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Abstract

The first and second types of periodic orbits of the rotating Kepler problem can persisted for all perturbed
circular restricted three–body problem when the perturbation forces are conservative, or the perturbed
motion has its own extended Jacobian integral.

Keywords: Restricted 3−body problem, First(Second) type periodic orbits, Conservative forces, First
integral of motion

2020 MSC: 70F05 70F07, 70F15

1. Introduction

In Celestial Mechanics, the periodic orbits have a considerable importance due to the existence of direct
relation among the periodic orbits and the motion of planetary systems and most of stellar systems motion
too. Thus there are in the literature of celestial mechanics many researches on the periodic orbits. In
1897 Henri Poincaré studied the periodic orbits and he considered that the exploration of such orbits is
an important point for understanding the dynamics of the differential systems. Through his study on the
restricted three–body problem, he distinguished three classes of periodic orbits [1]:

� First the ones emerging from the circular periodic orbits of the rotating Kepler problem,

� Second the ones coming from the elliptical periodic orbits of rotating Kepler problem,

� Third the ones generated from the spatial rotating Kepler problem where the plane of motion is
inclined.

The analytical studies on such three types periodic orbits are developed in [2, 3]

In space science the importance of periodic orbits is not restricted to Celestial Mechanics only, but also
to Astrodynamics. There is a necessity for finding periodic orbits for designing different types of space
missions. For example in [4] the presence of periodic orbits of the first type is confirmed by using the small
parameter technique, when the period of a spacecraft motion and the undisturbed circular orbit of the
primaries are equal. Furthermore the obtained results can be applied for designing and ballistic analyses for
electrically powered thrusting spacecraft. Also the polar periodic orbits with π/2 inclination are employed
to observe the planet surface subjected to space mission [5, 6].

Periodic solutions or periodic orbits play outstanding roles not only in physical, mathematical, engineer-
ing systems but also in biological biosphere systems, where a paramount problem is to estimate or explore
if the automatic oscillatory activity can be continued when it is subjected to a small external effect. Many
researchers have studied the perseverance and continuation problems of the periodic orbits, although these
studies are carried out from several standpoint all of them got on the same basic outcome under an assump-
tion on the period manifold, which is so–called normal non-degeneracy, where this assumption is expressible
as a condition on the unperturbed flow over the manifold [7–13].

Using Delaunay variables the periodic orbits of second type have been investigated in [14]. The presence
of second type period orbits is developed under the perturbation secular potential for the perturbed thee–
body problem [15]. The existence of first type orbits in the framework of restricted photo–gravitational
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Guirao), jllibre@mat.uab.cat (Jaume Llibre)



four–body problem has been studied in [16]. Recently in [17] the authors have studied the resonance
transition structures using the continuation method. Then they have described how 1 : 1 resonance is
progressively overlapped in the proximity of the first order resonance through the perturbation increases.
They also proposed a technique to find these orbits as well as the transition resonance with respect to
Sun–Jupiter system. Further considerable studies on periodic orbits that would serve as an excellent guide
to the readers have been performed in [18–25]

The main result of this paper is included in the following theorem:

Theorem 1. The circular and elliptic periodic orbits of the planar rotating Kepler problem can be prolonged
to the periodic orbits of first and second type for the perturbed two–body problem and the perturbed planar
circular restricted three–body problem when the perturbation is done with conservative forces.

2. Equations of perturbed motion

We assume that the perturbed potential between two masses mi and mj can written in the following form

Γij = Gmimj

[
1

ρij
+𝟋ij(ρij , εij)

]
, (1)

where ρij is the distance between the two centers of the masses mi and mj . While 𝟋ij(ρij , εij) is the
perturbation force such that it tends to zero (infinity) when ρij tends to infinity (zero), it can be also written
as 𝟋ij(ρij , εij) = εijΥij(ρij), where Υij(ρij) is differentiable n−times with respect to ρij . In addition, εij
is a small parameter and its value depends on the kind of perturbation force.

2.1. Perturbed mean motion

Let ρρρ1 and ρρρ2 be the positions vectors of masses m1 and m2 respectively in the inertial frame, while
ρρρ12 = ρρρ2 − ρρρ1 is the relative position vector of m2 with respect to m1. In addition, let Fr (r = 1, 2) be the
force between the masses m2 and m1.

F1 = −F2 =
∂Γ12

∂ρ12
ρ̂ρρ12, (2)

where ρ̂ρρ12 is the unit vector in the direction of ρρρ12 and Γ12 is the perturbed potential experienced by the
second body and given by Eq. (1). Thus the equations of motion of the two bodies are

m1 ρ̈ρρ1 = F1,

m2 ρ̈ρρ2 = F2.
(3)

Utilizing Eqs. (1), (2) and (3) then the vectorial equation of motion of the mass m2 with respect to the first
mass m1 is

ρ̈ρρ12 = −
(
m1 +m2

m1 m2

)
∇Γ12. (4)

In 2−dimension the operator ∇ can be written in the polar coordinates (ρ12, φ) as

∇ = ρ̂ρρ12
∂

∂ρ12
+ φ̂φφ

1

ρ12

∂

∂φ
, (5)

where ρ12 is the radial distance and φ ∈ [0, 2π] is the polar angle. Of course ρ̂ρρ12 and φ̂φφ are two orthogonal
units vectors such that the first refers to the direction of the second body related to the first one and φ̂φφ
indicates to the direction of increasing the polar angle φ. Hence the vector acceleration in polar coordinates
is identified by

ρ̈ρρ12 =
(
ρ̈12 − ρ12φ̇

2
)
ρ̂ρρ12 +

d

dt

(
ρ212φ̇

)
φ̂φφ. (6)

Substituting Eqs. (5) and (6) into (4) we obtain(
ρ̈12 − ρ12φ̇

2
)
ρ̂ρρ12 +

d

dt

(
ρ212φ̇

)
φ̂φφ = − (m1 +m2)

m1 m2

∂Γ12

∂ρ12
ρ̂ρρ12. (7)

From Eq. (1) we obtain
∂Γ12

∂ρ12
= −Gm1m1

[
1

ρ212
− ε12

dΥ12

dρij

]
. (8)
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Now utilizing Eqs. (8) and (7) we get

(
ρ̈12 − ρ12φ̇

2
)
ρ̂ρρ12 +

d

dt

(
ρ212φ̇

)
φ̂φφ = −G(m1 +m1)

[
1

ρ212
− ε12

dΥ12

dρij

]
ρ̂ρρ12. (9)

Eq. (9) has particular solutions as: ρ12 = constant and φ̇ = ϖ, where ϖ is the mean motion which can be
written as

ϖ2 =
G(m1 +m1)

ρ12

[
1

ρ212
− ε12

dΥ12

dρij

]
. (10)

2.2. Perturbed three–body motion

The following vectorial equation of motion of the infinitesimal body in the framework of classical restricted
three-body problem in normalized synodic coordinates is given in [26]:

ρ̈ρρ+ 2ϖϖϖ ∧ ρ̇ρρ =∇∇∇V, (11)

where

V =
1

2
|ϖϖϖ ∧ ρρρ|2 + 1− µ

ρ1
+

µ

ρ2
. (12)

It is assumed that the universal constant of gravitation, the distance between the two primaries, the sum of
their masses and the angular velocity on the circular orbit is equal to one, see for details [26]. Thus the mass
of the massive big primary is m1 = 1−µ and the small primary is m2 = µ, with µ = m2/(m1+m2) ∈ (0, 1/2),
and that in synodical coordinates the position of the massive primary is (ξ1, η1, ζ1) = (−µ, 0, 0) and of the
small one is (ξ2, η2, ζ2) = (1 − µ, 0), while the position of the infinitesimal body is (ξ, η, ζ). Further, we
denote the magnitudes of vector ρρρ, ρρρ1 and ρρρ by ρ, ρ2 and ρ2 respectively, under these assumptions we get

ϖϖϖ = [0 0 ϖ]T ,

ρρρ1 = [(ξ + µ) η ζ]T ,

ρρρ2 = [(ξ + µ− 1) η ζ]T ,

ρρρ = [ξ η ζ]T ,

ρ̇ρρ = [ξ̇ η̇ ζ̇]T ,

(13)

here ϖ equals one and in Eqs. (13) the distances among the infinitesimal body and the primaries are

ρ21 =(ξ + µ)2 + η2 + ζ2,

ρ22 = [(ξ + µ− 1)2 + η2 + ζ2,

ρ2 = ξ2 + η2 + ζ2.

(14)

In the case that the motion of the infinitesimal body is perturbed by very small forces with respect to the
main gravitational forces of the primaries bodies the infinitesimal body will be affected by an additional
acceleration in synodic frame, which is called the perturbing acceleration A. Using Eqs. (8), (11) and (12)
the perturbed motion of the infinitesimal body in synodic frame is given by

ρ̈ρρ+ 2ϖϖϖ ∧ ρ̇ρρ =∇∇∇Ψ, (15)

where∇∇∇Ψ =∇∇∇(V +A), and A may be written as A = A1+A2+A3, here the magnitudes of the perturbing
accelerations are A1 = ε1Υ(ρ1) and A2 = ε2Υ(ρ2) due to the massive and smaller primaries respectively,
while A3 = ε3Υ(ρ). Hence Ψ will be given by

Ψ =
1

2
ϖ2(ξ2 + η2) +

1− µ

ρ1
+

µ

ρ2
+A, (16)

where ρ1 and ρ2 are given in (14), and by using Eq. (10) then the perturbed mean motion ϖ can be calculated
by

ϖ2 = 1− ε12Υ
′
12, (17)

where Υ′
12 = dΥ12/dρ12 when ρ12 = 1.
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Utilizing Eqs. (15) and (16) the three dimensional equations of motions in the cartesian synodic frame are
controlled by

ξ̈ − 2ϖη̇ =Ψξ,

η̈ + 2ϖξ̇ =Ψη,

ζ̈ =Ψζ ,

(18)

where Ψξ = ∂Ψ/∂ξ, Ψη = ∂Ψ/∂η, Ψζ = ∂Ψ/∂ζ.

Eqs. (18) represents the dynamical system of the perturbed motion of the infinitesimal body in the framework
of the spatial restricted three-body problem, when the perturbing forces are conservative. Thus, Eqs. (16)
and (17) admit a Jacobian integral of the following form

ξ̇2 + η̇2 + ζ̇2 = 2Ψ− C, (19)

where C is the Jacobian constant, which can be used to identify the real motion and the possible regions of
motion as well.

3. The Hamiltonian of perturbed motion

From [27] and using Eqs. (11) and (12), the Hamiltonian (H0) of the spatial unperturbed circular restricted
3−body problem in synodical coordinates is

H0(ξ, η, ζ,Pξ,Pη,Pζ) =
1

2
(P2

ξ + P2
η + P2

ζ ) + ηPξ − ξPη −
1− µ

ρ1
− µ

ρ2
, (20)

where (Pξ,Pη,Pζ) is the conjugate momentum of the infinitesimal body at the position (ξ, η, ζ).

While in the case that the infinitesimal body is moving under some conservative perturbing force or its
motion is governed by system (18) and admits the Jacobian integral (19), then the Hamiltonian of the
perturbed motion is given by

H(ξ, η, ζ,Pξ,Pη,Pζ) = H0(ξ, η, ζ,Pξ,Pη,Pζ) + ε12Υ
′
12 (ηPξ − ξPη) + ε1Υ(ρ1) + ε2Υ(ρ2). (21)

It is clear that the Hamiltonians (20) and (21) are equivalent in the absence of the perturbed forces.

Since the quantities ε12, ε1, ε2 and ε3 are small such that they can be written with a factor λ ≪ 1, i.e.
ε12 = λ ε̄12, ε1 = λ ε̄1, ε2 = λ ε̄2 and ε3 = λ ε̄3. In this context the Hamiltonian (21) becomes

H(ξ, η, ζ,Pξ,Pη,Pζ) =
1

2
(P2

ξ + P2
η + P2

ζ ) + ηPξ − ξPη −
1− µ

ρ1
− µ

ρ2
+O(λ). (22)

Moreover if the mass ratio µ is very small, such that µ = λ µ̄, we have that the Hamiltonian (22) becomes

H(ξ, η, ζ,Pξ,Pη,Pζ) =
1

2
(P2

ξ + P2
η + P2

ζ ) + ηPξ − ξPη −
1√

ξ2 + η2 + ζ2
+O(λ). (23)

We must take care with O(λ) because it has terms that go to infinity near the primaries; so we must exclude
a neighborhood of the primaries. When the infinitesimal body is moving in the primaries’ plane we have
that ζ = 0 and Pζ = 0, hence the Hamiltonian (23) becomes

H(ξ, η,Pξ,Pη) =
1

2
(P2

ξ + P2
η ) + ηPξ − ξPη −

1√
ξ2 + η2

+O(λ). (24)

Then equations of motion related to the Hamilton (24) will take the following form

ξ̈ =2nη̇ + n2ξ − ξ

(ξ2 + η2)
3/2

+O(λ),

η̈ =− 2nξ̇ + n2η − η

(ξ2 + η2)
3/2

+O(λ).
(25)

Note that the Hamiltonian (24) and system (25) for λ = 0 coincides with the planar Kepler problem in
a rotating reference frame.
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4. Proof of Theorem 1

In this section we study the existence of first and second type periodic orbits for the perturbed problem.
It is clear that system (25) represents Kepler motion in the rotating reference frame or the so–called rotation
Kepler problem when the parameter of mass ratio (µ equals to zero. This means that the third body or the
infinitesimal body will be moving under the effect of the gravitational field of the massive body only. In
this case, the massive body will take a place at the origin of reference frame.

We also remark that if λ = 0 the periodic solutions of system (25) are circular or elliptical orbits, namely
(ξ(t), (η(t)) when the motion of the two–body is bounded. In general, these orbits are called the first (second)
type when the unperturbed motion is represented by circular (elliptical) orbits.

We emphasize that system (25) is the same or similar to the system in [2, page 4, Eqs. (6)]. Therefore in
the case of λ = 0 (or λ ̸= 0 , but small, this means that also the parameter of mass ratio µ is very small and
µ ̸= 0) the obtained results in [2] can be applied to our system of perturbed motion (25). Hence the results
of Theorems 3.1, 3.2 and 5.1 in [2] can be applied to the perturbed circular restricted three–body motion.
These theorems will be stated and indexed in the present work as Theorems 2, 3 and 4 in Appendix A.

Furthermore the proof of Theorem 1 comes direct from the proofs of Theorems 3.1, 5.1 in [2], here Theorems
2 and 4. Thereby the circular (elliptical) periodic orbits of the planar rotating Kepler problem can be
prolonged to the periodic orbits of first (second) types for the perturbed two–body problem and also for the
perturbed restricted three–body problem by conservative perturbing forces. This means that both theorems
are satisfied when the perturbed model has a first integral or the perturbed motion has the so-called Jacobian
constant.

Now we show that Theorem 1 can be applied to many models, for example to the perturbed two–body
problem by different perturbed conservative forces, some of these models are listed in what follows:

1. Perturbed two–body problem where both bodies are oblate [28].

2. An anisotropic perturbed Kepler problem [29].

3. Relativistic effect is a source of perturbation [30].

4. Perturbed two–body problem when the main body has a continuation fraction potential [31].

While we can list also some related works for the perturbed restricted three–body problem as the following
ones:

1. Oblateness of a massive primary body is a source of perturbed force [32].

2. Oblateness of a smaller primary with the radiation of a bigger primary are sources of perturbed forces
[33].

3. Lake of sphericity of the three participated is a source of perturbed forces as well as the primaries’
radiations [34].

4. Effect of zonal harmonic coefficients (J2 and J4) of the massive body are considered [35].

5. First primary is oblate while the second is a source of radiation considered [36].

6. Effect of zonal harmonic coefficients (J2 and J4) of both primaries bodies are considered [37].

7. Both primaries are taken as triaxial rigid bodies [38].

8. Asteroids belt effect is considered as a source of a perturbation force [39].

9. Quantum corrections are considered as a source of perturbation forces [40].

The perturbed models for two and three bodies with their own first integral are not limited to the stated
in the previous two lists which are mentioned as examples.
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Appendix A. Theorems 2, 3 and 4

Theorem 2. Assume that the restricted three–body problem is perturbed through very small perturbed force
and that the perturbed system has a first integral. Also we assume that 1/(1 − nȷ3) /∈ Z where ȷ3 ̸= 1/n
and Z is the set of integer numbers. Then the periodic orbits of first type with angular momentum ȷ can be
continued to the perturbed circular restricted three–body problem.

Theorem 3. Assume that the restricted three–body problem is perturbed through a small perturbed force and
that the perturbed system has a first integral. If τ0 ̸= (l+1/2)π/n with l ∈ Z+ where Z+ is the set of positive
integers numbers and ϵ > 0 is very small, then the perturbed restricted problem has periodic orbits, which
tend to the periodic orbits of first type with τ0− period when ϵ tends to zero.

Theorem 4. Assume that I and J are prime integers, K ∈ Z where Z is the set of integers numbers and
τ = 2πI/|K|. Then the elliptical solution with τ−period for the rotating Kepler problem satisfying

g(0) = −π , l(0) = π , L3(0) = I/J,

and such that it does not cross the location of the smaller primary can be continued to the perturbed circular
restricted three–body problem when ϵ > 0 is small and its motion equations (9) (in Reference [2]) come from
equations (6) (in Reference [2]) satisfying the following invariant symmetry by (x, y, t) → (x,−y,−t).
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[3] M. T. de Bustos, A. Fernández, M. A. López, R. Mart́ınez, J. A. Vera, Periodic orbits of third kind in
the zonal j2 + j3 problem, Symmetry 11 (1) (2019) 111.
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