pp. 623–641

FORWARD TRIPLETS AND TOPOLOGICAL ENTROPY ON TREES

Lluís Alsedà

Departament de Matemàtiques and Centre de Recerca Matemàtica Edifici Ciències Universitat Autònoma de Barcelona, Cerdanyola del Vallès Barcelona 08913, Spain

DAVID JUHER*

Departament Informàtica, Matemàtica Aplicada i Estadística Universitat de Girona c/ Universitat de Girona, 6, Girona 17003, Spain

FRANCESC MAÑOSAS

Departament de Matemàtiques Edifici Ciències Universitat Autònoma de Barcelona, Cerdanyola del Vallès Barcelona 08913, Spain

(Communicated by Xiangdong Ye)

ABSTRACT. We provide a new and very simple criterion of positive topological entropy for tree maps. We prove that a tree map f has positive entropy if and only if some iterate f^k has a periodic orbit with three aligned points consecutive in time, that is, a triplet (a, b, c) such that $f^k(a) = b$, $f^k(b) = c$ and b belongs to the interior of the unique interval connecting a and c (a forward triplet of f^k). We also prove a new criterion of entropy zero for simplicial n-periodic patterns P based on the non existence of forward triplets of f^k for any $1 \le k < n$ inside P. Finally, we study the set \mathcal{X}_n of all n-periodic patterns P that have a forward triplet inside P. For any n, we define a pattern that attains the minimum entropy in \mathcal{X}_n and prove that this entropy is the unique real root in $(1, \infty)$ of the polynomial $x^n - 2x - 1$.

1. Introduction and statement of the main results. This paper deals with discrete dynamical systems defined by the iteration of continuous self-maps on trees. We will give some results relating the positive/zero character of the topological entropy of a map to the combinatorial behavior (or *pattern*) of its periodic orbits. In this section we informally introduce some basic notions and present the main results of the paper.

An *interval* is any space homeomorphic to $[0,1] \subset \mathbb{R}$. A *tree* is a compact uniquely arcwise connected space which is a union of a finite number of intervals.

Key words and phrases. Tree maps, periodic patterns, topological entropy.

²⁰²⁰ Mathematics Subject Classification. Primary: 37E15, 37E25.

Work supported by grants MTM2017-86795-C3-1-P and 2017 SGR 1617. Lluís Alsedà acknowledges financial support from the Spanish Ministerio de Economía y Competitividad grant number MDM-2014-0445 within the "María de Maeztu" excellence program.

^{*} Corresponding author: David Juher.