Contents lists available at ScienceDirect

Nonlinear Analysis: Real World Applications

www.elsevier.com/locate/nonrwa

Limit cycles of discontinuous piecewise differential systems formed by linear centers in \mathbb{R}^2 and separated by two circles

 ^a Departamento de Matemática, Universidad del Bio-Bio, Concepción, Avda. Collao 1202, Chile
^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

^c Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal

ARTICLE INFO

Article history: Received 5 June 2020 Received in revised form 10 December 2020 Accepted 21 December 2020 Available online xxxx

Keywords: Limit cycles Linear centers Continuous piecewise linear differential systems Discontinuous piecewise differential systems First integrals

ABSTRACT

We show that discontinuous planar piecewise differential systems formed by linear centers and separated by two concentric circles can have at most three limit cycles. Usually is a difficult problem to provide the exact upper bound that a class of differential systems can exhibit. Here we also provide examples of such systems with zero, one, two, or three limit cycles.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the main result

In the qualitative theory of the differential systems in \mathbb{R}^2 one of the main difficult objects to study are the limit cycles. Recall that a *limit cycle* is an isolated periodic solution in the set of all periodic solutions of the differential systems, see for instance the second part of the famous 16th Hilbert problem [1–3].

The study of piecewise linear discontinuous differential systems started with Andronov, Vitt and Khaikin in [4]. Due to the fact that these systems model many real phenomena and different modern devices, they have became a topic of great interest these last twenty years. For more details see for instance the books [5,6] and the references therein.

* Corresponding author.

E-mail addresses: manacleto@ubiobio.cl (M.E. Anacleto), jllibre@mat.uab.cat (J. Llibre), cvalls@math.ist.utl.pt (C. Valls), clvidal@ubiobio.cl (C. Vidal).