition, from
the perspective of dynamical systems, for a discrete-time compartmental epidemic model known as Microscopic
Markov Chain Approach, whose applicability for forecasting future scenarios of epidemic spreading has been
proved very useful during the COVID-19 pandemic. We show that there is an endemic state which is stable
and a global attractor and that its existence is a consequence of a transcritical bifurcation. This mathematical
analysis grounds the results of the model in practical applications.

1. Introduction and main results

The problem of modelling the spread of a contagious disease among
individuals has been studied in deep over many years [1–4]. The
development of compartmental models, i.e., models that divide the
individuals among a set of possible states, has given rise to a new collec-
tion of techniques that enable, for instance, the analysis of the onset of
epidemics [5–15], the study of epidemics in structured networks [16–
21], or the study of the impact of a vaccination campaign [22–27]. All
previous works heavily rely on the mathematical approach to the study
of epidemic spreading [28] and here we follow the same spirit.

In this paper we consider a connected undirected network 𝑛
made up of 𝑛 nodes, whose weights 𝑟𝑖𝑗 ∈ [0, 1] represent the contact
probability between nodes 𝑖 and 𝑗. Since the network is undirected
and connected, the 𝑛 × 𝑛 contacts matrix 𝑅 = (𝑟𝑖𝑗 ) is symmetric and
irreductible. We also assume the absence of self-loops, thus 𝑟𝑖𝑖 = 0 for
all 𝑖. The non-zero entries of matrix 𝑅 represent the existing links in the
network that are used to transmit the infection, while 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 0 is
used to indicate that nodes 𝑖 and 𝑗 are not connected. In the special
case that all non-zero contact probabilities are one, 𝑟𝑖𝑗 = 𝑟𝑗𝑖 = 1,
matrix 𝑅 becomes the adjacency matrix of the network. Note that, for
a non-connected network, we can apply our results separately to every
connected component of the network.

We now define a discrete dynamical system based on the infection
process on the network [10], called the Microscopic Markov Chain
Approach (MMCA), that is a mathematical model for the well-known
susceptible–infected–susceptible (SIS) epidemic spreading model. In the
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SIS model on networks, each node may be in one of two different states:
susceptible (healthy) or infected. The discrete-time dynamic of the SIS
makes that, at each time step, susceptible nodes may get infected (with
probability 𝛽 ∈ [0, 1]) by contacts with their infected neighbours, while
infected nodes may recover spontaneously (with probability 𝜇 ∈ [0, 1]).
We consider that, at each time step, all nodes contact to all their
neighbours, known as a reactive process. Other options are also possible,
like contacting only a maximum number of neighbours, or even just one
neighbour per time step; this last option is known as a contact process.
From now on, we will restrict our analysis to the reactive process,
which is the most common choice in the literature of the SIS model.

Following [10], we also add to the SIS dynamic the possibility
of one-step reinfections, which means that an infected node that has
recovered, may become infected by its neighbours within the same time
step. The rationale is that the recovery of a node cannot last too long if
it has many infected neighbours, thus it should effectively be equivalent
to a non-recovery. An example could be computer viruses and other
kinds of malware: to get rid of the virus, you cannot just remove it
from one computer, since the neighbours would infect it again almost
immediately.

The MMCA model provides a mathematical description of the SIS
spreading process based on the use of the probabilities of the nodes of
being infected. Denoting 𝑝𝑘𝑖 the probability that node 𝑖 is infected at the
time step 𝑘, its evolution is given by the MMCA equation

𝑝𝑘+1𝑖 = (1 − 𝑞𝑘𝑖 )(1 − 𝑝
𝑘
𝑖 ) + (1 − 𝜇)𝑝𝑘𝑖 + 𝜇(1 − 𝑞
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