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Abstract. We provide a new and very simple criterion of positive topological
entropy for tree maps. We prove that a tree map f has positive entropy
if and only if some iterate fk has a periodic orbit with three aligned points

consecutive in time, that is, a triplet (a, b, c) such that fk(a) = b, fk(b) = c and
b belongs to the interior of the unique interval connecting a and c (a forward

triplet of fk). We also prove a new criterion of entropy zero for simplicial
n-periodic patterns P based on the non existence of forward triplets of fk for

any 1 ≤ k < n inside P . Finally, we study the set Xn of all n-periodic patterns
P that have a forward triplet inside P . For any n, we define a pattern that
attains the minimum entropy in Xn and prove that this entropy is the unique

real root in (1,∞) of the polynomial xn − 2x− 1.

1. Introduction and statement of the main results

This paper deals with discrete dynamical systems defined by the iteration of
continuous self-maps on trees. We will give some results relating the positive/zero
character of the topological entropy of a map to the combinatorial behavior (or
pattern) of its periodic orbits. In this section we informally introduce some basic
notions and present the main results of the paper.

An interval is any space homeomorphic to [0, 1] ⊂ R. A tree is a compact
uniquely arcwise connected space which is a union of a finite number of intervals.
Any continuous map f : T −→ T from a tree T into itself will be called a tree map.
As usual, an n-periodic orbit of f is a sequence {xi}ni=1 ⊂ T such that f(xi) = xi+1

for 1 ≤ i < n and f(xn) = x1 (this time labeling convention will be used all along
this paper for every n-periodic orbit whose elements are indexed from 1 to n).

A classic way of measuring the dynamical richness of a tree map is in terms
of its topological entropy, first introduced in [1] for continuous maps defined on
compact metric spaces. The topological entropy of f : X −→ X, denoted by h(f),
is a non-negative real number (or infinity) that measures how the iterates of f mix
the points of X. An interval map with positive entropy is chaotic in the sense of
Li and Yorke [12], and the same is true for general compact metric spaces [8]. On
the other hand, the dynamics of a map with zero topological entropy is essentially
trivial. It is also well known that the entropy of f is closely related to the number
of different periodic orbits exhibited by f and the sizes of such orbits.

In [6], a characterization of positive entropy tree maps was given in terms of the
notion of division. Informally speaking, a periodic orbit P of a tree map f : T −→ T
is said to have a division if the points of P can be partitioned into subsets that are
cyclically permuted by f around a fixed point. One of the main results of [6] (see
also [10]) states that a tree map f has positive entropy if and only if there exist
k ≥ 1 and a periodic orbit P of fk such that P has no division. We will prove
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Figure 1. Two non-homeomorphic trees T and S, with 9-periodic
orbits P = {xi}9i=1 and Q = {yi}9i=1 of two respective (unspecified)
tree maps f : T −→ T and g : S −→ S.

that the no division condition can be replaced by a much simpler one. Next we
introduce this simple property and state the first main result of this paper.

Given a tree T and a subset X ⊂ T , we define the connected hull of X, denoted
by ⟨X⟩T or simply by ⟨X⟩, as the smallest closed connected subset of T containing
X. When X = {x, y} we will write [x, y] to denote ⟨X⟩. The notations (x, y),
(x, y] and [x, y) will be understood in the natural way. Let f : T −→ T be a tree
map. An ordered set (a, b, c) of three points of T will be called an aligned triplet if
b ∈ (a, c). An aligned triplet (a, b, c) will be called a forward triplet of f if f(a) = b,
f(b) = c, and {a, b, c} is contained in a periodic orbit of f . For instance, (x8, x9, x1)
and (x2, x3, x4) are two forward triplets of the map f : T −→ T shown in Figure 1
(left).

It seems a remarkable fact that the existence of just three consecutive (in time,
not necessarily in space) aligned points inside a periodic orbit of a tree map forces
positive entropy, as the following theorem states.

Theorem A. A tree map f has positive topological entropy if and only if there
exists k ≥ 1 such that fk has a forward triplet.

In the proof of Theorem A, as well as in the statement of Theorem B below and
all along the paper, the notion of pattern of an invariant set will play a central role.
Let us introduce this notion.

Given a tree T and a finite subset P of T , the pair (T, P ) will be called a pointed
tree. For a tree map f : T −→ T having a finite invariant set P , the triplet (T, P, f)
will be called a model. Given a model (T, P, f), its pattern is the equivalence class of
all models (S,Q, g) such that, at a combinatorial level, behave like (T, P, f). Here
we mean that we do not care about neither the particular topology of the trees nor
the action of the maps outside P and Q. Look at Figure 1 for an example of two
models of the same pattern. Observe that S and T are not homeomorphic. The
central drawing is intended to capture the two ingredients of what we call a pattern:

Spatial arrangement of the points. For a pointed tree (T, P ), two points x, y of P
will be called consecutive if (x, y)∩P = ∅. Any maximal subset of P consisting only
of pairwise consecutive points will be called a discrete component of (T, P ). We say
that two pointed trees (T, P ) and (S,Q) are equivalent if there exists a bijection
ϕ : P −→ Q which preserves discrete components. In the example of Figure 1, just
take ϕ : P −→ Q such that ϕ(xi) = yi+2 for 1 ≤ i ≤ 7, ϕ(x8) = y1 and ϕ(x9) =
y2. Then, ϕ maps the discrete components {x3, x5}, {x3, x4, x8}, {x3, x6, x7, x9}
and {x1, x2, x9} of (T, P ) respectively into {y5, y7}, {y5, y6, y1}, {y5, y8, y9, y2} and
{y3, y4, y2}, the discrete components of (S,Q).
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Figure 2. An interval model (T, P, f) and the corresponding pat-
tern, that can be identified with the permutation (3, 4, 2, 5, 1).

Action of the maps. Given two equivalent pointed trees (T, P ) and (S,Q), two
models (T, P, f) and (S,Q, g) are said to be equivalent if f

∣∣
P
= ϕ−1 ◦g ◦ϕ

∣∣
P
, where

ϕ is a bijection that preserves discrete components. Observe that the map ϕ defined
above fulfills this condition for the examples of Figure 1.

A pattern is an equivalence class of models by this relation. The central drawing
in Figure 1 is the graphic representation of a periodic pattern that will be used all
along this paper. Note that there are 9 marks time-labeled from 1 to 9, accounting
for the action of each map in the class on the points of the orbit. This points
are organized into 4 subsets, {3, 5}, {3, 4, 8}, {3, 6, 7, 9} and {1, 2, 9}, the discrete
components of the pattern.

When we restrict ourselves to the family of continuous self-maps of closed in-
tervals (trees with two endpoints), the points of an n-periodic orbit P are totally
ordered and the pattern of P can be clearly identified with a permutation of order
n. The notion of interval pattern considered as a permutation has its roots in the
well known Sharkovskii’s Theorem [16], but it was formalized and developed in the
early 1990s [7, 15]. See Figure 2 for an example. On the other hand, the notion of
pattern for generic tree maps was first introduced in [2].

In order to capture the minimum dynamical complexity forced by the existence
of a given combinatorial behavior, the entropy of a pattern P is defined as

h(P) := inf{h(f) : (T, P, f) is a model of P}.

Computing the entropy of a continuous map is a difficult task in general, but the
computation of the entropy of a pattern P can be easily performed thanks to the
existence of the so called canonical models. Roughly speaking, a canonical model
of a pattern P is an essentially unique and specially simple model (T, P, f) that
is determined by the combinatorial data of P and minimizes the entropy in the
set of all models of P. Moreover, the dynamics of f (in particular, its entropy)
can be completely described and easily computed using some algebraic tools. We
will give the precise definitions in Section 2. The existence of canonical models
for patterns on trees has been proved in [2] (the proof is constructive and provides
a finite algorithm to build the canonical model from the combinatorial data of
the pattern). In the particular case of interval maps, the canonical model of a
permutation is nothing but the well known “connect-the-dots” map (see [5] for a
list of references).

It is straightforward to define combinatorial versions of the notions of aligned
triplet and forward triplet. Let (T, P, f) be a model. Note that two discrete com-
ponents of (T, P ) are either disjoint or intersect at a single point of P . A point
z ∈ P will be called inner if z belongs to at least two discrete components of (T, P ).
Observe that an ordered subset (a, b, c) of P is an aligned triplet if and only if b
is an inner point and {a, c} is not contained in a single connected component of
T \ {b}. The reader will find easy to convince that this (topological) definition is
independent of the particular chosen model of P. So, it makes sense to say that the
pattern P has an aligned (respectively, forward) triplet if for any model (T, P, f)
of P there is an aligned (resp. forward) triplet (a, b, c) such that {a, b, c} ⊂ P . As
an example, the ordered set (2, 3, 4) is a forward triplet of the 9-periodic pattern
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Figure 3. Two 8-periodic simplicial patterns P and Q.

shown in Figure 1, corresponding to the forward triplets (x2, x3, x4) of f : T −→ T
and (y4, y5, y6) of g : S −→ S.

A pattern P will be called simplicial if each discrete component of P has two
points. See Figure 3 for two examples. Note that, in particular, any interval pattern
is simplicial (see Figure 2).

Let P be an n-periodic pattern. Take a model (T, P, f) of P. For any 1 ≤ k < n,
the pattern of (T, P, fk) will be denoted by Pk. Observe that Pk is not necessarily
periodic. In fact, P consists of the union of gcd(n, k) periodic orbits of fk, each
one of period n/ gcd(k, n) (see Lemma 2.1.10 of [5]). An n-periodic pattern P will
be called fully rotational if Pk has not forward triplets for all 1 ≤ k < n.

The second main result of this paper provides a new characterization of zero
entropy simplicial patterns. It can be viewed as a combinatorial (and stronger)
version of Theorem A for simplicial patterns.

Theorem B. Let P be an n-periodic simplicial pattern. Then, h(P) = 0 if and
only if P is fully rotational.

In the literature, the zero entropy interval patterns are well known (see [5] for
a list of classic references). For general tree patterns there are also several criteria
of entropy zero [2, 3]. All such criteria require to check that an iterative procedure
of reductions can be carried out leading to a trivial pattern consisting of a single
point (see Section 2). The nature of the criterion emanating from Theorem B is
different and requires to check the nonexistence of forward triplets for all relevant
iterates of the map over the invariant set. From a practical point of view, this is
equivalent to check that for any inner point x of the pattern, x does not separate
the points fk(x) and f−k(x) for every 1 ≤ k < n. As an example, consider the
patterns P and Q in Figure 3. Note that the inner point 3 of Q separates 1 and 5.
Thus, (1, 3, 5) is a forward triplet of Q2. Then, h(Q) > 0 by Theorem A. On the
other hand, one can check that P is fully rotational, and thus its entropy is zero by
Theorem B.

It is worth noticing that Theorem B is not true for non-simplicial patterns. As
an example, the 12-periodic pattern P shown in Figure 4 is fully rotational. Indeed,
1 and 6 are the inner points of P, and one can check that for x = 1, 6 and any
1 ≤ k < 12, the point x does not separate fk(x) and f−k(x). But, on the other
hand, h(P) > 0 since P does not satisfy the zero entropy criterion given in [2] (see
Section 2).

When a periodic pattern is not fully rotational, then its entropy is positive (just
apply Theorem A to its canonical model (T, P, f)). The third main result of this
paper gives in fact a lower bound for its entropy. In [4], the authors considered the
problem of determining, for each n ∈ N, the minimum entropy in the set Posn of
all n-periodic patterns with positive entropy. Of course every periodic pattern of
period 1 or 2 has entropy zero, so the problem makes sense only for n ≥ 3. Let us
introduce the pattern that conjecturally minimizes the entropy in Posn.
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Figure 4. A fully rotational 12-periodic pattern P.

Let n ∈ N with n ≥ 3. Let Qn be the n-periodic pattern whose discrete com-
ponents are {1, n} and {1, 2, . . . , n − 1}. As an example, in Figure 5 we show Q6.
Observe that Q3 is the 3-periodic Štefan cycle of the interval [17].

In [4] it is proved that h(Qn) = log(λn), where λn is the unique real root in
(1,∞) of the polynomial xn − 2x− 1. It can be seen that the sequence (λn)

∞
n=1 is

decreasing and tends to 1 as n → ∞. The main theorem in [4] states that, when
n has the particular form n = pk for a prime p and k ≥ 1, indeed the pattern Qn

minimizes the entropy in Posn. In consequence, h(P) ≥ log(λn) for any pattern
P ∈ Posn. Our third main result states that the same inequality is true for every
period n ≥ 3 if we restrict our attention to the non fully rotational patterns.

Theorem C. Let P be an n-periodic pattern. If P is not fully rotational, then
h(P) ≥ log(λn).

It is worth noticing that the pattern Qn is not fully rotational, since has (n, 1, 2)
as a forward triplet. Hence, the lower bound of the entropy given in Theorem C is
optimal and is attained by Qn.

From Theorems B and C, we immediately get the following corollary.

Corollary D. Let Simn be the set of n-periodic simplicial patterns with positive
entropy. Then, h(P) ≥ log(λn) for every P ∈ Simn.

Presumably, the bound log(λn) given by Corollary D is not optimal in Simn (
Posn, and the problem of determining the minimum entropy simplicial pattern
arises. When one restricts to interval patterns, this is a completely solved classic
problem. In this case, the minimum positive entropy is attained by the primary
cycles [9] when n is not a power of 2 and by extensions of minor cycles [14] when
n = 2k.

This paper is organized as follows. In Section 2 we introduce some terminology
and notation, and recall some notions and tools that are either common knowledge
in the field of Combinatorial Dynamics or recent developments in the particular
setting of tree maps. We will use them in Sections 3, 4 and 5 to prove respectively
Theorems A, B and C.

2. Definitions, terminology and notation

In this Section we introduce the notion of canonical model for tree patterns
and explain how to compute the topological entropy of a pattern via the Markov
matrix of its canonical model. We also recall the characterization of zero entropy
tree patterns first given in [2].
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Let T be a tree. For each x ∈ T , we define the valence of x to be the number of
connected components of T \ {x}. A point of valence different from 2 will be called
a vertex of T and the set of vertices of T will be denoted by V (T ). Each point of
valence 1 will be called an endpoint of T . The set of such points will be denoted
by En(T ). Also, the closure of a connected component of T \ V (T ) will be called
an edge of T . Any tree which is a union of r ≥ 2 intervals whose intersection is a
unique point y of valence r will be called an r-star, and y will be called its central
point.

Given any subset X of a topological space, we will denote by Int(X) and Cl(X)
the interior and the closure of X, respectively. For a finite set P we will denote its
cardinality by |P |.

The simplest models exhibiting a given pattern are the monotone ones, defined
as follows. Let f : T −→ T be a tree map. Given a, b ∈ T we say that f

∣∣
[a,b]

is

monotone if f([a, b]) is either an interval or a point and f
∣∣
[a,b]

is monotone as an

interval map. Let (T, P, f) be a model. A pair {a, b} ⊂ P will be called a basic
path of (T, P ) if it is contained in a single discrete component of (T, P ). We will
say that f is P -monotone if En(T ) ⊂ P and f

∣∣
[a,b]

is monotone for any basic

path {a, b}. The model (T, P, f) will then be called monotone. In such a case,
Proposition 4.2 of [2] states that the set P ∪ V (T ) is f -invariant. Hence, the map
f is also (P ∪ V (T ))-monotone.

Theorem 2.1 (Theorem A of [2]). Let P be a pattern. Then the following state-
ments hold.

(a) There exist monotone models of P.
(b) Every monotone model (T, P, f) of P satisfies h(f) = h(P).

Every pattern has a specially simple monotone model (T, P, f), called canonical.
It is essentially unique and satisfies the additional property that there are no edges
of T whose orbit is either disjoint of P or collapses to a point of P . The existence of
the canonical model is stated in Theorem B of [2], whose proof is constructive. Just
as an example, the model (T, P, f) in Figure 6(right) is the canonical model of the
corresponding pattern. It is not difficult to see that in this case the P -monotonicity
of f determines that f(a) = b, f(b) = c and f(c) = c. Observe also that the model
(T ′, P ′, f ′) in Figure 6(left), a representative of the same pattern, cannot be P ′-
monotone, since in this case we would have f ′(v) ∈ f ′([x′

2, x
′
6]) ∩ f ′([x′

4, x
′
5]) =

[x′
3, x

′
1] ∩ [x′

5, x
′
6] = ∅.

An n-periodic pattern P will be called trivial if it has only one discrete compo-
nent. In this case, for n ≥ 2, let (T, P ) be a pointed tree such that T is an n-star
with En(T ) = P = {x1, x2, . . . , xn} and let y be its central point. Consider a rigid
rotation on T . That is, a model (T, P, f) such that f(y) = y and f maps bijectively
[y, xi] onto [y, xi+1] for 1 ≤ i < n and [y, xn] onto [y, x1]. Clearly, (T, P, f) is a
monotone model with no invariant forests. Hence, (T, P, f) is the canonical model
of P. Therefore, it easily follows that every trivial pattern has entropy 0.
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The topological entropy of every map being Q-monotone with respect to a finite
invariant set Q containing the vertices of the tree can be easily computed as the
logarithm of the spectral radius of the associated Markov matrix. Let us recall such
standard techniques.

A combinatorial directed graph is a pair G = (V,U) where V = {v1, v2, . . . , vk}
is a finite set and U ⊂ V × V . The elements of V are called the vertices of G and
each element (vi, vj) in U is called an arrow (from vi to vj) in G. Such an arrow
is usually denoted by vi → vj . The notions of path and loop in G are defined as
usual. The length of a path is defined as the number of arrows in the path. The
transition matrix of G is a k× k binary matrix (mij)

k
i,j=1 such that mij = 1 if and

only if there is an arrow from vi to vj , and mij = 0 otherwise.
Let (T,Q, f) be a monotone model of a simplicial pattern. That is, Q ⊃ V (T ).

Note that, in this case, any connected component of T \Q is an open interval. An
interval of T will be called Q-basic if it is the closure of a connected component of
T \Q. Observe that two different Q-basic intervals have pairwise disjoint interiors.
Given K,L ⊂ T , we will say that K f -covers L if f(K) ⊃ L. Consider a labeling
I1, I2, . . . Ik of all Q-basic intervals. TheMarkov graph of (T,Q, f) associated to this
labeling is a combinatorial directed graph whose vertices are the Q-basic intervals
and there is an arrow from Ii to Ij if and only if Ii f -covers Ij . On the other hand,
the Markov matrix of (T,Q, f) associated to this labeling is the transition matrix of
the corresponding Markov graph of (T,Q, f). Given two different labellings of the
set of Q-basic intervals and their associated Markov matrices M and N , there exists
a permutation matrix A such that M = ATNA (where AT denotes the transpose
of A).

For any square matrix M , we will denote its spectral radius by σ(M). We recall
that it is defined as the maximum of the moduli of the eigenvalues of M .

Remark 2.2. Let (T,Q, f) be a monotone model such that Q ⊃ V (T ). Let M
be the Markov matrix of (T,Q, f). By standard arguments (see for instance [5,
Theorem 4.4.5]), the topological entropy of f can be computed as

h(f) = logmax{σ(M), 1}.

Recall that if (T, P, f) is the canonical model of a pattern P then the model
(T, P ∪ V (T ), f) is monotone. Thus, according to the previous paragraphs, we can
consider the associated Markov graph and matrix. Since both objects depend only
on the canonical model of P, which is uniquely determined by the combinatorial
data of the pattern P, they will be respectively called Markov graph of P and
Markov matrix of P.

Remark 2.3. Let P be a pattern and let M be its Markov matrix. From Theo-
rem 2.1(b) and Remark 2.2 we get that h(P) = logmax{σ(M), 1}.
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Next we recall the description of zero entropy patterns first given in [2]. Let
(T, P, f) be a monotone model of a pattern P. Let π be a basic path of (T, P ). We
say that P is π-reducible if fn(π) is a basic path of (T, P ) for every n ≥ 0. In this
case, let X =

⋃
i≥0⟨f i(π)⟩ and let C0, C1, . . . , Cp−1 be the connected components

of X. Note that P ⊂ X. It is easy to see that for each 0 ≤ i < p there exists ji such
that f(Ci) ⊂ Cji . Then we take the tree T ′ obtained from T by collapsing each Ci

to a point ci. Let κ : T −→ T ′ be the standard projection. We set P ′ = κ(P ) and
define f ′ : P ′ −→ P ′ as f ′ = κ◦f ◦κ−1. It is easy to see that ([T ′, P ′], [f ′]) is a well
defined pattern, which we call a π-reduced (or simply reduced) pattern of P. The
following result (Proposition 9.5 of [4]) summarizes some properties of a reduced
pattern for the specific case of periodic patterns.

Proposition 2.4. Let P be an n-periodic pattern that is π-reducible for a basic path
π, and let (T, P, f) be a monotone model of P. Let C0, C1, . . . , Cs−1 be the connected
components of

⋃
i≥0⟨f i(π)⟩. Then, n > s ≥ 1 and the following statements hold:

(a) En(Ci) ⊂ P for 0 ≤ i < s.
(b) The sets Ci can be labeled in such a way that f(Ci) = Ci+1 mod s for 0 ≤

i < s. Thus, s divides n, Ci ∩ P is an (n/s)-periodic orbit of fs for each
0 ≤ i < s and the π-reduced pattern is s-periodic.

(c) The pointed tree (Ci, Ci∩P ) has a unique discrete component for 0 ≤ i < s.

The entropies of a pattern P and a reduced pattern of P coincide, as the following
result (Proposition 8.1 of [2]) states.

Proposition 2.5. Let P be a pattern. Let P ′ be a reduced pattern of P. Then,
h(P ′) = h(P).

A pattern will be called strongly reducible if there is a finite sequence of reductions
leading to a pattern consisting of a single point. The notion of a strongly reducible
pattern depends apparently on the chosen sequence of basic paths and monotone
models. From the next theorem, which is the characterization of zero entropy
patterns given in [2], it follows that this notion is well defined.

Theorem 2.6 (Theorem E of [2]). A pattern has zero entropy if and only if it is
strongly reducible.

3. Proof of Theorem A

The proof of our first main result makes use of several standard concepts about
orbits, entropy and patterns of tree maps. In this Section we introduce the notions
of scrambled component, division and horseshoe. We also state some basic facts
concerning these notions and finally we use them to prove Theorem A.

Let (T, P, f) be a model of a periodic pattern P. Let C be a discrete component
of (T, P ). We will say that a point x ∈ C escapes from C if f(x) does not belong to
the connected component of T \{x} that intersects Int(⟨C⟩). As an example, observe
that the points x3 and x9 escape from the discrete component {x3, x6, x7, x9} in
the 9-periodic model shown in Figure 1(left). Any discrete component of (T, P )
without points escaping from it will be called a scrambled component of P. Clearly,
these notions do not depend on the particular chosen model of P. So, it makes
sense to say that the pattern P has a scrambled component. As an example, the
components {1, 2, 9} and {3, 4, 8} are scrambled for the 9-periodic pattern shown
in Figure 1.

Lemma 3.1. Let P be a periodic pattern. Then:

(a) P has scrambled components.
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(b) Let C be a scrambled component of P. For every model (T, P, f) of P, there
are fixed points of f in Int(⟨C⟩)T .

Statement (a) of Lemma 3.1 is Lemma 4.2 of [4], while (b) is a direct consequence
of a more general fact which holds for dendrites, see [11, Theorem 7.2.2(2)].

Next we introduce the notion of a division [6]. Let (T, P, f) be a model of an
n-periodic pattern P with n ≥ 2. Ley y be a fixed point of f such that y ∈ ⟨P ⟩T .
Then, y /∈ P and there is a discrete component C of (T, P ) such that y ∈ Int(⟨C⟩).
Let Z1, Z2, . . . , Zl be the connected components of T \Int(⟨C⟩). We will say that the
model (T, P, f) (and also the orbit P ) has a p-division with respect to C (or simply a
p-division) if there exists {M1,M2, . . . ,Mp} with p ≥ 2, a partition of T \ Int(⟨C⟩),
such that eachMi is a union of some of the sets Z1, Z2, . . . , Zl, f(Mi∩P ) = Mi+1∩P
for 1 ≤ i < p and f(Mp ∩ P ) = M1 ∩ P . Again, it is obvious that this definition
is independent of the particular chosen model of P, so that it makes sense to say
that the pattern P has a p-division.

Several simple facts follow immediately from the definition of division:

Remark 3.2. Assume that an n-periodic pattern P has a p-division with respect
to a discrete component C. Then, in the notation of the definition of a division,

(a) Each set Mi contains n/p points of P .
(b) If n is prime then p = n, Zi = Mi reduces to one point of P for each

1 ≤ i ≤ n, and C is the only discrete component of P. So, P is a trivial
pattern.

(c) f(P ∩ Zi) ∩ Zi = ∅ for each 1 ≤ i ≤ l.

The next result states that periodic patterns with a division have only one
scrambled component. Its proof, that is left to the reader, follows easily from
Remark 3.2(c).

Lemma 3.3. If a model (T, P, f) of a periodic pattern has a division with respect
to a discrete component C, then C is scrambled and (T, P ) has no other scrambled
components.

As it was said in Section 1, it is well known [6, 10] that a tree map f has zero
topological entropy if and only if, for every k ∈ N, each periodic orbit of fk has a
division. This result can be rewritten as follows.

Theorem 3.4. A tree map f has positive topological entropy if and only if there
exist k ≥ 1 and a periodic orbit P of fk such that P has no division.

The following proposition states that having a forward triplet is in fact a partic-
ular case of no division.

Proposition 3.5. Let (T, P, f) be a model of a periodic pattern P. If (T, P, f) has
a forward triplet, then (T, P, f) has no division.

Proof. If (T, P ) has at least two scrambled components, then we are done by virtue
of Lemma 3.3. Assume that (T, P ) has a unique scrambled component C. Let
(a, b, c) be a forward triplet of f . Since a, b, c /∈ Int(⟨C⟩) and ⟨{a, b, c}⟩ is an
interval, there is a connected component X of of T \ Int(⟨C⟩) such that either
{a, b} ⊂ X or {b, c} ⊂ X. Since f(a) = b and f(b) = c, condition (c) in Remark 3.2
does not hold and, in consequence, (T, P, f) has no division. �

The last ingredient to prove Theorem A is the well known notion of horseshoe
[13]. Let us recall it. Let s ≥ 2. For a tree map f : T −→ T , an s-horseshoe is a
closed interval I ⊂ T with Int(I)∩V (T ) = ∅ and s closed subintervals J1, J2, . . . , Js
of I with pairwise disjoint interiors, such that f(Ji) = I for 1 ≤ i ≤ s.

Now we are ready to prove Theorem A.
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1

3

5

2

6

[y, 1] → [y, 2] → [y, 3] ↔ [1, 4] ↔ [3, 5] → [2, 6]
y

Figure 7. On the left, the canonical model (T, P, f) of a 6-
periodic pattern P, for which f(y) = y. On the right, the Markov
graph of (T, P, f).

Proof of Theorem A. Assume that f : T −→ T has positive entropy. Then, by
Theorem B of [13], there exist sequences (kn)

∞
n=1 and (sn)

∞
n=1 of positive integers

such that for each n the map fkn has an sn-horseshoe and

lim sup
n→∞

1

kn
log(sn) = h(f).

Take n such that sn ≥ 3. Set k = kn and s = sn. Since f
k has an s-horseshoe, there

is a closed interval I ⊂ T with Int(I)∩V (T ) = ∅ and closed subintervals J1, . . . , Js
of I with pairwise disjoint interiors such that fk(Ji) = I for i = 1, . . . , s. Take three
intervals J,K,L in {J1, . . . , Js} such that y ∈ (x, z) for every x ∈ J , y ∈ Int(K),
z ∈ L. Since J fk-coversK, K fk-covers L and L fk-covers J , by standard covering
arguments for continuous maps we get a 3-periodic orbit P = {a, b, c} of fk such
that a ∈ Int(J), b = fk(a) ∈ Int(K) and c = f2k(a) ∈ Int(L). Thus, (a, b, c) is a
forward triplet of fk.

Now assume that there exist a positive integer k and a periodic orbit P of fk

such that P contains a forward triplet of fk. Then, by Proposition 3.5, the model
(T, P, fk) has no division. In consequence, h(f) > 0 by Theorem 3.4. �

A natural question is whether a map f with positive entropy has always a periodic
orbit (with high enough period) containing a forward triplet for f . In other words,
if we can assume that k = 1 in the statement of Theorem A. The canonical model
(T, P, f) of the 6-periodic pattern P shown in Figure 7 is a counterexample. Indeed,
one can check that P is not π-reducible for any basic path π (see Section 2). In
consequence, h(P) > 0 by Theorem 2.6. Since (T, P, f) is a canonical model,
h(f) = h(P) > 0. On the other hand, the Markov graph of (T, P, f) does not
contain paths of the form I → J → K such that I ∪ J ∪ K is contained in an
interval of T . Thus, f cannot have periodic orbits with forward triplets.

In view of it, an open question is to find an optimal upper bound for k in the
statement of Theorem A, in terms of some combinatorial features of the tree such
as the number and/or arrangement of the vertices, edges or endpoints.

4. Proof of Theorem B

Before proving Theorem B we recall that the notion fully rotational and the
notation Pk for a pattern P have been introduced in Section 1. To prove Theorem B
we will state and prove four previous lemmas.

Let f : T −→ T be a tree map and let P be a periodic orbit of f of even period
n = 2k. For any x ∈ P , the points x and fk(x) will be called symmetric to each
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C0 C1
C2

Figure 8. The two possible arrangements of the connected com-
ponents C0, C1, C2 in the proof of Lemma 4.2. The black points
belong to P .

other, and {x, fk(x)} will be called a symmetric pair. Again, this notion can be
directly extended to periodic patterns, so that {1, 5} is for instance a symmetric
pair of a pattern of period 8, as the ones shown in Figure 3.

Lemma 4.1. Let P be a simplicial n-periodic pattern. Then, P is π-reducible for
some basic path π if and only if n is even and any symmetric pair of P is a discrete
component. Moreover, the π-reduced pattern is simplicial and its period is n/2.

Proof. Let (T, P, f) be the canonical model of P. Assume first that n = 2k and
that any symmetric pair of P is a discrete component. Take any x ∈ P and let π
be the symmetric pair {x, fk(x)}. Then, f i(π) is a symmetric pair for all i ≥ 0,
and is also a discrete component by hypothesis. In consequence, the pattern P is
π-reducible.

Assume now that P is π-reducible for a basic path π = {x, fk(x)}. Set X =⋃
i≥0⟨f i(π)⟩ and let C0, C1, . . . , Cs−1 be the connected components of X. By

Proposition 2.4(b), they can be labeled in such a way that f(Ci) = Ci+1 mod s

for 0 ≤ i < s. Moreover, we can assume that π ⊂ C0. Since P is simplicial, from
(a) and (c) of Proposition 2.4 we get that every Ci is an interval whose endpoints
belong to P and Int(Ci) ∩ P = ∅. So, |Ci ∩ P | = 2 for 0 ≤ i < s and, in conse-
quence, n is even, s = k = n/2 and Ci = [f i(x), f i+k(x)] for 0 ≤ i < k. In other
words, every symmetric pair of P is a discrete component. Finally, to see that the
π-reduced pattern is simplicial, recall that it is obtained by collapsing every Ci to
a point and observe that, since P is simplicial, T \X is a union of pairwise disjoint
open intervals. �

Note that the characterization of zero entropy patterns given by Theorem 2.6,
together with the iterative use of Lemma 4.1, yields that the period of any simplicial
periodic pattern with entropy zero is a power of 2, a fact that is well known for the
particular case of interval patterns.

Lemma 4.2. Let P be a periodic pattern that is π-reducible for a basic path π and
let Q be the π-reduced pattern. If P is fully rotational, then Q is fully rotational.

Proof. Let (T, P, f) and (S,Q, g) be canonical models of P and Q, respectively. We
will prove the lemma by way of contradiction. So, assume that g has a forward
triplet (c0, c1, c2) contained in Q. So, g(c0) = c1, g(c1) = c2 and c1 ∈ Int(⟨c0, c2⟩S).
By construction of the π-reduced pattern, there exist three connected components
C0, C1, C2 of

⋃
i≥0⟨f i(π)⟩T , that can be respectively identified after collapse with

the points c0, c1, c2, such that f(C0) = C1 and f(C1) = C2. By Proposition 2.4(a),
En(Ci) ⊂ P for i = 0, 1, 2. Since a tree is uniquely arcwise connected, there
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exists at least one point x ∈ En(C1) ⊂ P such that x ∈ Int(⟨a, b⟩T ) for any pair
a ∈ C0, b ∈ C2 (in fact, there are at most two points x ∈ En(C1) satisfying this
property, see Figure 8). In particular, x ∈ Int(⟨f−1(x), f(x)⟩T ) and, consequently,
(f−1(x), x, f(x)) is a forward triplet for f on P , a contradiction since P is fully
rotational. �

Next we study some properties of the fully rotational simplicial patterns. To do
it, the following simple terminology will be appropriate. Let P be a fully rotational
simplicial pattern. Let (T, P, f) be the canonical model of P. We will say that
two points x, y ∈ P are adjacent to each other if {x, y} is a discrete component.
A discrete component C of P will be called extremal if C contains an endpoint
of T . As an example, the components {1, 7}, {3, 5}, {4, 8} are the three extremal
components of the pattern Q in Figure 3.

The following simple result states that the period of a fully rotational simplicial
pattern has to be even. Moreover, the extremal discrete components are symmetric
pairs.

Lemma 4.3. Let P be a fully rotational n-periodic simplicial pattern. Then, n is
even and every extremal discrete component of P is a symmetric pair.

Proof. Let (T, P, f) be the canonical model of P. Take any extremal component
{x, z} of P, with x ∈ En(T ). Then z = fk(x) for some 1 ≤ k < n. Since P is fully
rotational, fk does not have forward triplets. Therefore, fk(z) = x and f2k(x) = x.
In consequence, n = 2k and {x, z} is a symmetric pair. �

Lemma 4.4. Let P be a fully rotational n-periodic simplicial pattern. Then every
symmetric pair is a discrete component of P.

Proof. By Lemma 4.3, n is even. Set n = 2k. Let (T, P, f) be the canonical model
of P. Fix e ∈ P ∩En(T ). For any x ∈ P \{e}, denote by Bx the set of all connected
components of T \ {x} that do not contain e. Such connected components will be
called outer components starting at x. Note that Bx = ∅ if and only if x ∈ En(T ).
For any outer component B starting at x, we will say that B is of even type if
B ∩ P is a union of symmetric pairs and every symmetric pair in B is a discrete
component. We will say that B is of odd type if B ∩ P is a (possibly empty) union
of symmetric pairs plus the point fk(x), that is adjacent to x, and every symmetric
pair in B is a discrete component. Since every point in P has a unique symmetric
point, it follows that

(1) for each x ∈ P \ {e}, there is at most one B ∈ Bx of odd type

and in this case |B ∩ P | is odd, while |B ∩ P | is even when B is of even type.
For a point x ∈ P \ {e}, we label by (⋆) the following property:

(⋆) given any B ∈ Bx, either B is of even type or B is of odd type.

We claim that

(2) every x ∈ P \ {e} satisfies (⋆).

Let us see that the lemma follows from this claim. Indeed, let z be the only point
of P adjacent to e. By Lemma 4.3, {e, z} is a symmetric pair. On the other hand,
(1), (2) and the fact that n− 2 is even imply that all outer components starting at
z are of even type. As a consequence, every symmetric pair is a discrete component
and the lemma follows.

To prove (2), we use a kind of topological induction. First of all (step 0 of the
induction), observe that every endpoint satisfies (⋆) by definition.

Now consider any x ∈ P \En(T ). Note that, in the set of all points of P adjacent
to x, only one belongs to the interval [e, x). The remaining points will be called
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Figure 9. Topological induction

outer neighbours of x. Observe that every outer component starting at x can be
written in terms of the outer components starting at an outer neighbour v of x as

(x, v]
⋃

B∈Bv

B.

What we will prove to complete the induction process is that, for every x ∈
P \ En(T ),

(3) if all outer neighbours of x satisfy (⋆), then x satisfies (⋆).

It is easy to see that (2) follows using (3) iteratively. Indeed, assign to each point
in P \ {e} an integer label i as follows. If x ∈ En(T ), set i = 0. Otherwise, let
i be the maximum of the cardinalities of the sets P ∩ (x, y], where y ranges over
all endpoints that do not belong to the unique connected component of T \ {x}
containing e. Note that the label of each point is the maximum of the labels of its
outer neighbours plus one. As an example, see Figure 9. The label of each point x
indicates the induction step in which one can prove, using (3), that x satisfies (⋆)
since all outer neighbours of x satisfy (⋆).

Collecting it all, to end the proof of the lemma it only remains to show that (3)
holds for any x ∈ P \ En(T ). We have to show that all outer components starting
at x have type even or odd.

Let us choose one of such outer components, (x, v]
⋃

B∈Bv
B, where v is an outer

neighbour of x. Recall (1) that at most one B ∈ Bv has odd type. Assume first
that there is one outer component of odd type starting at v. Then, (x, v]

⋃
B∈Bv

B
has even type and we are done. Assume now that all outer components from v
are even. In this case, we will show that v is the symmetric point of x. Then,
(x, v]

⋃
B∈Bv

B will be of odd type and (3) will be proved.

If v ∈ En(T ), then {v, x} is a symmetric pair by Lemma 4.3 and we are done.
Assume now that v /∈ En(T ). Set Pv :=

⋃
B∈Bv

(B ∩ P ). To prove that v is the

symmetric point of x, for any a ∈ {v} ∪ Pv we define the x-twin of a as follows:
take the unique r ∈ {1, 2, . . . , n − 1} such fr(a) = x. Then, the x-twin of a is, by
definition, fr(x). Note that if b is the x-twin of a, then a is the x-twin of b, since
fr(a) = x and fr(x) = b imply that fn−r(b) = x and fn−r(x) = a. So, it makes
sense to say that {a, b} is an x-twin pair. Note also that a itself is the x-twin of a
if and only if {a, x} is a symmetric pair.

Observe that if a ∈ {v}∪Pv and fr(a) = x, then (a, x, fr(x)) is a forward triplet
of fr if and only if fr(x) /∈ {v}∪Pv. So, from the fact that P is fully rotational we
get that the x-twin of every a ∈ {v} ∪ Pv (that is different from a unless a is the
symmetric point of x) belongs also to {v} ∪ Pv. Since |{v} ∪ Pv| is odd, it follows
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that {v} ∪ Pv is a union of x-twin pairs plus the symmetric point of x. Since we
are assuming that every component in Bv has even type, no component in Bv can
contain the symmetric point of x, and necessarily v, that is adjacent to x, is the
symmetric point of x. �

Now we are ready to prove Theorem B.

Proof of Theorem B. Let (T, P, f) be the canonical model of P, in such a way
that h(f) = h(P). To prove the “only if” part of the statement, assume that Pk

has a forward triplet. Then, h(f) > 0 by Theorem A.
To prove the “if” part of the statement, assume that P is fully rotational. That

is, for any 1 ≤ k < n, Pk has not forwards triplets. We have to show that h(P) = 0.
By Lemma 4.4, n is even and every symmetric pair is a discrete component. In
consequence, by Lemma 4.1, P is π-reducible for some basic path π, and the π-
reduced pattern Q is simplicial and has period n/2. Moreover, Q is fully rotational
by Lemma 4.2. So, we can replace P by Q and repeat the argument to get that
Q is also reducible for some basic path. It is clear that going on we obtain a finite
sequence of reductions leading to a pattern consisting of a single point. So, P is
strongly reducible and, by Theorem 2.6, its entropy is 0. �

5. Proof of Theorem C

We recall that the patternsQn are our candidates for minimum (positive) entropy
in the class of n-periodic patterns. They were defined in page 4. Recall also that
the entropy of Qn is log(λn), where λn is the unique real root of the polynomial
xn−2x−1 in (1,∞). The following result (Proposition 3.1 of [4]) summarizes some
properties of the sequence (λn)n≥3.

Proposition 5.1. Let n be a positive integer with n ≥ 3. Then:

(a) λn+1 < λn

(b) (λn)
1/k > λkn for every k ∈ N with k ≥ 2.

We need to recover also the following result (Theorem 8.1 of [4]).

Theorem 5.2. Let P be an n-periodic pattern with two discrete components. If P
has no division, then h(P) ≥ log(λn).

To prove Theorem C we need a stronger version of the previous result.

Theorem 5.3. Let P be an n-periodic pattern with two discrete components. If
h(P) > 0, then h(P) ≥ log(λn).

Proof. Let us see that we can restrict to patterns that are not π-reducible for
any basic path π. Indeed, let (T, P, f) be the canonical model of P. If P is π-
reducible for a basic path π, then let C1, C2, . . . , Cs be the connected components of
X =

⋃
i≥0⟨f i(π)⟩. By Proposition 2.4(b), the π-reduced pattern P ′ obtained from

P by collapsing every Ci to a point is s-periodic, and its entropy coincides with that
of P by Theorem 2.5. In particular, P ′ cannot have a single discrete component
because the entropy of a trivial pattern is zero. In consequence, P ′ has two discrete
components (Figure 10). Moreover, since s < n, λn < λs by Proposition 5.1(b) and
the theorem will be proved if we show that h(P ′) ≥ log(λs). It is clear that this
process can be iterated, if necessary, to finally obtain a periodic pattern with the
same entropy as P and two discrete components that is not reducible for any basic
path.

From the previous paragraph, from now on we will assume that P is not π-
reducible for any basic path π. If P has no division, then we are done by Theo-
rem 5.2. So, let us assume that P has a p-division (p ≥ 2) with respect to a discrete
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Figure 10. A 15-periodic pattern with two discrete components
and a π-reduced 5-pattern.

M3

M1
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A B

Figure 11. A 15-periodic pattern with two discrete components
and a 3-division.

component A, and let B be the other discrete component of P. By the definition of
a division, there exists {M1,M2, . . . ,Mp}, a partition of T \Int(⟨A⟩), such that each
Mi is a union of some connected components of T \ Int(⟨A⟩), f(Mi∩P ) = Mi+1∩P
for 1 ≤ i < p and f(Mp ∩P ) = M1 ∩P . Observe that all sets Mi ∩P are contained
in A, except one (we can assume that it is Mp ∩P without loss of generality), that
has the form Mp ∩ P = B ∪ C, where C is either empty or a subset of A. See
Figure 11. Now let P ′ be the pattern of (T,Mp ∩ P, fp), which is (n/p)-periodic.
We note that

(4) Every basic path of P ′ is also a basic path of P.

We claim that P ′ is not π-reducible for any basic path π. To prove the claim, as-
sume by way of contradiction that there exists π = {a, b} such that {f ip(a), f ip(b)}
is a basic path of P ′ for all i ≥ 0. Since Mj ⊂ A for 1 ≤ j < p, {f ip+j(a), f ip+j(b)}
is a basic path of P for all i ≥ 0 and 1 ≤ j < p. This fact, together with (4),
implies that {fk(a), fk(b)} is a basic path of P for all k ≥ 0 and P is π-reducible,
a contradiction that proves the claim.

Since every trivial pattern is π-reducible, from the previous claim we get that
P ′ has not one but two connected components. In particular its period, n/p, is at
least 3. Moreover,

(5) p · h(P) = p · h(f) = h(fp) ≥ h(P ′).

It is clear that if P ′ has a division, then the above procedure can be repeated
with P ′ instead of P. After a finite number of steps and using (5) iteratively, we
obtain a sequence of periodic patterns (Pi)

k
i=1 with P1 = P such that:

(1) Every Pi has two discrete components and is not reducible for any basic
path, in particular h(Pi) > 0

(2) Pi has a pi-division for 1 ≤ i < k
(3) Pk has no division
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5

6

2

7

3

1
4

PA

B

C

D

5

6

2 7

3

1

4

A ∪B

C

D

5

6

2 7

1
C ∪D

4

3

A ∪B

Q1

Q2

6

2

A

B ∪ C

3 7

1

4

D

R1

A
B ∪ C ∪D

6

2

5

3 1

4

7R2

5

Figure 12. Two possible sequences P ≥ Q1 ≥ Q2 and P ≥ R1 ≥
R2 of pull outs leading to two (different) complete openings of P
with respect to the forward triplet (4, 5, 6).

(4) The period of Pi is pi times that of Pi+1 for 1 ≤ i < k
(5) pi · h(Pi) ≥ h(Pi+1) for 1 ≤ i < k.

From (4), the period of Pk is m := n/(p1p2 · · · pk−1). Using (5) we get that
p1p2 · · · pk−1h(P) ≥ h(Pk). On the other hand, from (1), (3) and Theorem 5.3
it follows that h(Pk) ≥ log(λm). Putting all together and using Proposition 5.1(b)
yields

h(P) ≥ log(λm)
1

p1p2···pk−1 > log(λmp1p2···pk−1
) = log(λn).

�

The last ingredient we need to prove Theorem C is a tool, first introduced in
[4], that allows us to compare the entropies of two patterns P and Q when Q has
been obtained by joining together several discrete components of P. For the sake
of brevity, here we will give a somewhat informal (tough completely clear) version
of this procedure.

Let (T, P, f) be a model of a pattern P. Let x ∈ P be an inner point and let
A,B be two discrete components of (T, P ) intersecting at x. If we join together
A and B to get a new discrete component A ∪ B and keep intact the remaining
components, we get a new pattern Q. We will say that Q is a pull out of P with
respect to the inner point x and the discrete components A and B, and will write
P ≥ Q. As an example, see Figure 12, where Q1 is a pull out of P with respect to
the inner point 5 and the discrete components A = {2, 5, 6} and B = {2, 7}, while
R1 is a pull out of P with respect to the inner point 5 and the discrete components
B and C = {1, 3, 5}.

Let P be a pattern with an aligned triplet (a, b, c). A pattern Q is said to be a
complete opening of P with respect to (a, b, c) if the following conditions hold:

(1) there exists a sequence of k ≥ 1 pull outs P ≥ P1 ≥ . . . ≥ Pk = Q
(2) Q has two discrete components
(3) (a, b, c) keeps being an aligned triplet of Q

In general, there can be several complete openings with respect to an aligned triplet.
See the examples of Figure 12, whereQ2 andR2 are two different complete openings
of P with respect to (4, 5, 6).

As one may expect from intuition, the entropy of a model decreases when per-
forming a pull out, as the following result (Theorem 5.3 of [4]) states.

Theorem 5.4. Let P and Q be n-periodic patterns. If P ≥ Q then h(P) ≥ h(Q).
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We get an immediate consequence from Theorem 5.4 and property (1) of the
definition of a complete opening.

Corollary 5.5. Let Q be a complete opening of an n-periodic model P with respect
to an aligned triplet. Then, h(P) ≥ h(Q).

Summarizing, a pull out is a mechanism that allows us to reduce both the entropy
and the number of discrete components, leading to a very simple pattern with only
two discrete components when we perform a complete opening. If the aligned triplet
(a, b, c) of the definition of a complete opening is in addition a forward triplet, then
we can assure that the entropy of Q stays positive and then we can use Theorem 5.3.
This is the basic idea in the proof of Theorem C.

Proof of Theorem C. Since P is not fully rotational, there exists a forward
triplet (a, b, c) of Pk for some 1 ≤ k < n. Note that (a, b, c) is an aligned triplet of
P. Let Q be a complete opening of P with respect to (a, b, c). By Corollary 5.5,
h(P) ≥ h(Q). Thus, to prove the theorem it is enough to see that h(Q) ≥ log(λn).
Let (S,Q, g) be the canonical model of Q. By definition of a complete opening, Q
has two discrete components and (a, b, c) is an aligned triplet of Q. Equivalently, b
is the unique inner point of (S,Q) and separates a and c. Moreover, since (a, b, c)
is a forward triplet of Pk, then gk(a) = b and gk(b) = c. In consequence, (a, b, c)
is a forward triplet of gk. Thus, by Theorem A, the entropy of g, which equals
h(Q) because (S,Q, g) is a canonical model, is positive. Since Q is an n-periodic
pattern with two discrete components and positive entropy, h(Q) ≥ log(λn) by
Theorem 5.3. �
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