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Abstract. We prove that any complex differential equation with two
monomials of the form ż = azkz̄l + bzmz̄n, with k, l,m, n non-negative
integers and a, b ∈ C, has one limit cycle at most. Moreover, we
characterise when such a limit exists and prove that then it is hyperbolic.
For an arbitrary equation of the above form, we also solve the centre-
focus problem and examine the number, position, and type of its critical
points. In particular, we prove a Berlinskĭı-type result regarding the
geometrical distribution of the critical points stabilities.

1. Introduction

In this work, we will prove that any complex polynomial differential
equation inside the family

ż = azkz̄l + bzmz̄n, z ∈ C, (1.1)

with k, l,m, n ∈ Z+ ∪ {0}, k + l < m + n, and a, b ∈ C\{0} has one limit
cycle at most. Recall that a limit cycle γ is a periodic orbit such that, in at
least one of the connected components of R2 \ γ, has initial conditions (as
close to γ as desired) that do not belong to a periodic orbit.

Note that easier cases k + l = m + n or ab = 0 need not be considered
because they give rise to particular planar homogeneous vector fields and
the global phase portraits of the general homogeneous polynomial vector
fields are well known (see, e.g., [2]). Particularly, they do not have limit
cycles, and the centre-focus problem is completely solved: the vanishing of
a given single integral distinguishes between both possibilities.

Hence, complex differential equations with a single monomial have no
limit cycles. However, it was proved in [10], that there is no upper bound
for the number of limit cycles of the differential equations defined by three
monomials

ż = azkz̄l + bzmz̄n + czpz̄q.

Therefore, our results fill the gap between the one and the three monomial
cases, where as we will see, their dynamic complexity renders this question
nontrivial.

Before presenting our results in more detail, we briefly recall some concepts
that will appear in this study. A simple critical point of a vector field is a
critical point for which the determinant of its associated Jacobian matrix is
nonzero. When the sign of the determinant is negative, the critical point
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is a saddle (index −1), whereas it is an anti-saddle (index +1) when it
is positive. For analytic vector fields, anti-saddles are the foci, nodes,
or centres. Moreover, in this analytical setting, the limit cycles can be
defined as isolated periodic solutions in the set of all periodic orbits of the
equation. A weak focus is an anti-saddle of a centre or focus type, at which
the divergence vanishes. A centre is considered reversible (with respect
to a straight line) if, after translating it to the origin and performing a
suitable rotation, it is invariant by the change in the variable and time
(z, t)→ (z̄,−t). Finally, the limit cycle is named hyperbolic if its associated
Poincaré return map has a simple fixed point.

As we prove in this work, family (1.1) exhibits a large variety of behaviours
despite its apparent simplicity. For instance, when q := l − k +m− n 6= 0,
the equation has |q| nonzero critical points, all of which are located on a
circle S1 centred at the origin. When q > 0 (resp. q < 0) all are anti-saddles
(resp. saddles). Moreover, we show that, when one of these critical points is
a weak focus, it is indeed a centre. However, this is not the case of the origin:
it can be a weak focus of order one and not being a centre. We also solve
the centre-focus problem for all critical points, proving that all centres are
reversible. We investigate the number of nonzero centres that the equation
can have. In particular, as a consequence of Lagrange’s theorem on the
cardinality of the subgroups of finite groups, we prove that this number is
a divisor of q > 0 and it is not bounded for the full family.

The following is the main theorem:

Theorem A. Any differential equation from the family (1.1) has at most
one limit cycle, and such a limit cycle exists if and only if k − l = m −
n = 1, Re(a) Re(b) < 0 and a/b 6∈ R−. Moreover, it is the circle |z|2 =
(−Re(a)/Re(b))n−l, which is hyperbolic, and its stability depends on the
sign of −Re(a).

If we consider Re(a) as a bifurcation parameter, this limit cycle appears by
an Andronov-Hopf-type bifurcation occurring at the origin when Re(a) = 0
and Re(b) 6= 0.

We stress that family (1.1) is one of the few nontrivial families for which
the sometimes called Coppel’s problem, [5], has some hope of being resolved.
Recall that, although he proposed it for quadratic systems, it can be na-
turally extended to other polynomial systems. The problem in his own
words was: “Ideally one might hope to characterize the phase portraits of
quadratic systems by means of algebraic inequalities on the coefficients.”
In general, for quadratic systems, such a solution is impossible (see [7]).
Typically, one of the main difficulties for this solution is the question of
existence and number of limit cycles. The fact that, for our differential
equation, both the centre-focus problem and existence of limit cycles can
be solved, provides some hope for this case. We also address the case of
nonzero critical points of index +1 by studying their stabilities distribution.
The next main issue in Coppel’s problem for our family is characterizing
the appearance of homoclinic or heteroclinic solutions. However, we did not
consider this question in this study.

The remainder of this paper is organised as follows. The study of the
critical points is discussed in Section 2. We also prove a Berlinskĭı-type
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result regarding the relative position and the stability of critical points
(see Subsection 2.3). We prove our main theorem in Section 3. Section 3
also contains some results regarding more general differential equations than
family (1.1) (see, e.g., Propositions 3.3 or 3.5) useful for proving Theorem A.
Particularly, the former proposition is a natural extension of the classical
result for quadratic systems ż = X1(z, z̄) + X2(z, z̄), which indicates that
they do not have periodic orbits surrounding a node. Proposition 3.3 is
based on the theory of rotated vector fields, [6, 18, 19].

Finally, to illustrate the dynamical richness of family (1.1), we end the
paper with a very short section exhibiting some of the phase portraits that
this equation has.

Through a notation, along the study, we use a = rae
iα, b = rbe

iβ, ra, rb ≥
0, and α, β ∈ [0, 2π). We also will write q = l − k + m − n, R− = {x ∈ R :
x < 0} and sgn for the sign function.

2. Results on critical points

In this section, we examine the number and type of critical points, the
centre-focus problem, and some Berlinskĭı-type results for the differential
Equation (1.1). We start with a preliminary computational result, borrowed
from [10].

Lemma 2.1. Consider the differential equation ż = F (z, z̄), and denote
its associated vector field as X(x, y) =

(
Re(F (z, z̄)), Im(F (z, z̄))

)
, where

z = x+ iy. Then,

(i) Its expression in polar coordinates z = reiθ is

ṙ =
1

r
Re
(
z̄F (z, z̄)

∣∣
z=reiθ

)
, θ̇ =

1

r2
Im
(
z̄F (z, z̄)

∣∣
z=reiθ

)
.

(ii) Its divergence is written as div(X) = 2 Re
(
∂
∂zF

)
.

(iii) The determinant of its differential dX is det(dX) =
∣∣ ∂
∂zF

∣∣2−∣∣ ∂∂z̄F ∣∣2.
2.1. Number and type of critical points. We begin with a preliminary
result that simplifies the computations for nonzero critical points and is
also useful in studying the centre-focus problem and stability of the simple
critical points of Equation (1.1).

Lemma 2.2. If a differential equation of the form (1.1) has a nonzero
critical point, Reiψ, R 6= 0, then, after a linear change of coordinates and
positive constant rescaling of time, this equation can be written as

ż = c(zkz̄l − zmz̄n), where c = ei(α+(k−l−1)ψ). (2.1)

Moreover, when q = l − k + m − n = 0, Equation (2.1) has |z| = 1 full of
critical points. When q 6= 0, it has exactly |q| nonzero critical points; that

is, z = zj = ωj , j = 0, 1, ...|q| − 1, where ω = e2πi/|q|, and they are located
at the |q|th roots of unity. Finally, if X is a vector field associated to (2.1),
then for all j = 0, 1, ...|q| − 1, it holds that

det(dX(zj)) = (m− k)2 − (n− l)2, (2.2)

div(X)(zj) = 2(k −m) Re(czk−l−1
j ) = 2(k −m) Re(czm−n−1

j ).
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Proof. Set Z = Reiψ. By taking the new variable w such that z = wZ and
a new time s such that ds/dt = |a||Z|k+l−1, we obtain that Equation (1.1)
is transformed into

w′ = c(wkw̄l − wmw̄n) where c =
aZk−1Z̄ l

|a||Z|k+l−1
= eiαei(k−l−1)ψ,

where the prime symbol denotes the derivative with respect to s. By rena-
ming the new variable as the old one, we obtain Equation (2.1). Clearly,
nonzero critical points must satisfy zkz̄l − zmz̄n = 0, or equivalently, if
z = reiθ, r = 1 and

(
eiθ)q = 1, thus achieving the stated result.

Hence, considering that |c| = 1, at the critical points, zk−1z̄l = zm−1z̄n,
and using Lemma 2.1, we obtain

det(dX(zj)) =

(∣∣∣∂F
∂z

∣∣∣2 − ∣∣∣∂F
∂z̄

∣∣∣2) ∣∣∣
z=zj

=
∣∣c(k −m)zk−1

j z̄lj
∣∣2 − ∣∣c(l − n)zk−1

j z̄lj
∣∣2 = (m− k)2 − (n− l)2. (2.3)

Similarly, following Lemma 2.1, we obtain

div(X)|z=zj = 2 Re

(
∂F

∂z

) ∣∣∣
z=zj

= 2(k −m) Re(czk−1
j z̄lj).

�

The following proposition determines the critical point type of the differ-
ential Equation (1.1) as follows.

Proposition 2.3. Let us consider a differential equation of the form (1.1)
and set q = l − k +m− n. Then,

(i) The origin is a critical point if and only if k+ l > 0; in this case its
index is k − l. Moreover, when k − l > 1 it has 2(k − l) − 2 elliptic
sectors; when k − l = 1 it is a node, focus, or centre; and when
k − l ≤ 0 it has 2|k − l|+ 2 hyperbolic sectors.

(ii) If q 6= 0, it has |q| nonzero critical points, all of them are simple
and located on a circle centred at the origin. Moreover, when q > 0
(resp. q < 0) all of them are anti-saddles (resp. saddles).

(iii) If q = 0 and a/b ∈ R−, it has a circle centred at the origin filled with
critical points.

(iv) If q = 0 and a/b 6∈ R−, it does not have nonzero critical points.

Proof. Denote the right-hand side of Equation (1.1) by ż = F (z, z̄). Taking
the polar coordinates z = reiθ, the critical points satisfy

ra r
k+lei(α+(k−l)θ) + rb r

m+nei(β+(m−n)θ) = 0. (2.4)

(i) It is clear that the origin is a critical point if and only if k+ l > 0. Let
us now assume that k + l > 0 and examine the index of this critical point.
Note that

F (z, z̄)|z=reiθ,z̄=re−iθ

rk+l
= rae

i[(k−l)θ+α)] + rbr
m+n−k−lei[(m−n)θ+β)].

Hence, for small enough r, the right-hand side function on the circle |z| = r,
provides k − l turns in the clockwise (resp. counter-clockwise) sense when
k − l > 0 (resp. k − l < 0), which is precisely the definition of having index
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k−l. In fact, when k−l 6= 0 the critical point is formed by 2(k−l)−2 elliptic
sectors when k− l > 1, or 2|k− l|+ 2 hyperbolic sectors when k− l < 0. The
behaviour in the case k− l 6∈ {0, 1} can be proved, for example, using polar
coordinates and following the approach used in [2] (we omit the details).
Let us prove that, if k − l = 0, it is formed by two hyperbolic sectors. In
this case, equation (1.1) can be written as

ż = a|z|2k + bzmz̄n.

By time rescaling ds/dt = |z|2k, we determine that the origin is not a critical
point, or equivalently recovering the original differential equation, that the
critical point has exactly two hyperbolic sectors. When k − l = 1, with a
similar rescaling, we find that it behaves as a nondegenerated critical point
of index +1; that is, the origin is either a focus, centre, or node.

(ii)− (iv) Regarding the critical points that are different from the origin
by solving Equation (2.4), we obtain

rk+l−m−nei(α−β+π−qθ) = rb/ra.

Thus, when q = 0 and α − β 6∈ {π,−π}, that is, a/b 6∈ R−, Equation (1.1)
does not have nonzero critical points, and item (iv) follows. Otherwise,
the differential equation has some nonzero critical points, and we can apply
Lemma 2.2. Thus, all the results stated in the proposition follow, except the
one related to the characterisation of the type of critical point when q 6= 0.
This characterization is a simple consequence of equality (2.2) because

(m− k)2 − (n− l)2 = sgn(q)
∣∣(m− k)2 − (n− l)2

∣∣ 6= 0,

and, hence, the sign of the determinant at each nonzero critical point is
given by the sign of q and is independent of this point. To prove the last
equality, recall that m + n − k − l > 0. Assume, for example, that q < 0.
Then, −q = −l+k−m+n > 0. By joining both inequalities and their sum,
we obtain

n− l > k −m, n− l > m− k and n− l > 0.

Hence,

|n− l| = n− l > |m− k| =⇒ (m− k)2 − (n− l)2 < 0

=⇒ (m− k)2 − (n− l)2 = sgn(q)|(m− k)2 − (n− l)2|,

as intended. Case q > 0 follows similarly. �

Subsequently, we present a completely different proof of the fact that,
when q 6= 0, all nonzero critical points have the same index. We include
this new proof because it is used in the proof of Theorem A and, moreover,
because it is more qualitative. This proof uses the following lemma.

Lemma 2.4. Let X̃ be the compactification by adding a point (to be called
infinity) of the vector field associated to (1.1). Then, infinity is a critical

point of X̃ on S2, and its index is 2 + n−m.

Proof. The compactification described in the statement is achieved by exe-
cuting the change of variable w = z−1 and by introducing a new time s
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satisfying dt/ds = |w|2(m+n). Hence, we arrive at

w′ = −bw2+nw̄m − aw2+m+n−kw̄m+n−l, (2.5)

where the prime symbol denotes the derivative with respect to s. Note that
2 + m + n − k + m + n − l > 2 + n + m, because k + l < m + n. Because
the infinity of the Equation (1.1) is the origin of this last equation, from
Proposition 2.3, infinity has index 2 + n−m. �

Alternative proof of item (ii) of Proposition 2.3. We prove that, if all non-
zero critical points are simple (i.e., their indices are +1 or −1), they in
fact have the same index. We compactify the differential equation to S2 by
adding a critical point at infinity, as in the proof of Lemma 2.4, we obtain

the new vector field X̃.
Recall that, if a vector field Y on the sphere has finitely many critical

points, for example, pj , j = 1, 2, . . . , N, Poincaré–Hopf theorem, [11, 14, 16],
asserts that

N∑
j=1

indY (pj) = 2. (2.6)

where indY (pj) denotes the index of pj .

Under hypothesis q 6= 0, the compactified vector field, X̃ associated to
Equation (1.1) has |q| nonzero finite critical points, infinity, by Lemma 2.4
with index 2 + n −m, and the origin (unless k = l = 0) with index k − l,
by item (i) of Proposition 2.3. Hence, through the abuse of language and to
apply Equation (2.6), we consider that it has |q|+ 2 critical points because
when the origin is not a critical point, the same formula works because its
index is k − l = 0. Hence, if we call p1, p2, . . . , p|q| the |q| nonzero finite
critical points, we obtain

2 =

|q|+2∑
j=1

ind
X̃

(pj) =

|q|∑
j=1

ind
X̃

(pj) + k − l + 2 + n−m,

or equivalently,
∑|q|

j=1 ind
X̃

(pj) = q. As all pj are simple critical points,

ind
X̃

(pj) ∈ {−1,+1}. Then, it holds that ind
X̃

(pj) = sgn(q), for all j =
1, 2, . . . , |q|, as we intended to prove. �

2.2. Centre-focus problem. We will use the well-known Poincaré rever-
sibility criterion several times. The following is a suitable version for our
interest: if the origin of a smooth planar differential equation is a mono-
dromic critical point and the equation is invariant by the change of variable
and time (z,−t) −→ (z̄, t), then the origin is a centre.

The following theorem solves the centre-focus problem for any equation
from family (1.1).

Theorem 2.5. Consider a differential equation of form (1.1). The following
holds:

(i) When m − n = 1 the origin is a centre if and only if k − l = 1,
Im(a) 6= 0 and Re(a) = Re(b) = 0.

(ii) When m − n 6= 1 the origin is a centre if and only if k − l = 1,
Im(a) 6= 0 and Re(a) = 0.
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(iii) It has a nonzero centre at z = Reiψ, R 6= 0, if and only if the point
has index +1 and the divergence vanishes at this point. Specifically, if
and only if q > 0 and Re(aei(k−l−1)ψ) = 0, where the later condition

is equivalent to Re(bei(m−n−1)ψ) = 0.

Moreover, all centres are reversible.

Proof. (i)-(ii) By Proposition 2.3, the index of the origin is k − l. To have
a centre at the origin, this index must be +1. Hence, we can write the
differential equation as

ż = a|z|2lz + bzmz̄n. (2.7)

Our proof of the characterisation of centres for Equation (2.7) extends the
results of [9, Lem. 3.2] which covers the case l = 0. By Lemma 2.1, the
expression of Equation (2.7) in polar coordinates is:

ṙ =
1

r
Re
(
G(r, θ)

)
, θ̇ =

1

r2
Im
(
G(r, θ)

)
, (2.8)

where G(r, θ) = z̄F (z, z̄)
∣∣
z=reiθ

= ar2l+2 + brm+n+1ei(m−n−1)θ. Clearly, the
origin of Equation (2.7) corresponds to the solution r = 0 of Equation (2.8).
Note that m+ n > 2l + 1,

θ̇ = r2l
(

Im(a) + Im
(
ei(m−n−1)θ

)
rm+n−2l−1

)
,

and hence Im(a) 6= 0 is a necessary condition for having a monodromic
critical point at the origin. Moreover, when Im(a) 6= 0, in a neighbourhood of
r = 0, system (2.8) can be studied by using the non-autonomous differential
equation

dr

dθ
=

Re(a)r + Re
(
bei(m−n−1)θ

)
rm+n−2l

Im(a) + Im
(
bei(m−n−1)θ

)
rm+n−2l−1

= H(r, θ). (2.9)

The stability of r = 0 is determined by the sign of

σ =

∫ 2π

0

∂

∂r
H(r, θ)

∣∣∣
r=0

dθ,

see [17]. Simple computations give that σ = 2πRe(a)/ Im(a). Hence Re(a) =
0 is a necessary condition to have a centre at the origin.

If m− n = 1, differential equation (2.9), with Re(a) = 0, writes as

dr

dθ
=

Re(b)r2n−2l+1

Im(a) + Im(b)r2n−2l
.

From it, it is clear that in this case Equation (2.7) has a centre at the origin
if and only if Im(a) 6= 0, Re(a) = 0 and Re(b) = 0, and item (i) follows. It
is easy to see that this centre is reversible.

If m − n 6= 1, we prove that when Re(a) = 0 the origin is a reversible
centre with respect to a straight line passing through the origin. Consider
a new variable z = eiηw. Then, Equation (2.7) is rewritten as

w′ = a|w|2lw + bei(m−n−1)ηwmw̄n.

As m − n − 1 6= 0, we can choose η such that Re(bei(m−n−1)η) = 0; that is,
we have reduced the general case to the situation

z′ = a|z|2lz + bzmz̄n, with Re(a) = 0, Re(b) = 0,
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where we renamed the new variables and parameters as the old ones. The
origin of this differential equation is a monodromic critical point and the
differential equation is invariant by the change of variables (z, t) −→ (z̄,−t).
Hence, it satisfies the hypotheses of the Poincaré reversibility criterion, and
the origin is a reversible centre. Thus item (ii) is proved.

(iii) Let z = Reiψ, R 6= 0, be a nonzero critical point of centre-type of
Equation (1.1). As we have proved in Proposition 2.3, to have anti-saddles
inequality q > 0 must be satisfied. Another necessary condition to have a
centre at this point is that the divergence of its associated vector field X at
this point is zero. By Lemmas 2.1 and 2.2, we can transform Equation (1.1)
into Equation (2.1), where this critical point moves to z = 1. Then, we
obtain

div(X)
∣∣∣
z=1

= 2(k −m) Re(aei((k−l−1)ψ)).

Note that k −m 6= 0 because q|k=m = l − n < 0, as k + l < n + m. Hence,

Re(aei(k−l−1)ψ) = 0 is a necessary condition for obtaining a centre at this

point. To observe that this condition is equivalent to Re(bei(m−n−1)ψ) = 0,
simply note that, on the nonzero critical points, azkz̄l = −bzmz̄n.

To end the proof, we need to show that under the conditions q > 0 and
Re(aei(k−l−1)ψ) = 0, the point Reiψ is a centre. Evidently, this is a weak
focus and therefore monodromic. To prove that it is a centre, we apply
Poincaré reversibility criterion.

To this aim, using Lemma 2.2, we move the nonzero critical point to
z = 1, obtaining a new differential equation

ż = c(zkz̄l − zmz̄n), where c = ±i.

because c = ei(α+(k−l−1)ψ) and Re(c) = 0. Subsequently, we perform a
translation to place this real critical point at the origin, leading to the new
differential equation

ż = ±i
(
(z + 1)k(z̄ + 1)l − (z + 1)m(z̄ + 1)n

)
.

It can be easily proven that, for any choice of sign, this equation is invariant
under a change of the variable and time (z, t) −→ (z̄,−t). Consequently,
the origin is a reversible centre. �

One can wonder whether the number of centres for an equation of type (1.1)
is limited. The following proposition answers this question.

Proposition 2.6. Consider a differential equation inside family (1.1), with
q = l− k+m−n > 0 nonzero anti-saddles. If it has p > 0 nonzero centres,
then p divides q. Moreover, for each s ∈ N, there is a differential equation
of the form (1.1) with s nonzero centres.

Proof. Assume that Equation (1.1) has at least one nonzero centre. By using
Lemma 2.2 and Theorem 2.5, the differential equation can be written as

ż = i(zkz̄l − zmz̄n),

where possibly we have changed t by −t. Moreover, all nonzero critical
points are located at z = zj = ωj , j = 0, 1, . . . , q − 1. Here, ω = e2πi/q

is a primitive qth root of unity, and the equation has a centre at zj if and

only if Re
(
i(ωj)k−l−1

)
= Re(i$j) = Im($j) = 0, where $ = ωk−l−1 is also
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a qth root of unity, that is, $q = 1, but not necessarily primitive. In short,
the number of centres coincide with the cardinal, card(G) of the set

G = {j ∈ Zq : $j ∈ R},

where Zq is the group of integers modulo q. Clearly, G is a subgroup of Zq,
and by the well-known Lagrange’s theorem, p = card(G) divides card(Zq) =
q, as we intended to prove.

To obtain an example with exactly s nonzero centres, it suffices to consider

ż = i(z − zmz̄m−s−1), with m ≥ s+ 1.

For this equation, q = l − k + m − n = s and k − l − 1 = 0. Hence,
$ = 1, G = Zp, and the differential equation has p = q = s nonzero centres.
Moreover, by item (i) of Theorem 2.5, the origin is a centre.

Another simpler example is the holomorphic differential equation

ż = i(z − zs+1)

(see, e.g., [1, 12, 13]). Here, again q = s and k − l − 1 = 0, and the same
reasoning can also be applied. In this case, the origin is again another centre.
In fact, new differential equations obtained by multiplying the right-hand
side of the differential equations by (zz̄)l, l ∈ N, also have s centres. This
is because they have the same phase portraits as the corresponding older
ones. �

The exact number of centres for an equation of type (1.1) is studied
in more detail in the next subsection (see Proposition 2.8). From these
forthcoming results, it follows again that the number of nonzero centres is a
divisor of q. However, we have decided to include the proof above because
it is simpler and uses the nice Lagrange’s theorem.

2.3. Berlinskĭı type results. Recall that Berlinskĭı’s theorem is a result
for quadratic systems relating the types of critical points (saddles and anti-
saddles) with their geometrical positions. Specifically, if a quadratic system
has four critical points, and their convex hull is a quadrilateral, along its
boundary, their indices alternate. If the convex hull is a triangle, then the
three points at the vertices have the same index, whereas the interior point
has the opposite one (see [3, 5]). Recently, it has been extended to other
classes of vector fields, [1, 4, 15].

In our context, we are interested in the case where q > 0 and consequently
all nonzero critical points have index +1. We already know that all of them
lie on a circle centred at the origin and are anti-saddles (see Proposition 2.3).
Hence, these q points are ordered as points in S1, and only three types of
critical points exist: attractors (−), repellers (+), and centres (0). From
Theorem 2.5, for a given critical point z, its symbol coincides with the sign
of divergence of the vector field associated to Equation (1.1), which is called
the stability index and is denoted as s(z).

This subsection aims to investigate which chains of q-ordered symbols
+,−, 0 (in a circular order) are possible. This is interesting because, in
general, different chains correspond to non-conjugated phase portraits. Our
results for these chains are called Berlinskĭı-type results.
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From Lemma 2.2 and Theorem 2.5, we can reduce the problem to a simple
and appealing geometrical question. Although we will not examine this in
detail, we now describe this reduction and some simple consequences.

Recall that, by Lemma 2.2, it is not restrictive to study this question
using a simpler differential equation

ż = −eiδ(zkz̄l − zmz̄n), where δ ∈ [0, 2π). (2.10)

The stability indices are given in the following result, where “sgn” denotes
the sign function and sgn(0) = 0. Note that we have added a minus sign in
front of the differential equation to simplify the expressions.

Proposition 2.7. Consider the differential Equation (2.10) with q = l−k+
m−n > 0. Their nonzero critical points are z = zj = ωj , j = 0, 1, . . . , q− 1,

where ω = e2πi/q is a primitive qth root of unity, and their stability indices
are

s(zj) = sgn
(

Re(eδizk−l−1
j )

)
= sgn

(
Re
(
eδi$j

))
,

where $ = e(2π(k−l−1)i)/q, is another qth root of unity, which is not nece-
ssarily primitive.

Proof. Note that, adding q = l − k + m − n > 0 with m + n − k − l > 0,
we obtain that 2(m−k) > 0. Hence, from Lemma 2.2 and Theorem 2.5, the
stability index of zj is

s(zj) = sgn
(
(k −m) Re(−eδizk−l−1

j )
)

= sgn
(

Re(eδizk−l−1
j )

)
,

and the result follows. �

From these results, a procedure to determine which Berlinskĭı-type con-
figurations are possible for Equation (2.10) is presented. Note that they
coincide with those of Equation (1.1). Let L be the line through the origin,
with a slope tan(δ). The procedure is as follows: First, compute the qth root
of unity $. Then, for each j = 0, 1, . . . , q − 1, according the region where
$j lies between the two connected components of C2 \ L and L, we obtain
the values s(zj). Finally, the configuration is [s(z0), s(z1), . . . , s(zq−1)]. Note
that, when a nonzero critical point of centre type exists, it is not restrictive
to take L = {z : Re(z) = 0}; and then, these configurations always start
with s(z0) = 0.

We present our initial findings regarding possible configurations.

Proposition 2.8. For q = l− k +m− n > 0, set D = gcd(|k − l− 1|, q) =
gcd(|k − l − 1|, |m − n − 1|). Then, there exist P and Q positive integers
such that (k − l − 1)/q = P/Q, where q = DQ, k − l − 1 = DP ∈ Z, and
gcd(P,Q) = 1.

Subsequently, each configuration for Equation (2.1) with q > 0 is formed
by the repetition of D identical basis blocks of Q symbols. Moreover,

(i) if Equation (1.1) has some nonzero centres and Q is odd the basis
block has only one 0, (Q−1)/2 symbols + and (Q−1)/2 symbols −,

(ii) if Equation (1.1) has some nonzero centres and Q is even the basis
block has two 0, (Q− 2)/2 symbols + and (Q− 2)/2 symbols −,

(iii) if Equation (1.1) has no nonzero centre and Q is odd the basis block
has (Q+ 1)/2 symbols + and (Q− 1)/2 symbols −, or vice versa,
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(iii) if Equation (1.1) has no nonzero centre and Q is even the basis block
has Q/2 symbols + and Q/2 symbols −.

Proof. The equality of both greatest common divisors is simple because
q+ k− l− 1 = m− n− 1. We can reduce our proof by studying the normal
form (2.1). Note that if (k − l − 1)/q = P/Q, then the qth root of unity
$ in the statement of Proposition 2.7 is indeed a primitive Qth root of the
unity. Hence, a geometrical interpretation of how to obtain the stability
indices of the points zj can be given. Recall that zj are the roots of the
unity and, therefore, the corners of a regular qgon, Rq. Let us describe this
interpretation as follows:

• Mark the points of the regular Qgon, Rq that correspond to the
points $0, $1, . . . , $Q−1.
• Turn Rq by an angle δ. The marked points are then eδi$j , j =

0, 1, . . . , Q− 1 and form a turned regular Qgon.
• The sign s(zj) only depends on which of the three sets, {z : Re(z) =

0}, {z : ±Re(z) > 0}, contains the marked point eδi$j . Clearly, its
position only depends on j mod Q.

Consequently, each configuration is formed by the repetition of D identical
basis blocks of Q symbols.

A centre appears when the angle δ is such that one of the vertices of the
turned Qgon touches the imaginary axis {z : Re(z) = 0}. Then, only one
configuration exists when Q is odd, or two when Q is even for such points.
Based on these results, one can determine the centre for each basis block.
The results regarding the nonzero signs simply follow from the symmetry of
each regular Qgon. �

First, we start with some simple scenarios that appear for all q :

(i) When k − l − 1 = 0 then $ = 1 and all s(zj) = Re(eiδ). Therefore, in
this case, all symbols are equal, and they can be either all 0, or all +,
or all −.

(ii) If 2|k− l− 1| = q, then $ = −1 and s(zj) = Re(eiδ(−1)j). If moreover

eδi 6∈ {1,−1}, then the symbols + and − are alternating.
(iii) If k − l = 2, then $ = ω is a primitive q-root of the unity. If eδi 6∈

{1,−1}, then the configurations are formed by q/2 nonzero and equal
consecutive symbols and q/2 opposite consecutive symbols when q is
even, and something similar when q is odd. However, one of the chains
has one more symbol. Similarly, one or two 0 symbols appear, rather
than the other ones, when eδi ∈ {1,−1}.

To determine the relative positions of the 0,+ and − signs for each
basis block, it is also relevant the value Q given by Proposition 2.8. In
fact, it is sufficient to investigate only one of these blocks, which were
repeated D times. To illustrate different possibilities, we fixed q = 6 and
k − l − 1 ∈ {0, 1, 2, 3}. The three remaining cases (k − l − 1 ∈ {4, 5, 6})
are the consequences of the four previous ones. These are the possible
configurations, taking suitable values of δ.

(i) Case 0/6 = 0/1 : (0, 0, 0, 0, 0, 0), (+,+,+,+,+,+), and
(−,−,−,−,−,−).
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(ii) Case 1/6 : (+,+,+,−,−,−), (0,+,+, 0,−,−).
(iii) Case 2/6 = 1/3 : (+,+,−,+,+,−), (−,−,+,−,−,+),

(0,+,−, 0,+,−) and (0,−,+, 0,−,+).
(iv) Case 3/6 = 1/2 : (+,−,+,−,+,−) and (0, 0, 0, 0, 0, 0).

3. Study of limit cycles. Proof of Theorem A

This section aims to prove Theorem A. We begin by providing two results
regarding the nonexistence of limit cycles. The first deals with the case
in which an equation of the form (1.1) has infinitely many critical points.
Note that, in particular, the next result shows that there exist differential
equations of the form (1.1), with a centre at the origin and infinity, simul-
taneously.

Lemma 3.1. If an equation of the form (1.1) has infinitely many critical
points, then it does not have limit cycles. Moreover, it has periodic orbits
if and only if k − l = m − n = 1 (then q = 0), Re(a) = Re(b) = 0 and
Im(a) Im(b) < 0.

Proof. As proved in Proposition 2.3, the condition for having infinitely many
critical points is q = 0 (then k − l = m− n = j for some j ∈ Z) and a = cb
for some c ∈ R−. If this is the case, family (1.1) writes as

ż = bzj(zz̄)l
(
c+ (zz̄)n−l

)
, with n > l.

Because (zz̄)l(c+(zz̄)n−l) is real, we can do a time rescaling to eliminate the
circle of critical points, c+ (zz̄)n−l = 0, and also the factor (zz̄)l arriving at
ż = bzj . This last differential equation has no limit cycles and has periodic
orbits if and only if j = 1, Re(b) = 0 and Im(b) 6= 0. Thus, the lemma
follows. Note that, in the last case, the differential equation has a centre at
the origin and at infinity simultaneously. �

As a consequence of the above lemma we prove the following result.

Corollary 3.2. Any differential equation of the form (1.1) with q = 0 has
no limit cycles, unless k − l = m− n = 1. In this case a limit cycle exists if
and only if Re(a) Re(b) < 0 and a/b 6∈ R−.

Proof. By Proposition 2.3, two cases should be considered, either the diffe-
rential equation has infinitely many critical points or the origin is the unique
critical point. In the first situation, from Lemma 3.1 no limit cycle exists.
In the second one, because by Proposition 2.3 the index of the origin is k− l,
a periodic orbit exists only when k − l = 1. As q = 0, then m− n = 1.

Finally, in this case, the expression for Equation (1.1) in polar coordinates
is very simple and can be written as{

ṙ = Re(a)r2l+1 + Re(b)r2n+1,

θ̇ = Im(a)r2l + Im(b)r2n.

Hence, a differential equation of the form (1.1) has a limit cycle (the circle

r2(n−l) = −Re(a)/Re(b), as n − l 6= 0) if and only if Re(a) Re(b) < 0 and
a/b 6∈ R−. Note that this second condition avoids the fact that this circle is
full of critical points. �
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We continue with the result that restricts the existence of limit cycles
surrounding the origin for a more general family of differential equations.

Proposition 3.3. Consider the differential equation

ż = XN (z, z̄) +XM (z, z̄), 0 ≤ N < M, (3.1)

where Xj is a homogeneous vector field of degree j for variables z and z̄. If
one of the following conditions holds,

(i) the differential equation ż = XN (z, z̄) has an invariant straight line
through the origin and M is even,

(ii) the differential equation ż = XM (z, z̄) has an invariant straight line
through the origin and N is even,

then it has no periodic orbits surrounding the origin.

We make the following observations prior to proving this proposition.
Most homogeneous differential equations ż = Xr(z, z̄) have invariant straight
lines through the origin. For example, it suffices that the origin has index
different from 0 and 1, or that it has some elliptic or hyperbolic sector
(see [2]). Furthermore, if the index is 1 and the point is of nodal type, or
the point has index 0 and is formed by two hyperbolic sectors, an invariant
straight line also exists. As mentioned previously, the above result is a
natural extension of the classical result for quadratic systems, ż = X1(z, z̄)+
X2(z, z̄). It asserts that these systems do not have periodic orbit surrounding
a node. Moreover, the fact that some quadratic systems with a focus at
the origin do have limit cycles surrounding it implies that the condition of
item (i) that states that ż = XN (z, z̄) has an invariant straight line through
the origin cannot be removed when N = 1. For N > 1 it suffices to consider
differential equations of the form ż = a(zz̄)sz + (zz̄)sX2(z, z̄), s ∈ N, where
the differential equation ż = az+X2(z, z̄) has a limit cycle surrounding the
origin.

Proof of Proposition 3.3. We prove item (i). Specifically, we observe that the
invariant line for ż = XN (z, z̄) is a line without contact for the equation (3.1).
Item (ii) follows similarly.

First, we consider Equation (3.1) with N > 0. In this case, the differential
equation can be written in polar coordinates as{

ṙ = uN (θ)rN + uM (θ)rM ,

θ̇ = vN (θ)rN−1 + vM (θ)rM−1,
(3.2)

where vj(θ) is a homogeneous trigonometric polynomial of degree j + 1.
Let θ = θ∗ be the half line that corresponds to the invariant straight line

of ż = XN (z, z̄). Note that vN (θ∗) = 0 and

θ̇|θ=θ∗ = vM (θ∗)rM−1.

If we now consider the half-line that differs π radians from θ∗, we obtain
vN (θ∗ + π) = 0 and

θ̇|θ=θ∗+π = vM (θ∗ + π)rM−1 = −vM (θ∗)rM−1,

because vM is a homogeneous trigonometric polynomial of degree M + 1,
which is odd. If vM (θ∗) = 0 the half-lines θ = θ∗ and θ = θ∗+π are invariant
and form an invariant line through the origin. Hence, Equation (3.1) has
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no periodic orbit surrounding the origin. Now, we assume that vM (θ∗) 6=
0. Thus, the signs of θ̇|θ=θ∗ and θ̇|θ=θ∗+π are different. Consequently, θ̇
increases when θ = θ∗ and decreases when θ = θ∗+π (or vice versa). Hence,
no periodic orbit can cross the entire straight line, which is without contact
(except at the origin). Consequently, no periodic orbit can surround the
origin of Equation (3.1).

We now consider N = 0. In this case, the vector field ż = XN (z, z̄) = a ∈
C does not have critical points. Hence, the complete Equation (3.1) can be
transformed into the same polar system (3.2) (but r = 0 is not a solution
of the system), and the arguments presented in the case N 6= 0 work in the
same manner. �

Application of the previous proposition to Equation (1.1) achieves the
following result.

Corollary 3.4. If k+ l is even and m− n 6= 1, then Equation (1.1) has no
periodic orbits surrounding the origin (and, possibly, other critical points).
The same occurs if m+ n is even and k − l 6= 1.

Proof. Let us prove the second assertion that covers the case m+n even and
k − l 6= 1. The first follows by using the same concepts. We use item (i) in
Proposition 3.3. Note that M = m+ n is even, and here XN (z, z̄) = azkz̄l.
Writing ż = azkz̄l in polar coordinates, clearly, unless k − l = 1, it always
has an invariant straight line through the origin. In fact, when k − l 6= 1
and k + l 6= 0 these lines are the separatrices between consecutive elliptic
or hyperbolic sectors of ż = azkz̄l, whose origin has index k − l, see item
(i) of Proposition 2.3. When k + l = 0 (that is k = l = 0), the differential
equation is simply ż = a and does not have critical points but an invariant
line passing through the origin exists. Hence, the result follows. �

The following result, based on the properties of so-called families of rotated
vector fields, will be useful in proving the nonexistence of limit cycles in
several situations (see [6, 18, 19], for more details about this theory). Recall
that the period annulus of a centre is its largest open neighbourhood filled
of periodic orbits.

Proposition 3.5. Let the origin be a centre for a smooth differential equa-
tion ż = iF (z, z̄) and let U be its period annulus. Then, for δ 6∈ {π/2,−π/2}
the differential equation ż = eiδF (z, z̄) does not exhibit periodic orbits inter-
secting the set U . Moreover, if F is analytic, then it does not have periodic
orbits surrounding only the origin.

Proof. The first part is well known and is a consequence of the classical
theory of rotated vector fields.

Let us prove the second part concerning the case F analytic. Assume
that, to arrive at a contradiction, for δ = δ∗ 6∈ {π/2,−π/2} the differential
equation has a periodic orbit γ surrounding only its origin. Then, γ becomes
a curve without contact for the differential equation when δ = π/2. Because
for this value of δ the origin is a centre, we would have a positive or negative
invariant region (the region surrounded by γ) containing a continuum of
periodic orbits. This situation is impossible for analytical differential equa-
tions. �
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Proof of Theorem A. For the proof, we distinguish the following three cases:

(i) m− n = 1, k − l = 1,
(ii) m− n 6= 1,
(iii) m− n = 1, k − l 6= 1,

and we prove that a limit cycle can exist only under the hypotheses of
case (i), and when it exists, it is hyperbolic.

Suppose that case (i) occurs, m − n = 1, k − l = 1. In Corollary 3.2, we
have already characterised the existence and uniqueness of the limit cycle
in this case. It exists if and only if Re(a) Re(b) < 0 and a/b 6∈ R−. Let us
prove its hyperbolicity. Recall that, under these conditions, the differential
equation is written in polar coordinates as the integrable system{

ṙ = Re(a)r2l+1 + Re(b)r2n+1,

θ̇ = Im(a)r2l + Im(b)r2n,

with l < n. Because the limit cycle γ is explicit, Re(a) + Re(b)r2(n−l) = 0,
its hyperbolicity and stability are given by the sign of∫ T

0
div(X)(z(t), z̄(t)) dt,

where X is the vector field associated to the differential equation, z = z(t)
is its time parameterization and T is its period, see [8]. Using Lemma 2.1
we compute this divergence as

div(X) =2 Re
( ∂
∂z
F
)

= 2 Re
(
(l + 1)a(zz̄)l + b(n+ 1)(zz̄)n

)
=2(l + 1) Re(a)(zz̄)l + 2(n+ 1) Re(b)(zz̄)n.

Moreover, on the limit cycle, Re(b)(zz̄)n|γ = −Re(a)(zz̄)l|γ . Hence,

div(X)|γ = 2(l − n) Re(a)(zz̄)l|γ = −2|l − n|Re(a)
(−Re(a)

Re(b)

)l/(n−l)
.

Consequently,∫ T

0
div(X)(z(t), z̄(t)) dt = −2|l − n|Re(a)

(−Re(a)

Re(b)

)l/(n−l)
T.

This proves that γ is hyperbolic, and an attractor (resp. repeller) if Re(a) >
0 (resp. Re(a) < 0). Its stability is the opposite to that of the origin, which
is given by the sign of Re(a). Thus, the proof for the first case ends.

Suppose that case (ii) occurs; then, m−n 6= 1. By Corollary 3.2, differen-
tial Equation (1.1) has no limit cycle when q = 0. Then, we can assume that
q 6= 0; hence, this differential equation has nonzero critical points. Recall
that, if a periodic orbit γ exists, it must surround a set of critical points
whose indices sum is one. Recall also that all nonzero critical points have
the same index, which coincides with the sign of q (see Proposition 2.3).
Hence, there are only two possibilities:

(I) The periodic orbit γ does not surround the origin. In this case, the
periodic orbit only surrounds a single nonzero critical point of index
+1 and q > 0.

(II) The periodic orbit γ surrounds the origin and possibly other critical
points.
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Let us prove that possibility (I) does not hold. As q 6= 0, by applying
Lemma 2.2, the differential Equation (1.1) can be written as

ż = eδi(zkz̄l − zmz̄n), (3.3)

for a certain δ ∈ [0, 2π). Now, it suffices to prove that Equation (3.3) does
not have limit cycles, surrounding only the point z = 1. First, we translate
this critical point to the origin and obtain

ż = eδi
(
(z + 1)k(z̄ + 1)l − (z + 1)m(z̄ + 1)n

)
.

Moreover, by the proof of item (iii) of Theorem 2.5, we find that this
translated differential equation has a centre at the origin if and only if
δ ∈ {π/2,−π/2}. For other values of δ, by Proposition 3.5, we find that
it does not have periodic orbits surrounding the origin that correspond to
the nonzero anti-saddle in the original equation, as we intended to prove.

Let us now prove that possibility (II) cannot occur. Assume that Equa-
tion (1.1) has a limit cycle γ surrounding the origin and possibly some
nonzero critical points. Because m − n 6= 1, to obtain this limit cycle by
applying Corollary 3.4, k − l must be odd. When k − l 6= 1, by applying
Corollary 3.4, to have such a limit cycle, m − n must also be odd. Hence,
we can assume that m−n and k− l are both odd; consequently, m+n and
k + l are also odd. Then, Equation (1.1) has a symmetry: it is invariant
with respect to the change of variables (z, t) −→ (−z,−t). Thus, −γ is a
periodic orbit too. If γ surrounds the origin and other critical points, but
not all of them, −γ ∩ γ 6= ∅, which is in contradiction with the uniqueness
of solution for the differential equation. Hence, γ = −γ, and furthermore γ
surrounds either only the origin or all critical points.

Observe that, if a periodic orbit exists surrounding all the critical points,
then the infinity index must be +1. From Lemma 2.4, this index is 2+n−m.
Because of the hypothesis m− n 6= 1, then 2 + n−m 6= 1; this possibility is
excluded.

If a limit cycle exists surrounding only the origin, it has index +1. Accor-
ding to Proposition 2.3, the origin index is k− l. Hence, as we are assuming
k − l 6= 1, this possibility is also excluded and no limit cycle exist.

Finally, consider the case k − l = 1 and let us prove again that no limit
cycle can exist surrounding the origin and, possibly, other critical points.
To do so, note that, under our assumptions q 6= 0 and then the differential
equation has nonzero critical points. Recall that the index of the origin is
k − l = 1, and if a limit cycle surrounds it, as the nonzero critical points
are all simple and of the same index, the limit cycle must surround only the
origin. Hence, applying Lemma 2.2 to Equation (1.1), it can be expressed
as Equation (3.3) for a certain δ ∈ [0, 2π). From Theorem 2.5(ii), the origin
is a centre if and only if δ ∈ {π/2,−π/2}. For the other values of δ, from
Proposition 3.5, Equation (1.1) does not have periodic orbits surrounding
the origin. Hence, the proof of this case is complete.

To end the proof, assume that, in order to arrive at a contradiction,
case (iii) occurs, m − n = 1, k − l 6= 1, and that Equation (1.1) has a limit
cycle γ. Then, if we do the change of variable and time used in the proof of
Lemma 2.4, w = z−1 and dt/ds = |w|2(m+n), we obtain expression (2.5); that
is, w′ = −bw2+nw̄m−aw2+m+n−kw̄m+n−l, where 2+m+n−k+m+n− l >
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2 + n+m, which is also a differential equation of the form (1.1). Note that
the previous Equation (2.5) has γ∗ = {w ∈ C : w−1 ∈ γ} as a limit cycle,
because Equations (2.5) and (1.1) are topologically equivalent, but note that
the corresponding value of m − n is now (2 + m + n − k) − (m + n − l) =
l−k+2 6= 1. Consequently, we would have a limit cycle under the hypotheses
of case (ii), which is a contradiction. �

4. Phase portraits

We show some phase portraits in the Poincaré disk of Equation (1.1) using
the free software “Polynomial Planar Phase Portraits” typically abbreviated
as P4, and which is introduced in [8, Chap. 9]. In Figure 1 we want to
illustrate the dynamic richness of this family despite its apparent simplicity.
The parameters set in this figure are (k, l,m, n, a, b): (a) (1, 1, 4, 1, i, i), (b)
(0, 4, 4, 2,−(1 +

√
3)/2,−(1 +

√
3)/2), and (c) (3, 2, 0, 9, 1,−1).

We remark that these configurations are straightforward applications of
Proposition 2.8 and Theorem 2.5. From these results, we conclude that,
in Figure 1(a), the origin is a critical point with two hyperbolic sectors as
k − l = 0; in Figure 1(b), the origin is a critical point with 10 hyperbolic
sectors as k − l = −4; and in Figure 1(c), the origin is a critical point of
index k − l = +1.

Figure 1. Phase portraits in the Poincaré disk of some
examples of Equation (1.1) with nonzero finite critical
points: (a) one centre and two focus, (b) two centres and
four nodes, and (c) ten saddles.
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