New Advances on the Lyapunov Constants of Some Families of Planar Differential Systems

Iván Sánchez-Sánchez and Joan Torregrosa

Abstract

This note presents some advances regarding the Lyapunov constants of some families of planar polynomial differential systems, as a first step toward the resolution of the center and cyclicity problems. First, a parallelization approach is computationally implemented to achieve the 14th Lyapunov constant of the complete cubic family. Second, a technique based on interpolating some specific quantities so as to reconstruct the structure of the Lyapunov constants is used to study a Kukles system, some fifth-degree homogeneous systems, and a quartic system with two invariant lines.

1 Introduction

Let us consider a real polynomial differential system in the plane with some parameters, $\lambda \in \mathbb{R}^{d}$, written in complex coordinates as

$$
\left\{\begin{array}{l}
\dot{z}=i z+Z(z, w, \lambda), \tag{1}\\
\dot{w}=-i w+W(z, w, \lambda),
\end{array}\right.
$$

where $w=\bar{z}$ and $Z(z, w, \lambda), W(z, w, \lambda)=\bar{Z}(z, w, \lambda)$ are polynomial perturbations having neither linear nor constant terms in z, w. The center problem consists in identifying whether the origin of (1) is a center or a focus, when the origin is a

[^0]
[^0]: This work has been realized thanks to the Spanish Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación grant numbers MTM2016-77278-P (FEDER) and FPU16/04317; the Catalan AGAUR grant number 2017 SGR 1617; and the Marie SkłodowskaCurie European grant agreement H2020-MSCA-RISE-2017-777911.
 I. Sánchez-Sánchez (\triangle) • J. Torregrosa

 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
 e-mail: isanchez@mat.uab.cat
 J. Torregrosa
 e-mail: torre@mat.uab.cat

