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ON THE CONFIGURATIONS OF THE SINGULAR POINTS

AND THEIR TOPOLOGICAL INDICES FOR THE SPATIAL

QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND CLAUDIA VALLS2

Abstract. Using the Euler-Jacobi formula there is a relation between
the singular points of a polynomial vector field and their topological
indices. Using this formula we obtain the configuration of the singular
points together with their topological indices for the polynomial differ-
ential systems ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z) with degrees
of P , Q and R equal to two when these systems have the maximum num-
ber of isolated singular points, i.e., 8 singular points. In other words we
extend the well-known Berlinskii’s Theorem for quadratic polynomial
differential systems in the plane to the space.

1. Introduction and statement of the main results

Consider in R3 the polynomial differential systems

(1) ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z),

where P (x, y, z), Q(x, y, z) and R(x, y, z) are real polynomials of degrees 2,
called spatial quadratic polynomial differential system, or simply quadratic
systems in what follows.

The motivation of our paper comes from the fact that for the planar
quadratic polynomial differential systems the characterization of all config-
urations of the (topological) indices of the singular points of these systems
having four singular points is the well-known Berlinskii’s Theorem proved
in [2, 7] and reproved in [5] using the Euler-Jacobi formula. More precisely,
the Berlinskii’s Theorem can be stated as follows: Assume that a real pla-
nar quadratic polynomial differential system has exactly four real singular
points. In this case if the quadrilater formed by these points is convex, then
two opposite singular points are anti-saddles (i.e. nodes, foci or centers) and
the other two are saddles. If this quadrilater is not convex, then either the
three exterior vertices are saddles and the interior vertex is an anti-saddle
or the exterior vertices are anti-saddles and the interior vertex is a saddle.
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We recall that four points form a convex quadrilater if and only if none
of the four points is contained in the convex hull of the other three.

We want to extend the Berlinskii’s Theorem from the plane to the space,
i.e., we shall obtain all the configurations of the singular points and their
topological indices for the quadratic systems in R3 having 8 singular points.

We recall that if the degree of R is one (that is, if R is a polynomial of
degree 1) then the following theorem holds. Assume that a real spatial poly-
nomial differential system of degrees (2, 2, 1) has exactly four real singular
points. In this case the four singular points are in a plane of R3 (not nec-
essarily invariant) and on this plane Berlinskii’s Theorem holds, that is, if
the quadrilater formed by these points is convex, then two opposite singular
points have index 1 and the other two have index −1. If this quadrilater
is not convex, then either the three exterior vertices have index −1 and the
interior vertex has index 1, or the exterior vertices have index 1 and the in-
terior vertex has index −1. The proof is essentially the same as Berlinskii’s
theorem. This result was also observed in [5]. So we will consider the case
in which the degrees are (2, 2, 2).

Assuming that the quadratic system (1) has 8 singular points, then using
the Euler-Jacobi formula we shall obtain the configuration of the singular
points and their topological indices.

If the number of singular points of a spatial quadratic polynomial differen-
tial system (1) is finite, then it is at most 8, see for more details the Bézout’s
Theorem (for a proof of this theorem see [18]). When all the singular points
have multiplicity one we can apply the Euler-Jacobi formula (see [1] for a
proof of a such formula). If system (1) has exactly 8 singular points, then
the Jacobian determinant

J =

∣∣∣∣∣∣
∂P/∂x ∂P/∂y ∂P/∂z
∂Q/∂x ∂Q/∂y ∂Q/∂z
∂R/∂x ∂R/∂y ∂R/∂z

∣∣∣∣∣∣
evaluated at each singular point does not vanish, and for any polynomial S
of degree less than or equal to 2 we have

(2)
∑
a∈A

S(a)

J(a)
= 0,

where A is the set of singular points of system (1). Given a finite subset of

points B of R3, we denote by B̂ its convex hull,by ∂B̂ the boundary of B̂,
and by #B the cardinal of B.

Set A0 = A ∩ ∂Â and for i ≥ 1 Ai = A ∩ ∂( ̂A \ (A0 ∪ · · · ∪Ai−1)) for
i = 1, 2, . . .. Clearly since A is finite there is an integer q such that Aq+1 = ∅
and Aq 6= ∅.
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We say that A has the configuration (K0;K1;K2; . . . ;Kq) where Ki =
#Ai. We say that the singular points of system (1) which belong to Ai are
on the i-th level.

We recall that if we assume that #A = 8 then the Jacobian determinant
J is non-zero at any singular point of system (1), and that the topological
indices of these singular points are 1 (respectively −1) if J > 0 (respectively
J < 0) (for more details see [17, 12]).

Our main result is the extension of Berlinskii’s Theorem to the quadratic
systems (1) having 8 singular points, see Theorem 5.

2. Preliminary results

First of all we observe that if a configuration exists for a polynomial vector
field X with degrees (2, 2, 2) and #A = 8, then it is possible to construct the
same configuration but changing the sign of all the indices of the singular
points, i.e. the points with index +1 become with index −1 and vice versa.
For doing that it is enough to take the vector field Y = (−P,Q,R) instead
of the vector field X = (P,Q,R).

In the proof of Theorem 5 we will denote by {p1, . . . , p8} the set of points
of A. If the index of pk is +1 we shall denote it by p+k , and similarly for p−k .
Also we will denote by Πijk the plane Πijk(x, y, z) = 0 through the three
points pi, pj and pk where i, j, k ∈ {1, . . . , 8}. We note that three singular
points of a polynomial differential system (1) of degree (2, 2, 2) having 8
singular points cannot be collinear, otherwise the straight line containing
them is a factor of the polynomials P , Q and R, in contradiction that system
(1) has exactly 8 singular points.

Proposition 1. Let X = (P,Q,R) be a polynomial differential system in R3

with finitely many singular points and with max(degP,deg Q,degR) = n.
Then, any plane cannot contain more than n2 singular points.

Proof. Note that the polynomial system P = Q = R = 0 restricted to
a plane is a polynomial system in R2 with degree n, and so by Bézout’s
Theorem it cannot contain more than n2 singular points in this plane. �

In our case since n = 2 we cannot have more than four singular points in
any plane of a quadratic system (1).

Proposition 2. Let X = (P,Q,R) be the vector field associated to the qua-
dratic system (1) with 8 singular points. If four of these singular points are
contained in a plane, then the other four singular points are also contained
in a plane.

Proof. By Proposition 1 we know that at most four singular points of the
vector field X are contained in a plane. Assume that four singular points
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p1, . . . , p4 are in a plane and the remaining singular points p5, . . . , p8 are
not contained in a plane. Without loss of generality we can assume that p8
is not contained in the plane generated by {p5, p6, p7}. Then applying the
Euler-Jacobi formula (2) with the polynomial S = Π123Π567 we reach to a
contradiction. Indeed, we have

8∑
i=1

Π123(pi)Π567(pi)

J(pi)
=

Π123(p8)Π567(p8)

J(p8)
= 0,

so Π123(p8)Π123(p8) = 0. Since Π123(p8) 6= 0, otherwise five singular points
will be contained in a plane, we have that Π567(p8) = 0 in contradiction
that the singular point p8 was assumed that it is contained in the plane
Π567(x, y, z) = 0 generated by the three singular points {p5, p6, p7}. �

From Proposition 2 it follows immediately the next corollary.

Corollary 3. If a quadratic system (1) has 8 singular points, then they
must satisfy one of the following two conditions.

(i) Four singular points are contained in a plane and the other four
singular points are also contained in another plane.

(ii) In any plane there are at most three singular points of the eight
possible. Then all the faces of the polyhedron of the convex hull of
the eight singular points are triangles.

The next result follows from the theory of the topological index, see [3].

Proposition 4. The topological index of an isolated singular point of system
(1) remains constant under sufficiently small continuous perturbations of the
coefficients of system (1).

2.1. Polyhedra with 4, 5, 6, 7 and 8 vertices. A graph is a pair (V,E)
where V is a set whose elements are called vertices and E is a set of two-sets
vertices, whose elements are called edges.

A planar graph is a graph that can be embedded in a plane, i.e. it can
be drawn on the plane in such a way that its edges intersect only at the
endpoints, which are vertices.

A 3-connected planar graph is a connected graph having more than 3
vertices whenever fewer than 3 vertices are removed.

An n-polyhedral graph is a 3-connected planar graph on n vertices. Every
convex polyhedron can be represented in the plane by a 3-connected planar
graph. This can be done enlarging one of the faces of the convex polyhedron
and projecting on it the other faces. Conversely, by a theorem of Steinitz
(see [19, 20]) as restated by Grünbaum (see p. 235 of [13]), every 3-connected
planar graph can be realized as a convex polyhedron (see [10]).
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The number of distinct polyhedral graphs having 4, 5, 6, 7 and 8 vertices
are 1, 2, 7, 34 and 257 (see p. 424 of [13] and [8, 9, 10]). In Figure 1
we provide the n-polyhedral graphs for n = 4, 5, 6, 7 which provide all the
polyedra with vertices 4, 5, 6, 7. We do not provide the 257 8-polyhedral
graphs, but for instance they are given in [13] or in
http://mathworld.wolfram.com/OctahedralGraph.html.

We note that polyhedral graphs are sometimes simply known as polyhe-
dra, as we do in Figure 1 and when it would be convenient.

2.2. Possible polyhedra for the convex hull of the 8 singular points
of a quadratic system. Note that any configuration of the form (3; ∗)
cannot occur because three points determine a plane and then its convex
hull is a triangle so the other 5 points must be in the interior of the triangle,
and therefore the 8 points must be on a plane contradicting Proposition 1.
Clearly, the configurations (2; ∗) and (1; ∗) also cannot occur.

For the configuration of the form (4; 3; 1) proceeding as we did for the
case (3; ∗) we have that the four points in the first and second levels must
be in a plane, but then in view of Proposition 2 the four points in the 0 level
must also be in the same plane contradicting Proposition 1. So this case
is also not possible. The configuration (4; 2; 2) is not possible because the
four singular points of the first and second level are collinear and we have
seen that this is not possible. The configuration (5; 2; 1) is also non possible
because the three singular points in the first and second levels are collinear.

In short the possible configurations are (8), (7; 1), (6; 2), (5; 3) and (4; 4).
Moreover, in view of Proposition 1 the previous configurations of the form
(K; ∗) cannot have the K points in a plane.

We numerate the 34 convex polyhedra with seven vertices of Figure 1(d)
from 1 to 34 starting from the first polyhedron on the left hand side of the
first row of Figure 1(d). We also numerate the 7 convex polyhedra with six
vertices of Figure 1(c) from 1 to 7 starting from the first polyhedron on the
left hand side of the first row of Figure 1(c). In a similar way we numerate
the convex polyhedra with five vertices.

Using Corollary 3 we have the following possible polyhedra for the convex
hull of the 8 singular points of a quadratic system (1) when these 8 points
are in the boundary of the convex hull, i.e. for the configuraion (8):

(8)(i) If there is a plane containing four singular points we have the follow-
ing four possibilities for the polyhedron defined by the convex hull
of the eight vertices.

(8)(i.1) A quadrilateral-quadrilateral prism is a prism with two convex
quadrilater bases which do not share any edge, the lateral faces
can be triangles or quadrilaters, these polyhedra have eight ver-
tices.
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(a) The polyhedron
with 4 vertices.

(b) The polyhedra with 5 vertices.

(c) The polyhedra with 6 vertices.

(d) The polyhedra with 7 vertices.

Figure 1. All convex polyedra with 4, 5, 6 and 7 vertices.

(8)(i.2) A quadrilateral-triangular prism is a prism with a convex quadri-
later and a triangle as bases (the triangle of the bases has a
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singular point in its interior), the lateral faces are triangles or
quadrilaters, these polyhedra have seven vertices. Then, from
Figure 1(d) these polyhedra are one of the following 8, 9, 10, 14,
17, 19, 20, 30 and 32 of Figure 1(d).

(8)(i.3) A triangular-triangular prism is a prism with two triangular
bases containing each base a singular point in its interior, the
lateral faces are triangles or quadrilaters, these polyhedra have
six vertices, see the polyhedra 5 and 6 of Figure 1(c).

(8)(i.4) A tetrahedron with a point in the interior of the four triangles
of its faces, of course this tetrahedron has four vertices.

(8)(ii) If there is not a plane containing four singular points, then it is a
polyhedron with twelve triangular faces, eighteen edges and eight
vertices.

Applying the Euler-Jacobi formula (2) with the polynomial S equal to
the product of a plane containing four vertices of a face of the polyhedron
with 7 vertices, with the plane determined by the remainder 3 vertices, we
obtain that the polyhedra 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 ,12 ,13 ,14 ,15 ,17 , 19,
20, 21, 23, 24, 25, 26, 27, 29, 30 and 32 of Figure 1(d) cannot be a convex
hull of type (7; 1). Since the polyhedra 5, 22 and 34 of Figure 1(d) have a
face with more than 4 vertices by Proposition 1 they cannot be the convex
hull of type (7; 1). Therefore the unique possible polyhedra of type (7;1) are

(7;1) the polyhedra 16, 18, 28, 31 and 33 of Figure 1(d), which have ten
triangular faces, fifteen edges and seven vertices. The singular point
which is not a vertex of this polyhedra is contained in the interior
of the polyhedra.

We analyze the convex hulls of type (6;2).

(6;2)(i) If there is a plane containing four singular points, then we have four
possibilities.

(6;2)(i.1) A quadrilateral bipyramid is formed by two pyramids glued by
the same quadrilateral base in such a way that the two vertices
of the two pyramids and the two points in the 1st level are in
the same plane, again by Proposition 2. See the polyhedron 5
of Figure 1(c). Note that in the polyhedron 5 we have projected
the quadrilateral bipyramid in a lateral triangular face.

(6;2)(i.2) A quadrilateral-edge pyramid is a pyramid with a convex quadri-
lateral as base and instead of a vertex the pyramid has an edge
E, see the polyhedra 2 and 3 of Figure 1(c). The two singular
points in the interior of these polyhedra and the edge E are
contained in a plane due to Proposition 2.

(6;2)(i.3) A triangular-edge pyramid is a pyramid with a triangular base
having in the interior an additional singular point and instead
of a vertex the pyramid has an edge E, see the polyhedron 1
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of Figure 1(c). The two singular points in the interior of this
polyhedron and the edge E are contained in a plane due to
Proposition 2.

(6;2)(i.4) A truncated triangular pyramid it has two triangular bases with
one singular point in the interior of each triangle, see the convex
polyhedron 6 of Figure 1(c). The two singular points in the
interior of this polyhedron must be in the same plane than each
one of the lateral edges of this polyhedron due to Proposition
2.

(6;2)(ii) If there is no a plane containing four singular points, then it must
be a polyhedron with eight triangular faces, twelve edges and six
vertices, see the polyhedra 4 and 5 of Figure 1(c).

We note that the polyhedra 7 cannot be a convex hull of type (6;2) due to
the existence of a pentagon.

Now we study the polyhedra which are convex hull of type (5;3).

(5;3)(i) If there is a plane containing four singular points, then a quadrilateral
pyramid is a pyramid with a quadrilateral base in such a way that
the vertex of the pyramid which is not contained in the base is in
the plane generated by the three points in the 1st level, see the
polyhedron 2 of Figure 1(b).

(5;3)(ii) If there is not a plane containing four singular, then it must be a
triangular bipyramid which is formed by two pyramids glued by the
same triangular base in such a way that the two vertices of the two
pyramids and the three points in the 1st level never are more than
three in the same plane. This polyhedron has six triangular faces,
nine edges and five vertices. See the polyhedron 1 of Figure 1(b).

Finally the polyhedron which is a convex hull of type (4;4) is:

(4;4) A tetrahedron such that the four points in the 1st level are not con-
tained in a plane, and never four of the eight singular points are
contained in a plane.

If one of the fourteen previous described possible convex hulls of the 8
singular points of a quadratic system (1) is realizable, in what follows we
will only say that the corresponding polyhedron is realizable.

3. The main result

We denote by i(a) the (topological) index of a singular point a ∈ A of
the quadratic system (1). It was proved in [15] that for a quadratic system
(1) either

∑
a∈A iX(a) = 0, or |

∑
a∈A iX(a)| = 2. Our main result is the

following.
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Theorem 5. For quadratic systems (1) having 8 singular points the follow-
ing polyhedra are realizable.

(8)(i.1) If a quadrilateral-quadrilateral prism is realizable, then the indices in
the two quadrilaters of the bases are 1,−1, 1,−1 in counterclockwise
sense.

(8)(i.3) If a triangular-triangular prism is realizable, then the indices of the
vertices of the two triangular bases are 1, 1, 1 and −1,−1,−1, and the
indices of the interior singular point at every one of these triangles
is different from the ones of the vertices of the triangle.

(8)(ii) The configuration of the indices of the vertices of a polyhedron with
twelve triangular faces, eighteen edges and eight vertices realizable
by a quadratic system can be obtained as follows. Take two triangu-
lar faces without intersection, then the two remaining vertices have
different index. Repeating this for every pair of triangular faces with-
out intersection the configuration of the indices of this polyhedron is
obtained.

(6;2)(i.1) If a quadrilateral bipyramid is realizable, then the indices of the
quadrilater of the basis are 1, 1,−1 − 1 in counterclockwise sense,
the indices of the two vertices outside the quadrilateral are different,
and the indices of the two interior singular points are different.

(6;2)(i.2) If a quadrilateral-edge pyramid is realizable, then the indices of the
quadrilater of the basis are 1, 1,−1,−1 in counterclockwise sense, the
indices of the two vertices of the edge E are different and the indices
of the two interior points are also different.

(6;2)(i.3) If a truncated triangular pyramid is realizable, then the indices of the
vertices of the two triangular bases are 1, 1, 1 and −1,−1,−1, and
the indices of the two interior points of the pyramid are different.

(6;2)(ii) If the polyhedra 4 and 5 of Figure 1(c) are realizable, then the indices
of two triangular faces without intersection are 1, 1, 1 and −1,−1,−1,
and the indices of the two interior singular points of the polyhedra
are different.

(5;3)(i) If a quadrilateral pyramid is realizable then it has the following two
possible configurations of indices. First the indices of the vertices of
the quadrilateral basis are 1, 1, 1,−1, the vertex of the pyramid which
is not contained in the basis has index −1, and the three interior
singular points have indices 1,−1,−1; of course we can reverse all
the signs of these indices. Second the indices of the vertices of the
quadrilateral basis are 1, 1,−1,−1 in counterclockwise, the vertex of
the pyramid which is not contained in the basis has index 1, and the
three interior singular points have indices 1,−1,−1; of course we
can reverse all the signs of these indices.

(5;3)(ii) If a triangular bipyramid is realizable, then it has the following three
possible configurations of indices. First the indices of the three ver-
tices of the triangular base (where both pyramids are glued) are 1, 1,
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1, the indices of the two vertices of the bipyramid which are not in
the triangular base are −1,−1, and the three interior singular points
have indices 1,−1,−1; of course we can reverse all the signs of these
indices. Second the indices of the three vertices of the triangular base
(where both pyramids are glued) are 1, 1, −1, the indices of the two
vertices of the bipyramid which are not in the triangular base are
1,−1, and the three interior singular points have indices 1,−1,−1;
of course we can reverse all the signs of these indices. Third the
indices of the triangular base are 1,−1,−1, the indices of the two
vertices are 1, 1 and the three interior singular points have indices
1,−1,−1; of course we can reverse all the signs of these indices.

(a) There are quadratic systems (1) realizing the configurations of the
indices of all the previous statements.

(b) The polyhedra of (8)(i.2), (8)(i.4), (7; 1), (6; 2)(i.3) and (4; 4) are
not realizable.

Proof of statement (8)(i.1). Let Q1 and Q2 be the two quadrilaters of the
bases of the quadrilateral-quadrilateral prism. Let Π1 be a plane containing
Q1. Let Π2 be a plane through an edge of Q2 containing only this edge
of the quadrilateral-quadrilateral prism. Applying the Euler-Jacobi formula
(2) with S = Π1Π2 we get that the two remaing vertices of Q2 must have dif-
ferent index. Repeating this process for every edge of Q1 and Q2 statement
(8)(i.1) follows. �

Take P = x2 − x, Q = y2 − y and R = z2 − z. Then the quadratic
system (1) has the singular points (0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1),
(1, 0, 1), (1, 1, 1) and (0, 1, 1), and their indices are −1, 1,−1, 1, 1,−1, 1 and
−1, respectively. So the configuration (8)(i.1) is realizable.

Proof of statement (8)(i.3). Let Q1 and Q2 be the two triangles of the bases
of the triangular-triangular prism, and let p1 and p2 be the singular points
at the interior of the triangles Q1 and Q2 respectively. Let Π1 be the plane
containing Q1. Let Π2 be a plane defined by an edge of Q2 containing
only this edge of the triangular-triangular prism. Applying the Euler-Jacobi
formula (2) with S = Π1Π2 we get that the remaining vertex of the triangle
Q2 and p2 must have different index. Repeating this process for every edge
of Q2 we obtain that the three vertices of Q2 have the same index different
from the index of p2. Doing a similar process for Q1 we obtain that the three
vertices of Q1 have the same index different from the index of p1. Taking
into account that the absolute value of the sum of all the indices of the
singular points is 0 or 2, the indices of the vertices of Q1 are different from
the indices of the vertices of Q2. �

Take P = −2x− 2xy + xz, Q = −4x2 − 2y + 2y2 + yz and R = −z + z2.
Then the quadratic system (1) has the singular points (−1,−1, 0), (1,−1, 0),
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(0, 1, 0), (−1/2,−1/2, 1), (1/2,−1/2, 1), (0, 1/2, 1), (0, 0, 0) and (0, 0, 1), and
their indices are 1, 1, 1,−1,−1,−1,−1 and 1, respectively. So the configu-
ration (8)(i.3) is realizable.

Proof of statement (8)(ii). Let Π1 and Π2 the two planes defined by two
triangular faces without intersection, then applying the Euler-Jacobi formula
with S = Π1Π2 we get that the two remaining vertices of the polyhedron
have different index. Repeating this for every pair of triangular faces without
intersection the configuration of the indices of this polyhedron is obtained.
Note that in this way we can describe the configuration of the indices of
the vertices of all the polyhedra with twelve triangular faces, eighteen edges
and eight vertices realizable by the quadratic systems. In what follows we
provide an example. �

Take P = 6 + z − 6x2 − 6y2 − z2, Q = y − 2y2/
√

3 − 2yz and R =
3
√

3x2 −
√

3y2 + x(6y + 3
√

3(−1 + 2z)). Then the quadratic system (1)
has the singular points (1, 0, 0), (1/2,

√
3/2, 0), (−1/2,

√
3/2, 0), (−1, 0, 1),

(−1/2,−
√

3/2, 1), (1/2,−
√

3/2, 1), (0, 0, 3) and (0, 0,−2), and their indices
are −1, 1,−1, 1,−1, 1,−1 and 1, respectively. So this quadratic system re-
alize a configuration (8)(ii).

Proof of statement (6; 2)(i.1). Let p7 and p8 be two interior points of a
quadrilateral bipyramid, and pk for k = 1, 2, 3, 4 the vertices of the quadri-
lateral base of the bipyramid ordered in counterclockwise sense. The two
vertices of the bipyramid which are not in the quadrilateral base are denoted
by p5 and p6. Applying the Euler-Jacobi formula to Π145Π236 we get that
p7 and p8 must have opposite index. Let L be the straight line defined by
the points p7 and p8.

By Proposition 4 we can assume that L intersects the interior of the
triangular face with vertices pipjpk being i, j, k distinct and {i, j, k} ⊂
{1, 2, 3, 4, 5, 6}. In this case the indices of pi, pj and pk are equal. Indeed,
we can choose the vertex pi such that the plane Π78i separates the points
pj and pk and then applying the Euler-Jacobi formula to C = ΠrstΠ78i with
r, s, t distinct, {r, s, t} ⊂ {1, 2, 3, 4, 5, 6} and {r, s, t} ∩ {i, j, k} = ∅, we get
that pj and pk have the same indices. In a similar way pi and pk, and pj
and pk have the same indices.

Again by Proposition 4 we can assume that L intersects the interior of
the triangular faces T1 and T2. First assume that the two triangular faces
T1 and T2 intersected by L have no edges in common. Since the absolute
value of the sum of the indices of all singular points must be either zero or
two, the indices of the vertices of T1 are different from the indices of the
vertices of T2, and this configurations of indices is realizable (see below).
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Suppose now that the two triangular faces T1 and T2 intersected by L have
an edge in common. Then the indices of the vertices of T1 ∪ T2 are equal.
Since the indices of p7 and p8 are different, and again since the absolute
value of the sum of the indices of all singular points must be either zero or
two, the indices of the remaining singular points must be different from the
ones in T1 ∪ T2. So we have three points with an index and five with the
opposite index. Two of the singular points of the three having the same
index are vertices of the quadrilateral base and the other is in the interior
of the bipyramid. Let Π0 be the plane defined by the three points with the
same index. This plane separates the other five singular points with the same
index either in four points in one side and the other in the other side, or three
points in one side and two in the other side. In the first case the unique point
p in a side of the plane Π0 must be a vertex of the quadrilateral bipyramid.
Let Π1 be a plane through p whose intersection with the bypiramid is only p.
Applying the Euler-Jacobi formula to S = Π0Π1 we reach a contradiction,
because all the singular points which are not in S = 0 are in the same
connected component of R3 \S, and all of them have the same index. In the
second case let Π2 be the parallel plane to Π0 containing the two points in a
side of the plane Π0. Then applying the Euler-jacobi formula to S = Π0Π2

we obtain again a contradiction. �

Take P = yz, Q = x2−y2+5xz and R = −4+4y2−399xz/5+z2. Then the
quadratic system (1) has the singular points (1,−1, 0), (1, 1, 0), (−1, 1, 0),
(−1,−1, 0), (0, 0, 2), (0, 0,−2), (1/2, 0,−1/10) and (−1/2, 0, 1/10), and their
indices are 1, 1,−1,−1,−1, 1,−1 and 1, respectively. So the configuration
(6;2)(i.1) described in Theorem 5 is realizable.

Proof of statement (6; 2)(i.2). Let Q1 be the quadrilateral basis of the quadri-
lateral-edge pyramid, and let p1 and p2 be the singular points at the interior
of pyramid. Let Π1 be the plane containing Q1, and let Π2 be a plane which
intersection with the pyramid be only the edge E. Applying the Euler-Jacobi
formula with S = Π1Π2 we get that p1 and p2 have different index. Let Π3

be the plane containing the edge E and p1 and p2. The plane Π3 intersects
either two opposite edges of Q1 or two consecutive edges of Q1.

If Π3 intersects two opposite (respectively consecutive) edges of Q1 let E4

and E5 be the two edges of Q1 which are not intersected by Π3. If Πk is
a plane whose intersection with the pyramid only contains Ek for k = 4, 5,
then applying the Euler-Jacobi formula with S = Π3Πk we get that the two
vertices of Ej with j ∈ {4, 5} and j 6= k have different index (respectively
the same index) for k = 4, 5. Let E6 and E7 be the two edges of Q1 which
are intersected by Π3. If Πk is a plane whose intersection with the pyramid
only contains Ek for k = 6, 7, then applying the Euler-Jacobi formula with
S = Π3Πk we get that the two vertices of Ej with j ∈ {6, 7} and j 6= k have
the same index for k = 6, 7. Let Π8 be a plane containing the points p1
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and p2 without intersection with the edge E, then applying the Euler-Jacobi
formula with S = Π1Π8 we get that the two vertices of the edge E have
different index.

In the case that Π3 intersects two consecutive edges of Q1 the indices
of the quadrilater of the basis are 1, 1, 1 − 1, the indices of the edge E are
different and the indices of the interior points are also different. Let Π9

be the plane defined by the three points with the same index. This plane
separates the other five points with the same index either in four points in
one side and the other point in the other side, or three points in one side
and two points in the other side. Now we arrive to a contradiction using the
same arguments as in the last part o the proof of the case (6.2)(i.1). �

Take P = −1/3+z−2x2/3+y2, Q = yz and R = −x2+y2+z2. Then the
quadratic system (1) has the singular points (1,−1, 0), (1, 1, 0), (−1, 1, 0),
(−1,−1, 0), (1, 0, 1), (−1, 0, 1), (1/2, 0, 1/2) and (−1/2, 0, 1/2), and their
indices are −1,−1, 1, 1,−1, 1, 1 and −1, respectively. So the configuration
(6;2)(i.2) is realizable.

Proof of statement (6; 2)(i.3). Let Q1 and Q2 be the two triangles of the
bases of the truncated triangular pyramid, and let p1 and p2 be the singular
points at the interior of pyramid. Let Πk be the plane containing Qk for
k = 1, 2. Applying the Euler-Jacobi formula with S = Π1Π2 we get that p1
and p2 have different index. Let E be a lateral edge of the pyramid. Let
Π3 the plane containing the edge E and p1 and p2. Let E∗i be the edge
of the triangle Qi of the truncated pyramid which has no intersection with
E. Let Π∗i be a plane such that its intersection with the truncated pyramid
is E∗i . Applying the Euler-Jacobi formula with S = Π3Π

∗
i we get that the

two vertices of Qj with j 6= i which are not contained in E must have the
same index. Repeating this process for every lateral edge of the truncated
pyramid we obtain that the three vertices of Qk have the same index and
since the sum of the absolute value of the indices is zero or two, the vertices
of Q1 and Q2 must have different index. �

Take P = 4− 4y − 13z − 8x2 + 2yz + 10z2, Q = 5x(2 + 2y − z) and R =
−4x2+y(−2+2y+z). Then the quadratic system (1) has the singular points
(−1,−1, 0), (1,−1, 0), (0, 1, 0), (−1/2,−1/2, 1), (1/2,−1/2, 1), (0, 1/2, 1),
(0, 0, 1/2) and (0, 0, 4/5), and their indices are −1,−1,−1, 1, 1, 1, 1 and −1,
respectively. So the configuration (6;2)(i.3) is realizable.

Proof of statement (6; 2)(ii). The proof of this statement follows using the
same arguments of the proof of statement (6;2)(i.1). �
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Take

P = 180x(y − z + 1)−
√

5
(
3
√

1041− 88
)
(z − 1)z,

Q = 9000
(
2x2 + y − 1

)
+
(
−13500y − 3

√
1041 + 25213

)
z +

(
3
√

1041− 17338
)
z2,

R = y2 + 1
4yz −

1
18(z − 1)(25z − 18).

Then the quadratic system (1) has the singular points (−1,−1, 0), (1,−1, 0),
(0,−1/4, 1), (−1/4, 0, 1), (1/4, 0, 1), (0, 1, 0),(

1

100

√
1

30

(
3023 + 137

√
1041

)
,− 1

120

(
9 +
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1041
)
,
3

5

)
and (

− 1

120

√
1

5

(
3
√

1041− 88
)
,
1

3
,
1

2

)
,

and their indices are −1,−1,−1, 1, 1, 1,−1 and 1, respectively. So the con-
figuration (6;2)(ii) is realizable.

Proof of statement (5; 3)(i). Let Q1 be the quadrilateral basis of the quadri-
lateral pyramid, q the vertex of the pyramid that is not contained in the base,
and let p1, p2 and p3 be the singular points in the interior of the pyramid.
Let Π1 be the plane containing Q1, and let Π2 be a plane whose intersection
with the pyramid is only the vertex q. Applying the Euler-Jacobi formula
to S = Π1Π2 we get that the three singular points p1, p2, p3 cannot have the
same index. Let Π3 be the plane containing p1, p2, p3 (which also contains
q). Note that the plane Π3 separates the points in the quadrilateral of the
basis as follows:

(I) one point p4 in one side of the plane Π3 and the remaining three
points on the other side of this plane;

(II) two points in one side of the plane Π3 and the remaining two points
on the other side of this plane.

In case (I) let Π4 be a plane defined by an edge of Q1 (which does not
contain p4) containing only this edge of the quadrilateral pyramid. Applying
the Euler-Jacobi formula to S = Π3Π4 we obtain that the two remaining
vertices of the quadrilateral must have the same index. Take now Π∗ the
plane containing an edge of Q1 having as vertex p4. Then the Euler-Jacobi
formula applied to S = Π3Π

∗ implies that the index of p5 is different from
the index of p4. In short we get that three vertices of the quadrilateral have
the same index and the other that we denote by p5 has different index, and
p5 6= p4. Now we claim that the index of q must be the same than the index
of p5. Indeed, assume that it is not the case. Using that the absolute value
of the sum of the indices is either 0 or 2 there are two points in {p1, p2, p3}
having the same index than p5 denote them by pi1 and pi2 . Now let Π5 be
the plane determined by the points p5, pi1 and pi2 . The plane Π5 separates
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the other five singular points with the same index either in four points in
one side and one point r in the other side, or three points in one side and
two points in the other side. In the first case the point r is one of the
vertices of the pyramid. Let Π6 be a plane through r whose intersection
with the pyramid is only the point r. Applying the Euler-Jacobi formula to
S = Π5Π6 we reach a contradiction, because all the singular points which
are not in S = 0 are in the same connected component of R3 \ S and all of
them have the same index. In the second case the two unique points in a
side of the plane Π5 are r and the remaining interior point of the pyramid.
Let Π7 be a plane containing the two points on one side of the plane Π5 and
such that the other three points separated by Π5 remain in the same side
of Π7. Applying the Euler-Jacobi formula to S = Π5Π7 we obtain again
a contradiction. Hence the claim is proved. If only one pi1 of the interior
points of the polyhedron has the same index than p5 and q, taking the plane
passing through p5, q, pi1 and using similar arguments to the ones used for
proving the claim we reach a contradiction. Hence, the indices of the interior
singular points are two equal to the index of p5 and the other different. This
completes the characterization of the indices in case (I).

In case (II) let Π4 be a plane defined by an edge E of Q1 containing only
this edge of the quadrilateral pyramid and such that E has no intersection
with the plane Π3. Applying the Euler-Jacobi formula to S = Π3Π4 we ob-
tain that the two remaining vertices of the quadrilateral must have different
index. Repeating these arguments for the other three edges of Q1 we get
that indices of the vertices of the quadrilateral are 1, 1,−1,−1 in counter-
clokwise. Now similar arguments to the case (I) show that if the index of q
is 1, then the indices of the three interior singular points are 1,−1,−1, and
if the index of q is −1, then the indices of the three interior singular points
must be 1, 1,−1. This completes the configurations of the indices in case
(II). �

In the first realization of the index configurations for the quadrilateral
pyramids the two planes containing four singular points are the planes z =
0 and x −

√
3y = 0. Consider the quadratic system (1) given by P =

(
√

3y − x)z, Q = −6 − x + x2 + 13z/2 +
√

3yz − 3z2/2, R = −2 + y2 +
y(−1 + z) + 13z/6 − z2/2. This quadratic system has the singular points
(−2,−1, 0), (3,−1, 0), (3, 2, 0), (−2, 2, 0), (0, 0, 4/3), (1, 1/

√
3, 1), (0, 0, 3)

and (−1,−1/
√

3, 1), these singular points have indices 1, 1, 1,−1, 1,−1,−1
and −1, respectively.

Now we realize the second index configuration for the quadrilateral pyra-
mids of type (5;3)(i).The two planes containing four singular points are
the planes z = 0 and y = 0. Consider the quadratic system (1) given by
P = yz, Q = x2 − y2 − xz/10, R = 3 − 3y2 − 4z + 5xz/2 + z2. This
quadratic system has the singular points (−1, 1, 0), (−1,−1, 0), (1,−1, 0),
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(1, 1, 0), (0, 0, 1), (1/5, 0, 2), (0, 0, 3) and (3/25, 0, 6/5), these singular points
have indices 1, 1,−1,−1,−1,−1, 1 and 1, respectively.

Proof of statement (5; 3)(ii). Let T1 be the base of the triangular bipyramid,
and p1, p2 and p3 be the singular points in the interior of the bipyramid. Let
Π1 be the plane defined by a face of the bipyramid and Π2 a plane defined
by another face of the bipyramid such that these two faces only share one
point. Applying the Euler-Jacobi formula to S = Π1Π2 we get that the
three singular points p1, p2, p3 cannot have the same index.

We claim that the sum of the indices of the singular points is zero. Assume
that the sum of the indices of the singular points is 2 (we can assume that it
is positive). Then there are three points with negative index that we denote
by q1, q2, q3. Note that at least one of them is in the 1st level. Now let Π5

be the plane determined by the points q1, q2, q3. The plane Π5 separates the
other five singular points with the same index either in four points in one
side and one point r in the other side, or three points in one side and two
points in the other side. In the first case the point r is one of the vertices.
Let Π6 be a plane through r whose intersection with the bipyramid is only
the point r. Applying the Euler-Jacobi formula to S = Π5Π6 we reach a
contradiction, because all the singular points which are not in S = 0 are
in the same connected component of R3 \ S and all of them have the same
index. In the second case the two unique points in a side of the plane Π5

are denoted by r and s. Let Π7 be a plane containing the two points r and
s and such that leave the other three points separated by the plane Π5 in
one side of Π7. Applying the Euler-Jacobi formula to S = Π5Π7 we obtain
again a contradiction. Hence the claim is proved.

In view of the claim, taking into account that p1, p2, p3 cannot have the
same index, we get the following three configurations:

(I) The indices of the three vertices of the triangular base are 1, 1, 1;
the indices of the two vertices of the bipyramid which are not in the
triangular base are −1,−1 and the three interior points must be of
the form 1,−1,−1.

(II) The indices of the three vertices of the triangular base are 1, 1,−1;
the indices of the two vertices of the bipyramid which are not in the
triangular base are 1,−1 and the three interior points must be of the
form 1,−1,−1.

(III) The indices of the three vertices of the triangular base are 1,−1,−1;
the indices of the two vertices of the bipyramid which are not in the
triangular base are 1, 1 and the three interior points must be of the
form 1,−1,−1.

�
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Now we realize the three index configurations for the quadrilateral pyra-
mids of type (5;3)(ii).

For the first realization take P = (42+91x+252y−14z+35x2 +126xy+
157xz + 244yz)/42, Q = (−56x − 168y − 21z − 28x2 − 84xy − 101xz −
146yz + 7z2)/7 and R = (−56y − 14x2 − 14xy − 31xz + 28y2 − 6yz)/28.
Then the quadratic system (1) has the singular points (−2,−1, 0), (−2, 2, 0),
(3,−1, 0) in the vertices of the triangular bases of the bipyramide, (0, 0, 3)
and (3, 2,−2) in the two vertices of the bipyramide which are not in the
triangular basis, and (1,−1/2, 1), (−1, 1/2, 1) and (1/4,−1/4,−1/4) in the
interior of the bipyramide, and their indices are 1, 1, 1,−1,−1, 1,−1 and −1,
respectively. So the first realization of the configuration (5;3)(ii) is done.

For the second realization take P = (2016 + 3500x + 28000y − 672z +
406x2 + 3500xy + 12751xz + 4502yz)/2016, Q = (−112x − 896y − 63z −
14x2 − 386xz − 100yz + 21z2)/21 and R = (196x + 1232y + 14x2 + 196xy +
647xz+336y2+454yz)/336. Then the quadratic system (1) has the singular
points (−8,−1, 0), (8,−1, 0), (−8, 2, 0) in the vertices of the triangular bases
of the bipyramide, (0, 0, 3) and

(−125455790514, 1122399166369,−1469697563719)/172072592267

in the two vertices of the bipyramide which are not in the triangular basis,
and (1,−1/2, 1), (−1, 1/2, 1) and (3, 2,−2) in the interior of the bipyramide,
and their indices are 1, 1,−1,−1, 1,−1, 1 and −1, respectively. So the second
realization of the configuration (5;3)(ii) is done.

For the fifth realization take P = x + xy + 4xz + yz, Q = 4x− 2x2 − y +
4xy+y2+15xz and R = −9−36x+18x2+9y−36xy−269xz+z2. Then the
quadratic system (1) has the singular points (0, 1, 0), (−1,−1, 0), (1,−1, 0),
(0, 0, 3), (0, 0,−3), (1/4,−1/4,−1/4), (1/4, 1/4,−1/4) and (9/53,−19/53,
−18/53), and their indices are 1, 1,−1,−1, 1, 1,−1 and −1, respectively. So
the third realization of the configuration (5;3)(ii) done.

Proof that the polyhedra (8)(i.2) are not realizable. Let Q1 and Q2 be the
quadrilateral and the triangle of the bases of the quadrilateral-triangular
prism respectively, and let p be the singular point at the interior of triangle
of the bases. Let Π1 be a plane containing Q1. Let Π2 be a plane defined
by an edge of Q2 containing only this edge of the quadrilateral-triangular
prism. Applying the Euler-Jacobi formula (2) with S = Π1Π2 we get that
the remaining vertex of Q2 and p must have different index. Repeating this
process for every edge of Q2 we obtain that the three vertices of Q2 have
the same index different from the index of p. Let Π3 be a plane containing
one edge E of Q1 and no other points of the polyhedron, and let Π4 be the
plane defined by Q2. Applying the Euler-Jacobi formula (2) with S = Π3Π4

we get that the two vertices of Q1 not contained in E must have different
index. Repeating these arguments we obtain that the index configuration
on Q1 is 1,−1, 1,−1 in counterclockwise sense.
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From the polyhedra 8, 9, 10, 14, 17, 19, 20, 30 and 32 of Figure 1(d) it
follows that there exists an edge E of Q1 such that the plane Π5 determined
by E and p leaves an edge E* of Q2 on one side of the plane. Let Π6 be the
plane determined by the three vertices of the polyhedron which are neither
in the plane Π5 nor in the edge E*. Then applying the Euler-Jacobi formula
(2) with S = Π5Π6 we get that the two vertices of E* have different index,
a contradiction. �

Proof that the polyhedron (8)(i.4) is not realizable. Let Qk for k = 1, 2, 3, 4
be the triangles of the faces of the tetrahedron, and let pk be the singular
point in the interior of Qk. Let Πk be the plane determined by Qk. Then
applying the Euler-Jacobi formula (2) with S = Π1Π2 we get that the sin-
gular points p3 and p4 have different index. Repeating this argument we
get that the indices of pi a pj are different if i 6= j, and this provides a
contradiction. �

Proof that the polyhedra (7; 1) are not realizable. Let q be the point of A in
the 1st-level. Let Πi1i2i3 be the plane determined one face of a polyhedron
of type (7;1), and let Πj1j2j3 be the plane determined by another face which
has any poin in the plane Πi1i2i3 . Applying the Euler-Jacobi formula to
S = Πi1i2i3Πj1j2j3 we get that the vertex of the polyhedron not contained in
these two planes must have different index than the index of q. In this way
we obtain that all the vertices of the polyhedron have the same index, in
contradiction with the fact that the sum of the indices of the eight singular
points is zero or two. �

Proof that the polyhedra (6; 2)(i.3) are not realizable. Consider the plane Π1

containing the edge E and the two interior points, and the plane Π2 contain-
ing the edge of the triangle of the base that contains three singular points.
The Euler-Jacobi formula applied with S = Π1Π2 provides a contradiction,
because it remains in the Euler-Jacobi formula a unique term which cannot
be zero. �

Proof that the tetrahedra (4; 4) are not realizable. The four points in the 0
level are contained in the vertices of a tetrahedron. We denote them by
p1, p2, p3, p4. By Proposition 2 the four points in the 1st level, that we
denote them by p5, p6, p7, p8, cannot be contained in a plane and so they are
also contained in the vertices of a tetrahedron.

Given l1, l2 ∈ {5, 6, 7, 8} there exists k0 ∈ {1, 2, 3, 4} so that Πk0,l1,l2 leaves
the rest of the points in the 1-st level in the same side of the plane. We denote
by pl3 , pl4 the points in the 1-st level different from pl1 , pl2 and by pk1 , pk2 , pk3
the points in the 0 level different from pk0 . Then applying the Euler-Jacobi
formula to Πk0l1l2Πk1k2k3 we obtain that pl3 and pl4 have different signs.
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We repeat this procedure successively for all pairs of points in the 1-st
level and we reach to a contradiction. Indeed, taking {l3, l4} = {5, 6}, we
get that p7 and p8 have different indices; taking {l3, l4} = {6, 7} we get that
p8 and p5 have different indices and taking {l3, l4} = {7, 8} we get that p5
and p6 have different indices. So, p5 and p7 have the same index and p6
and p8 have the same index. However taking now {l3, l4} = {5, 7} we get
that p6 and p8 must have different index which is not possible. In short,
configuration (4;4) is not possible. �
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de Lisboa, Av. Rovisco Pais 1049–001, Lisboa, Portugal

Email address: cvalls@math.ist.utl.pt


