THE DYNAMICS OF THE RELATIVISTIC KEPLER PROBLEM

ELBAZ I. ABOUELMAGD¹, JUAN LUIS GARCÍA GUIRAO² AND JAUME LLIBRE³

ABSTRACT. We deal with the Hamiltonian system (HS) provided by the correction given by the special relativity to the motion of the two-body problem, or by the first order correction to this problem coming from the general relativity. This Hamiltonian system is completely integrable with the angular momentum C and the Hamiltonian H. We have two objectives.

First, we describe the global dynamics of the Hamiltonian system (HS) in the following sense. Let I_h and I_c are the subset of the phase space where H = h and C = c. Since C and H are first integrals, the sets I_c , I_h and $I_{hc} = I_h \cap I_c$ are invariant by the action of the flow of the Hamiltonian system (HS). We determine the global dynamics on those sets when h and c vary.

Second, recently Tudoran in [21] provided a criterion which detects when a non–degenerate equilibrium point of a completely integrable system is Lyapunov stable. Every equilibrium point q of the completely integrable Hamiltonian system (HS) is degenerate and has zero angular momentum, so the mentioned criterion cannot be applied to it. But we will show that this criterion is also satisfied when it is applied to the Hamiltonian system (HS) restricted to zero angular momentum.

1. INTRODUCTION

The Maney Hamiltonian is

$$\mathcal{H} = \frac{1}{2} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right) + \frac{a}{r} + \frac{b}{r^2},$$

where a and b are arbitrary constant. This Hamiltonian describes the motion of a two-body problem, which is governed by the potential $a/r + b/r^2$, where r is the separation distance between the two bodies.

The analysis of the motion of the two-body problems has a long story. Just after the Newton's work on the two-body gravitational problem, some discrepancies appeared between the theoretical motions of the pericenters of the planets and the observed ones. Consequently some doubts on the accuracy of the inverse square law of Newton for gravitation motivated the scientists to construct alternative gravitational models and corrections trying to reconcile these discrepancies. In fact Newton was the first in considering what we call now the Manev systems, see the book I, section IX, proposition XLIV, theorem XIV and corollary 2 of the Principia.

Several authors tried to find or construct a appropriate model with the features of the Newtonian one but with the convenient corrections in order that the orbits of planets being close to the observe ones in the solar system. There were several pre– and post–relativistic

²⁰¹⁰ Mathematics Subject Classification. Primary: 70F07, 70F15.

Key words and phrases. Relativistic Kepler problem, global dynamics, Lyapunov stability.

attempts to get such modified models. This is the case of the Manev Hamiltonian introduced by Manev in [14, 15, 16, 17]. See for more information on the two-body problem for instance [1, 2, 3, 4, 13].

The correction given by the special relativity to the motion of the two-body problem, or by the first order correction to this problem coming from the general relativity is

$$H = \frac{1}{2} \left(p_r^2 + \frac{p_\theta^2}{r^2} \right) - \frac{1}{r} - \frac{\varepsilon}{2r^2}$$

where $\varepsilon > 0$ is small, for details see [7, 8, 10, 19, 20]. Note that when $\varepsilon = 0$ we have the rotating Kepler problem, for more information on this last problem see [18].

Note that the Hamiltonian H is a particular case of the Manev Hamiltonian \mathcal{H} when a = -1 and $b = -\varepsilon/2$.

The Hamiltonian system defined by the Hamiltonian H is

(1)

$$\dot{r} = p_r, \\
\dot{\theta} = \frac{p_{\theta}}{r^2}, \\
\dot{p}_r = \frac{p_{\theta}^2 - \varepsilon}{r^3} - \frac{1}{r^2}, \\
\dot{p}_{\theta} = 0.$$

For a fixed $\varepsilon < 0$ small this Hamiltonian system has the circle of equilibria

$$\{q(\theta) = (r, \theta, p_{\theta}, p_r) = (-\varepsilon, \theta, 0, 0) : \theta \in \mathbb{S}^1\}.$$

The Hamiltonian dynamical system (1) is perfectly integrable within frame of Liouville– Arnold because it has two independent first integrals the Hamiltonian H and the angular momentum p_{θ} in involution, for more details on perfectly integrable Hamiltonian systems see [5, 6].

The objective of this paper is double. Our first objective is to describe the global dynamics of the Hamiltonian system (1) in the following sense. Let I_h , I_c are the subset of the phase space, H = h and $p_{\theta} = c$ where h c are the constants of integration. Due to the fact that H = h and $p_{\theta} = c$ are first integrals, the sets I_h , I_c and $I_{hc} = I_h \cap I_c$ are invariant under the flow of the Hamiltonian system (1). We determine the global dynamics on those sets when h and c vary. Moreover, we describe the foliation of the phase space by the invariant sets I_h , and the foliation of I_h by the invariant sets I_{hc} . See section 2.

In fact this first objective was studied inside the Manev Hamiltonian \mathcal{H} with arbitrary values of a and b, see [11], but from there it is not easy to obtain the global dynamics for the particular case a = -1 and $b = -\varepsilon/2$. We do this work here.

Second we shall show that every equilibrium point $q(\theta)$ of the Hamiltonian system (1) restricted to zero angular momentum is Lyapunov stable. But our interest in this Lyapunov stability becomes for showing that the criterion provided recently by Tudoran in [21] which detects when a non-degenerate equilibrium point of a completely integrable system is Lyapunov stable, also can be extended to the degenerate equilibrium points of the completely integrable system (1) restricted to zero angular momentum where the equilibrium points of system (1) live, see section 3.

2. On the global dynamics

2.1. Critical points and critical values. We will consider the notation and terminology of [11], as consequence, we suppose that I_h and I_c are the subset of the phase space where H = h and $p_{\theta} = c$. Science H and p_{θ} are first integrals, the sets I_h , I_c and $I_{hc} = I_h \cap I_c$ are invariant under the flow of the Hamiltonian system (1), i.e. if an orbit of the Hamiltonian system has a point on the set I_{hc} then the whole orbit is contained in this set.

Let
$$r \in \mathbb{R}^+ = (0, \infty), \ \theta \in \mathbb{S}^1, \ (p_r, p_\theta) \in \mathbb{R}^2 \text{ and } E = \mathbb{R}^+ \times \mathbb{S}^1 \times \mathbb{R}^2, \text{ where}$$

$$I_h = \{(r, \theta, p_r, p_\theta) \in E : H(r, \theta, p_r, p_\theta) = h\},$$

$$I_c = \{(r, \theta, p_r, p_\theta) \in E : p_\theta = c\}.$$

In this case the set of critical points of H is

$$\mathcal{C} = \{ (r, \theta, p_r, p_\theta) \in E : r + \varepsilon = 0, \theta \in \mathbb{S}^1 \}$$

since r > 0, then

$$\mathcal{C} = \left\{ \begin{array}{cc} \emptyset & \text{if } \varepsilon \ge 0, \\ -\varepsilon & \text{if } \varepsilon < 0. \end{array} \right\}$$

hence the critical value of H is $1/2\varepsilon$ if $\varepsilon < 0$

2.2. Hill Regions. Let E and $\mathcal{R} = \mathbb{R}^+ \times \mathbb{S}^1$ be the phase space and the configuration space of the Hamiltonian system (1), and let $\Gamma : E \to \mathcal{R}$ be the natural projection from E to \mathcal{R} . Then for each h belongs to real set \mathbb{R} , the regions of motion R_h (*Hill regions*) of I_h are defined by $\Gamma(I_h) = R_h$, for more details see [9, 11], hence

$$R_h = \{(r,\theta) \in \mathcal{R} : -\frac{1}{r} - \frac{\varepsilon}{2r^2} \le h\}$$
$$= \{r \in \mathbb{R}^+ : 2hr^2 + 2r + \varepsilon \ge 0\} \times \mathbb{S}^1.$$

Therefore, if h < 0 then R_h is homeomorphic to

(2)

$$\begin{aligned}
\emptyset & \text{if } \varepsilon < \frac{1}{2h}, \\
\left\{-\frac{1}{h}\right\} \times \mathbb{S}^{1} & \text{if } \varepsilon = \frac{1}{2h}, \\
\left[-\frac{1-\sqrt{1-2h\varepsilon}}{h}, -\frac{1+\sqrt{1-2h\varepsilon}}{h}\right] \times \mathbb{S}^{1} & \text{if } \frac{1}{2h} < \varepsilon < 0, \\
\left(0, -\frac{1+\sqrt{1-2h\varepsilon}}{h}\right] \times \mathbb{S}^{1} & \text{if } \varepsilon \ge 0.
\end{aligned}$$

If h = 0 then R_h is homeomorphic to

(3)
$$\begin{bmatrix} -\frac{\varepsilon}{2}, \infty \\ \mathbb{R}^+ \times \mathbb{S}^1 & \text{if } \varepsilon < 0, \\ \mathbb{R}^+ \times \mathbb{S}^1 & \text{if } \varepsilon \ge 0. \end{bmatrix}$$

If h > 0 then R_h is homeomorphic to

(4)
$$\begin{bmatrix} \sqrt{1-2h\varepsilon}-1\\h \end{bmatrix}, \infty \times \mathbb{S}^1 \quad \text{if } \varepsilon < 0, \\ \mathbb{R}^+ \times \mathbb{S}^1 \qquad \text{if } \varepsilon \ge 0.$$

2.3. The sets I_h . Now we determine the topology of the invariant energy levels I_h by using the fact:

$$I_h = \{ (r, \theta, p_r, p_\theta) \in E : g(r, p_r, p_\theta) = h \}$$

$$\approx \{ g^{-1}(h) \} \times \mathbb{S}^1,$$

where

$$g(r, p_r, p_{\theta}) = \frac{1}{2} \left(p_r^2 + \frac{p_{\theta}^2}{r^2} \right) - \frac{1}{r} - \frac{\varepsilon}{2r^2},$$

If h is a regular momentum value of the map $g : \mathbb{R}^+ \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ and the set of points $\{g^{-1}(h)\} \neq \emptyset$, then the set $\{g^{-1}(h)\}$ is a surface in $\mathbb{R}^+ \times \mathbb{R}^2$. Hence the intersection of $\{g^{-1}(h)\}$ with $\{r = r_0 = \text{constant}\}$, is

either an ellipse if $\frac{1}{r_0} + \frac{\varepsilon}{2r_0^2} + h > 0$,

or a point if $\frac{1}{r_0} + \frac{\varepsilon}{2r_0^2} + h = 0$,

or the empty set if $\frac{1}{r_0} + \frac{\varepsilon}{2r_0^2} + h < 0$.

; From the definition of the energy levels I_h we obtain

(5)
$$I_h = \bigcup_{(r,\theta)\in R_h} E_{(r,\theta)}$$

where

$$E_{(r,\theta)} = \{ (r,\theta, p_r, p_\theta) \in E : p_r^2 + \frac{p_\theta^2}{r^2} = \frac{1}{4r^2} \left(2hr^2 + 2r + \varepsilon \right) \}.$$

For every point $(r, \theta) \in R_h$ the set $E_{(r,\theta)}$ is an ellipse, a point or the empty set if the point (r, θ) belongs to the interior of the Hill region R_h , to the boundary of R_h , or does not belong to R_h , respectively. Therefore every energy level I_h of the planar relativistic Kepler problem is homeomorphic, from (2) and (6), to

$$\begin{split} \emptyset & \text{if } \varepsilon < \frac{1}{2h}, \\ \mathbb{S}^1 & \text{if } \varepsilon = \frac{1}{2h}, \\ \mathbb{S}^2 \times \mathbb{S}^1 & \text{if } \frac{1}{2h} < \varepsilon < 0, \\ (\mathbb{S}^2 \times \mathbb{S}^1) \setminus \mathbb{S}^1 & \text{if } 0 \leq \varepsilon, \end{split}$$

if h < 0; and from (3), (4) and (6) to

$$\begin{split} & (\mathbb{S}^2 \times \mathbb{S}^1) \setminus \mathbb{S}^1 \quad \text{if } \varepsilon < 0, \\ & \mathbb{R}^+ \times \mathbb{S}^1 \times \mathbb{S}^1 \quad \text{if } \varepsilon \ge 0, \end{split}$$

if $h \ge 0$.

2.4. The sets I_c . Since $I_c = \{(r, \theta, p_r, p_\theta) \in E : p_\theta = c\}$, we get that I_c is homeomorphic to $\mathbb{R}^+ \times \mathbb{S}^1 \times \mathbb{R}$ for all $c \in \mathbb{R}$.

2.5. The foliation of I_h by I_{hc} . We can evaluate the invariant set I_{hc} from knowing the set $\{g^{-1}(h)\}$ and

(6)
$$I_{hc} = I_h \cap I_c$$
$$= I_h \cap \{p_\theta = c\}$$
$$= (\{g^{-1}(h)\} \cap \{p_\theta = c\}) \times \mathbb{S}^1$$

Hence the foliation of I_h by I_{hc} can be described when h varies through the following cases:

Case 1: h < 0. Then the surface $g^{-1}(h)$ is the topological plane \mathbb{R}^2 of Fig. 1(a). The curves $\gamma_{hc} = \{g^{-1}(h)\} \cap \{p_{\theta} = c\}$ for each $|c| \leq c_1 = \sqrt{(2\varepsilon h - 1)/(2h)}$ are homeomorphic to:

- one component homeomorphic to \mathbb{R} if $0 \leq c \leq c_2$,
- one component homeomorphic to \mathbb{S}^1 if $c_2 = \sqrt{\varepsilon} < |c| < c_1$, and
- one component homeomorphic to a point if $|c| = c_1$.

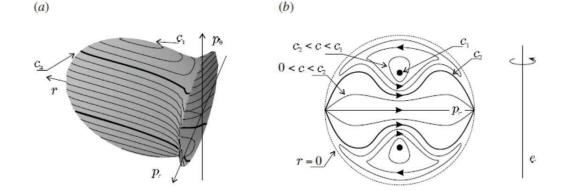


FIGURE 1. When h < 0: (a) The surface $g^{-1}(h)$. (b) Manifold I_h/\mathbb{S}^1 .

The manifold I_h is homeomorphic to a solid torus without its boundary. Hence we can find the dynamics on I_h by rotating Fig. 1(b) around the e-axis. From this figure we have

- one periodic orbit (topologically a circle) I_{hc} for $|c| = c_1$,
- one two-dimensional torus I_{hc} for $c_2 < |c| < c_1$, and
- one cylinder I_{hc} for $0 < |c| < c_2$,

which foliate I_h .

Case 2: $h \ge 0$ and $\varepsilon \ge 0$. Then $g^{-1}(h)$ is homeomorphic to a cylinder $\mathbb{R} \times \mathbb{S}^1$ see Fig. 2(a), and the curves γ_{hc} are formed by

- two components each of them homeomorphic to \mathbb{R} if c = 0, and
- one component homeomorphic to \mathbb{R} if $c \geq 0$.

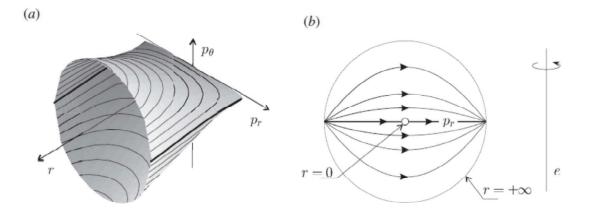


FIGURE 2. When $h \ge 0$ and $\varepsilon \ge 0$: (a) The surface $g^{-1}(h)$. (b) Manifold I_h/\mathbb{S}^1 .

The manifold I_h is homeomorphic to a solid torus without its boundary and without its central circular axis. Hence we can find the dynamics on I_h by rotating Fig. 2(b) around the e axis. From this figure we obtain one cylinder I_{hc} for every $c \in \mathbb{R} \setminus \{0\}$, and two cylinders I_{hc} for every c = 0, which foliate I_h .

Case 3: $h \ge 0$ and $\varepsilon < 0$. Now $g^{-1}(h)$ is homeomorphic to a plane \mathbb{R}^2 see Fig. 3(a), and the curves γ_{hc} are homeomorphic to \mathbb{R} .

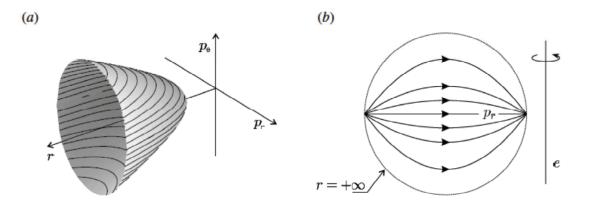


FIGURE 3. When $h \ge 0$ and $\varepsilon < 0$: (a) The surface $g^{-1}(h)$. (b) Manifold I_h/\mathbb{S}^1 .

The manifold I_h is homeomorphic to a solid torus without its boundary. The dynamics of I_h can be obtained by rotating Fig. 3(b) around the *e* axis. From this figure the foliation of I_h is done by the cylinders I_{hc} for every $c \in \mathbb{R} \setminus \{0\}$.

3. On the Lyapunov stability of the equilibria

Let $\phi_t(p)$ be the solution of a differential system (S) such that $\phi_t(p) = p$, i.e. $\phi_t(p)$ is the flow defined by the system (S). An equilibrium point q of the differential system (S) is called *Lyapunov stable* if for every open neighborhood U of q, there exists an open neighborhood

 $V \subseteq U$ of q where $\phi_t(p) \in U$ for any $p \in V$ and any $t \ge 0$. An equilibrium state which is not Lyapunov stable is called *unstable*.

For $\varepsilon < 0$ sufficiently small we restrict the dynamics of the Hamiltonian system (1) to the space $p_{\theta} = 0$, where we have the circle of equilibria $q(\theta)$ for $\theta \in \mathbb{S}^1$. Then we have the differential system

(7)
$$\begin{aligned} \dot{r} &= p_r, \\ \dot{\theta} &= 0, \\ \dot{p_r} &= -\frac{1}{r^2} - \frac{\varepsilon}{r^3}. \end{aligned}$$

This differential system is completely integrable because it has the two functionally independent first integrals

$$C_1 = \theta$$
 and $C_2 = \frac{1}{2}p_r^2 - \frac{1}{r} - \frac{\varepsilon}{2r^2}$.

According with [21] for our system (7) a non-degenerate equilibrium point is a point which satisfies that the determinant of the Hessian of the function C_2 is non-zero at that equilibrium, see Definition 3.3 of [21]. Then every equilibrium point $(-\varepsilon, \theta, 0)$ of system (7) is degenerate, because the determinant of the Hessian of the function C_2 at this equilibrium is zero. Indeed, the mentioned Hessian is

(8)
$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ \frac{1}{\varepsilon^3} & 0 & 0 \end{pmatrix} \Big|_{(r,\theta,p_r)=(-\varepsilon,\theta,0)},$$

and clearly its determinant is zero.

In [21] to a non-degenerate equilibria q is associated a real number I(q) as follows. If P(x) is the characteristic polynomial defined by the linear part of the complete integrable differential system at q, then $P(x) = (-x)^{n-2}(x^2 + I(q))$ where n is the dimension of the differential system, see Theorem 5.4 of [21].

In Theorem 5.4 of [21] it is also shown that a non-degenerate equilibrium point q is unstable if I(q) < 0, and in Theorem 5.6 it is proved that a non-degenerate equilibrium point q is Lyapunov stable if I(q) > 0.

From (8) the characteristic polynomial of the linear part of system (7) at the equilibrium is $(-\varepsilon, \theta, 0)$ is

$$\lambda\left(\lambda^2 - \frac{1}{\varepsilon^3}\right).$$

So applying the Turoban criterium (which in fact we cannot apply because the equilibrium $(-\varepsilon, \theta, 0)$ is degenerate) we obtain that

(9)
$$I(-\varepsilon, \theta, 0) = -\frac{1}{\varepsilon^3} > 0.$$

because $\varepsilon < 0$, and by the mentioned criterium the equilibrium $(-\varepsilon, \theta, 0)$ would be Lyapunov stable.

Now we shall prove that really the equilibrium point $(-\varepsilon, \theta, 0)$ is Lyapunov stable for all $\theta \in \mathbb{S}^1$. Consequently we have proved that the criterion of Tudoran also works for the degenerate equilibrium points of the completely integrable system (7).

We note that we cannot apply the so-called "Arnol'd stability test" to the equilibrium $(-\varepsilon, \theta, 0)$ because the second condition of that test does not hold, see the statement of this test in Theorem 5.5 of [21]. From the differential system (7) it is clear that the variable θ is

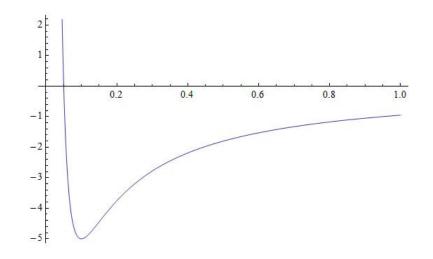


FIGURE 4. The graphic of the potential $V(r) = -1/r - \varepsilon/r^2$ for $-\varepsilon = 1/10$.

constant for any solution. So for studying the Lyapunov stability at an equilibrium $(-\varepsilon, \theta, 0)$ of system (7) we can restrict to study it at the equilibrium $(-\varepsilon, 0)$ of the Hamiltonian system with one degree of freedom

(10)
$$r = p_r,$$
$$\dot{p}_r = -\frac{1}{r^2} - \frac{\varepsilon}{r^3}$$

with Hamiltonian C_2 . Since the potential $V(r) = -1/r - \varepsilon/r^2$ of system (10) has the graphic of the Figure 4, and the minimum of this graphic takes place at $r = -\varepsilon$, recall that $\varepsilon < 0$ is fixed and small, it follows that the equilibrium point $(-\varepsilon, 0)$ of system (10) is a center, i.e. all the orbits in a convenient neighborhood of it are periodic with the exception of the equilibrium point (see [12] for more information). Hence given any neighborhood U of $(-\varepsilon, 0)$ in the plane (r, p_r) there is another neighborhood $V \subseteq U$ of $(-\varepsilon, 0)$ formed by sufficiently small periodic orbits surrounding the point $(-\varepsilon, 0)$, and consequently contained in U. Hence the equilibrium point $(-\varepsilon, 0)$ is Lyapunov stable for system (10), and consequently for the system (7).

In summary, we have proved that the degenerate equilibrium points of the completely integrable system (7) satisfies the Tudoran criterion (see (9)) and are Lyapunov stable.

Acknowledgements

The third author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grant MTM2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

- [1] E.I. ABOUELMAGD, J.L.G. GUIRAO AND J. LLIBRE, *Periodic Orbits of the Planar Anisotropic Kepler Problem*, International Journal of Bifurcation and Chaos, **27(3)**, (2017),1750039 (6 Pages).
- [2] E.I. ABOUELMAGD, S.M. ELSHABOURY AND H.H. SELIM, Numerical integration of a relativistic twobody problem via a multiple scales method, Astrophysics and Space Science, **361(1)**, (2016), 38 (10 Pages).
- [3] E.I. ABOUELMAGD, D. MORTARI AND H.H. SELIM, Analytical study of periodic solutions on perturbed equatorial two-body problem, International Journal of Bifurcation and Chaos, **25(14)**, (2015),1540040.
- [4] E.I. ABOUELMAGD, Periodic Solution of the Two-Body Problem by KB Averaging Method Within Frame of the Modified Newtonian Potential, The Journal of the Astronautical Sciences, **65** (3), (2018) 291–306
- [5] V.I. ARNOL'D, Mathematical Methods of Classical Mechanics, 60, Springer-Verlag, 1978.
- [6] V.I. ARNOL'D, V.V. KOZLOV AND A.I. NEISHTADT, Mathematical aspects of classical and celestial mechanics, [Dynamical systems. III], Encyclopaedia of Mathematical Sciences, 3, Third edition. Springer-Verlag, Berlin, 2006.
- [7] P. G. BERGMANN, Introduction to the Theory of the Relativity, Dover, New York, 1976.
- [8] J. CASASAYAS, J. LLIBRE AND A. NUNES, A perturbation of the relativistic Kepler problem, in Predictability, Stability and Chaos in N-body Dynamical Systems, Ed. A. Roy, Plenum P., 1991, pp 547–554.
- M.P. DANTAS AND J. LLIBRE, The Global Phase Space for the 2- and 3-Dimensional Kepler Problems, Qual. Theory Dyn. Syst. 8 (2009), 45–205.
- [10] E. LACOMBA, J. LLIBRE AND A. NUNES, Invariant tori and cylinders for a class of perturbed Hamiltonian systems, in "The Geometry Hamiltonian Systems", Ed. T. Ratiu, Sciences Research Institute Publications 22, Springer-Verlag, Berlin, 1991, 373–385 pp.
- [11] J. LLIBRE, A.E. TERUEL, C. VALLS AND A. DE LA FUENTE, Phase portraits of the Manev systems, J. of Physics A: Math. Gen. 34 (2001), 1919–1934.
- [12] J. LLIBRE, Centers: their integrability and relations with the divergence, Applied Mathematics and Nonlinear Sciences 1 (2016), 79–86.
- [13] J. LLIBRE AND C. VALLS, Periodic orbits of the planar anisotropic generalized Kepler problem, J. Mathematical Physics 60 (2019), 042901-pp 5.
- [14] G. MANEFF, La gravitation et le principe de l'égalité de l'action et de la réaction, Comptes rendus 178 (1924), 2159–2161.
- [15] G. MANEFF, Die Gravitation und das Prinzip von Wirkung und Gegenwirkung, Zeitschrift f
 ür Physik 31 (1925), 786–802.
- [16] G. MANEFF, Le principe de la moindre action et la gravitation, Comptes rendus 190 (1930), 963–965.
- [17] G. MANEFF, La gravitation et l'énergie au zéro, Comptes rendus 190 (1930), 1374–1377.
- [18] K.R. MEYER, G.R. HALL AND D. OFFIN, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Applied Mathematical Sciences **90**, Second Edition, Springer-Verlag, 2009.
- [19] D. PARK, Classical Dynamics and its quantum analogues, Lecture Notes in Physics 110, Springer-Verlag, New York, 1979.
- [20] W. THIRRING, A Course in Mathematical Physics I, Classical Dynamical Systems, Springer-Verlag, New York, 1978.
- [21] R.M. TUDORAN, A stability criterion for non-degenerate equilibrium states of completely integrable systems, J. Differential Equations 263 (10) (2017), 6731–6763.

¹ Nonlinear Analysis and Applied Mathematics Research Group

(NAAM), MATHEMATICS DEPARTMENT, FACULTY OF SCIENCE, KING ABDULAZIZ UNIVERSITY, JED-DAH, SAUDI ARABIA 2 CELESTIAL MECHANICS UNIT, ASTRONOMY DEPARTMENT, NATIONAL RESEARCH INSTITUTE OF ASTRONOMY AND GEOPHYSICS (NRIAG). HELWAN–11421, CAIRO, EGYPT.

E-mail address: eabouelmagd@gmail.com or elbaz.abouelmagd@nriag.sci.eg

² Departamento de Matemática Aplicada y Estadística. Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain.

E-mail address: juan.garcia@upct.es

 $^{3}\mathrm{Departament}$ de Matemàtiques. Universitat Autònoma de Barcelona, Bellaterra, 08
193-Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat