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CENTERS OF PLANAR GENERALIZED ABEL EQUATIONS

JAUME LLIBRE! AND CLAUDIA VALLS2

ABSTRACT. We deal with the differential equation
. dr
= — =

dé
where (r,0) are the polar coordinates in the plane R?, m and n are integers
such that m > n > 2, and a,b are C! functions. Note that when n = 2 and

m = 3 we have an Abel differential equation. For this class of generalized Abel

equations we characterize a new family of centers.

a(@)r™ + b(0)r™,

1. INTRODUCTION AND STATEMENT OF THE RESULTS

Consider the generalized Abel equation
d
(1) ;= CTZ = a(f)r" + b(O)r™,
defined in the plane (r,0) € [0, +00) x S in polar coordinates where S' = R/(27Z).
Here m and n are integers such that m > n > 2, 0 € [, 7] and a,b are C*-
functions.

The origin of the plane is a center for the differential equation (1) if there is a
neighborhood of it where all the solutions are periodic except the equilibrium point
at the origin.

When n = 2 and m = 3 the differential equation (1) is a particular family of
Abel equations. In fact the Abel equations are of the form

= a(0) 4+ b(0)r + c(0)r? + d(0)r3,
and they appeared by the first time in the works of Niels Henryk Abel, see [7]. Today
there are more than 1400 papers in MathSciNet with the name “Abel equation” in

their tittle, see for instance the papers [1, 2, 3, 5, 6, 8| for results on centers in the
Abel equations and the references quoted therein.

The main objective of this work is to provide a new family of centers in the
generalized Abel equation (1). Thus, our main result is the following.

Theorem 1. If a(0) and b() are C' odd functions and m > 2n—1, then the origin
r =0 of the differential equation (1) is a center.

The proof of Theorem 1 is given in the next section. We note that Theorem 1 in
the particular case n = 2 and m = 3, i.e. when equation (1) is an Abel equation,
already was obtained in [4] by Araujo, Lemos and Alves.
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2. PROOF OF THEOREM 1

In order to prove Theorem 1 we introduce some auxiliary results that will be
used in its proof.

Proposition 2. The origin r = 0 of equation (1) is a center if and only if

2) / T a@do=0 and | b(0)(6: p)ym db =0,

for |p| < po with po sufficiently small where v(0;p) is the solution of equation (1)
such that r(—m; p) = p.

Proof. First we prove sufficiency. Note that dividing equation (1) by r™ and inte-
grating it, we obtain

9 6
_ rl‘"(e;p):/ a(s)ds+/ b(s)r(s; p)" " ds — ——

n—1 -7 —7 (Tl - 1)pn—1 ’
where p is the initial condition. So we have
n—1
6 p) = g

1= (n =11 a(s)ds+ [°_b(s)r(s; p)m—m ds]’
which yields

p

(3)  rp) = - g .
(1= (n—1)p"1[f" a(s)ds+ [ _b(s)r(s; p)™="ds]) "

Taking 6 = 7 in the previous equation we have

p

(1 —(n— 1)pn—1[f:r7r a(s)ds + f:r b(s)r(s; p)m—n ds]) ="
If (2) holds, then z(7; p) = p, and the sufficiency in the theorem follows.

r(mp) =

Assume now that equation (1) has a center on r = 0. We first note that any
solution of equation (1), r(6;p) can be expanded in power series in p for |p| < po
with pg sufficiently small and 6 € [—7, 7] in the form

(4) r(05p) = 10(0) + r1(0)p + 2(0)p” + ...

Clearly ro(f) = 0 because r(6;0) = 0. Substituting (4) into equation (1) we get
71(0) = 0 because n > 2, and since r(7; p) = p we must have r1(f) = 1. Hence we
have

(5) r(0;p) = p+72(0)p° + ...
Note that a sufficient and necessary condition for r = 0 to be a center of (1) is that
ri(m;p) =0 fori=2,3,...
Substituting (4) into (1) and computing the coefficients in p? for j > 2 we get that
7i(0;p) =0 fori=2,...,n—1.

Since r;(m; p) = 0 we must have r;(0;p) =0 for i = 2,...,n— 1. On the other hand

0
in(0:p) = a(0) thatis 1 (6:p) = / a(0) db.

—T
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Since 7, (7; p) = 0 we obtain that ["_a(s)ds = 0. But then, from (3) we readily
get that [ b(s)r(s; p)™ ™ ds = 0, which proves the necessity. This concludes the
proof of the proposition. O

Note that by equation (3) a solution of equation (1) is equivalent to a solution
of the integral equation

(6) r(0;p) = — —
(1= (n=1)pm=1 [ (a(s) + b(s)r(s; p)m=m) ds) ™

for § € [—m, ], where r(—m; p) = p. We denote

m—-n

(7) y(0) ="~ (0;p) and (=

n—1"
Then equation (6) becomes

8 6) . .
: " (1—(n—1)pn=1 [ (a(s) + b(s)y(s)) ds

We define the operator T': By — C([—m, «]) by

T o) — pn—l 7
W= (n—1)pn=1 [7_(a(s) + b(s)y(s)") ds

for 6 € [—m, x|, where
By ={y € E: |lyllw < M},
being E the closed subspace of C([—m,n]) defined by
E={y e C([—mn]): yis an even function}.

Note that if the operator T has a unique fixed point, i.e., a unique y € Bj; such
that T'(y)(0) = y then (8) has an even solution. As usual |7 = maxge|—r,|7(0)].

We take the notation

Jo(y)

n—1

o P
1—(n—1)p=1 7 (al(s) +b(s)y(s)?) ds

We define

Gerflagfﬂ}la( )l een[fg%ﬂl (0)]

Proposition 3. For

_ M~ 1/(n—1)
©) O<p<mm{@ﬂnnmiBMﬁmeW(2) }

the operator T': By — C([—m,w]) is continuous and compact. Moreover T(Bys) C
By

Proof. For each y1,ys € C([—7, 7)), we have

)

0
T (y1)(6) — T(y2)(0)| = |(n — 1)J9(y1)J9(y2)|’ 3 b(s)(y1(s)" — y2(s)") ds
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for 0 € [—m, w]. Note that since
1

0<p< 1y
(4r(n —1)(A + BM?)) /"7

we have
0
1

(=)™ [ (alo) + bs)yl)') ds| < 2n(n~ )" A+ BMO) < 5.

Therefore
0
(10) 1= =1 [ (al) + b)) ds > 172,
which yields Jg(y) < 2p™ 1. Moreover, since m > 2n — 1 we have that £ > 1 and
by the Mean Value theorem we get
[y1(s)" = ya(s)'| <M y1 — yollco-

Hence

0
T (y1)(0) = T(y2)(0)] < 4(n — 1)p2”’2/ [6(s) (y1(5)" — y2(s) )| ds

< 8r(n —1)p*" 2BIM " y1 = 2o,
for each 6 € [—m, 7]. So,
1T (y1) = T(y2)lloo < 87(n —1)p** 2BEM ™ |y1 — yal|oo
for all y1,y2 € C([—m,7]). Hence the operator T is continuous.

For proving that the operator T is compact, we shall see that T is bounded
and equicontinuous. Now we prove that it is bounded. Indeed, by (10) and the
condition in p in (9) we have

IT(y)(0 : —m)| <2p"", forally € By and 60 € [—m, 7]
and so
(11) IT(y)]lse < 20"~ for all y € By,
proving that the operator T is bounded.

Now we show that T is equicontinuous. For each 61,65 € [—m, 7] (that without
loss of generality we can assume that 65 > 6;), and any y € Bjs, we have

1T (y)(01) — T(y)(02)| = |(n — 1), (y)Ja, ()| %

01 02
’ / (a(s) + b(s)y(s)") ds — / (a(s) + b(s)y(s)") ds

—T

22
< 4(n — 1) /0 la(s) + b(s)y(s)"| ds

1

<4(n—1)p*"2(A+ BM")|0, — 0,).

Therefore T'(B)y) is an equicontinuous subset of C([—m,7]). By Ascoli-Arzela The-
orem (see for instance [9]) we have that T': By — C([—m, 7)) is compact.

Since the functions a(f) and b() are odd and by assumptions y(f) is an even
function (and so also y(#)* is an even function), we have that a(s) + b(s)y(s) is

odd. Taking into account that the integral of an odd function is an even function
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we conclude that fir (a(s) +b(s)y(s)") ds is an even function in #. Hence, for each
y € E we have that T(y)(0) = T(y)(—0) for all § € [—m,7]. Therefore, T(y) € E
for every y € E. Moreover, by (9) and (11) we have that

IT())|oo < 20" ' <M forally € By.
So T': By — Byy is well defined. This concludes the proof of the proposition. O

Proposition 4. Under the assumptions of Theorem 1 there are infinitely many
closed even solutions r(0; p) of system (1) for p satisfying (9).

Proof. Tt follows from Proposition 3 that the operator T': By; — Bjy is well defined,
continuous and compact. By the Schauder fixed point Theorem, see [9], the operator
T has a fixed point y satisfying

- _ P
T =) T 7 o) + oot ds

and y(—m) = p"~! for each p satisfying (9). From (7) there exists r(6; p) such that
r(0;p) = P P 1

(1= (n— 1)pm= [°_(als) + b(s)r(s; p)m=) ds) 71

and r(—m; p) = p. Note that r(—6;p) = r(6;p) and so the solution is closed and

even. In short, there are many closed even solutions of system (1) near the origin.
O

Proof of Theorem 1. To prove Theorem 1 we first show that if #(6; p) is a solution
of equation (1) that satisfies 7(—m;p) = p with p satisfying (9), then 7(0;p) is
closed and even. Indeed, by Proposition 4 there is r(6;p) a closed even solution
of system (1) such that r(—m;p) = p, and by the uniqueness of solutions of an
ordinary differential equation, we obtain that 7(6; p) = r(0;p). Hence if @ and b
are odd functions in the variable 6, then each solution of equation (1) with initial
condition p satisfying (9) is a closed even solution. Hence, for any p satisfying (9)
we have . .
/ a(s)ds =0 and b(s)r(s;p)™ " ds = 0.

Therefore it follows from Proposition 2 that = 0 is a center for equation (1). O
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