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CENTERS OF PLANAR GENERALIZED ABEL EQUATIONS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We deal with the differential equation

ṙ =
dr

dθ
= a(θ)rn + b(θ)rm,

where (r, θ) are the polar coordinates in the plane R2, m and n are integers

such that m > n ≥ 2, and a, b are C1 functions. Note that when n = 2 and
m = 3 we have an Abel differential equation. For this class of generalized Abel
equations we characterize a new family of centers.

1. Introduction and statement of the results

Consider the generalized Abel equation

(1) ṙ =
dr

dθ
= a(θ)rn + b(θ)rm,

defined in the plane (r, θ) ∈ [0,+∞)×S1 in polar coordinates where S1 = R/(2πZ).
Here m and n are integers such that m > n ≥ 2, θ ∈ [−π, π] and a, b are C1-
functions.

The origin of the plane is a center for the differential equation (1) if there is a
neighborhood of it where all the solutions are periodic except the equilibrium point
at the origin.

When n = 2 and m = 3 the differential equation (1) is a particular family of
Abel equations. In fact the Abel equations are of the form

ṙ = a(θ) + b(θ)r + c(θ)r2 + d(θ)r3,

and they appeared by the first time in the works of Niels Henryk Abel, see [7]. Today
there are more than 1400 papers in MathSciNet with the name “Abel equation” in
their tittle, see for instance the papers [1, 2, 3, 5, 6, 8] for results on centers in the
Abel equations and the references quoted therein.

The main objective of this work is to provide a new family of centers in the
generalized Abel equation (1). Thus, our main result is the following.

Theorem 1. If a(θ) and b(θ) are C1 odd functions and m ≥ 2n−1, then the origin
r = 0 of the differential equation (1) is a center.

The proof of Theorem 1 is given in the next section. We note that Theorem 1 in
the particular case n = 2 and m = 3, i.e. when equation (1) is an Abel equation,
already was obtained in [4] by Araujo, Lemos and Alves.
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2. Proof of Theorem 1

In order to prove Theorem 1 we introduce some auxiliary results that will be
used in its proof.

Proposition 2. The origin r = 0 of equation (1) is a center if and only if

(2)

∫ π

−π

a(θ) dθ = 0 and

∫ π

−π

b(θ)r(θ; ρ)m−n dθ = 0,

for |ρ| < ρ0 with ρ0 sufficiently small where r(θ; ρ) is the solution of equation (1)
such that r(−π; ρ) = ρ.

Proof. First we prove sufficiency. Note that dividing equation (1) by rn and inte-
grating it, we obtain

− 1

n− 1
r1−n(θ; ρ) =

∫ θ

−π

a(s) ds+

∫ θ

−π

b(s)r(s; ρ)m−n ds− 1

(n− 1)ρn−1
,

where ρ is the initial condition. So we have

rn−1(θ; ρ) =
ρn−1

1− (n− 1)ρn−1[
∫ θ

−π
a(s) ds+

∫ θ

−π
b(s)r(s; ρ)m−n ds]

,

which yields

(3) r(θ; ρ) =
ρ(

1− (n− 1)ρn−1[
∫ θ

−π
a(s) ds+

∫ θ

−π
b(s)r(s; ρ)m−n ds]

) 1
n−1

.

Taking θ = π in the previous equation we have

r(π; ρ) =
ρ(

1− (n− 1)ρn−1[
∫ π

−π
a(s) ds+

∫ π

−π
b(s)r(s; ρ)m−n ds]

) 1
n−1

.

If (2) holds, then x(π; ρ) = ρ, and the sufficiency in the theorem follows.

Assume now that equation (1) has a center on r = 0. We first note that any
solution of equation (1), r(θ; ρ) can be expanded in power series in ρ for |ρ| < ρ0
with ρ0 sufficiently small and θ ∈ [−π, π] in the form

(4) r(θ; ρ) = r0(θ) + r1(θ)ρ+ r2(θ)ρ
2 + . . .

Clearly r0(θ) = 0 because r(θ; 0) = 0. Substituting (4) into equation (1) we get
ṙ1(θ) = 0 because n ≥ 2, and since r(π; ρ) = ρ we must have r1(θ) = 1. Hence we
have

(5) r(θ; ρ) = ρ+ r2(θ)ρ
2 + . . .

Note that a sufficient and necessary condition for r = 0 to be a center of (1) is that

ri(π; ρ) = 0 for i = 2, 3, . . ..

Substituting (4) into (1) and computing the coefficients in ρj for j ≥ 2 we get that

ṙi(θ; ρ) = 0 for i = 2, . . . , n− 1.

Since ri(π; ρ) = 0 we must have ri(θ; ρ) = 0 for i = 2, . . . , n− 1. On the other hand

ṙn(θ; ρ) = a(θ) that is rn(θ; ρ) =

∫ θ

−π

a(θ) dθ.
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Since rn(π; ρ) = 0 we obtain that
∫ π

−π
a(s) ds = 0. But then, from (3) we readily

get that
∫ π

−π
b(s)r(s; ρ)m−n ds = 0, which proves the necessity. This concludes the

proof of the proposition. �

Note that by equation (3) a solution of equation (1) is equivalent to a solution
of the integral equation

(6) r(θ; ρ) =
ρ(

1− (n− 1)ρn−1
∫ θ

−π
(a(s) + b(s)r(s; ρ)m−n) ds

) 1
n−1

,

for θ ∈ [−π, π], where r(−π; ρ) = ρ. We denote

(7) y(θ) = rn−1(θ; ρ) and ℓ =
m− n

n− 1
.

Then equation (6) becomes

(8) y(θ) =
ρn−1

(1− (n− 1)ρn−1
∫ θ

−π
(a(s) + b(s)y(s)ℓ) ds

.

We define the operator T : BM → C([−π, π]) by

T (y)(θ) =
ρn−1

1− (n− 1)ρn−1
∫ θ

−π
(a(s) + b(s)y(s)ℓ) ds

,

for θ ∈ [−π, π], where

BM = {y ∈ E : ∥y∥∞ ≤ M},
being E the closed subspace of C([−π, π]) defined by

E = {y ∈ C([−π, π]) : y is an even function}.

Note that if the operator T has a unique fixed point, i.e., a unique y ∈ BM such
that T (y)(θ) = y then (8) has an even solution. As usual ∥r∥∞ = maxθ∈[−π,π]|r(θ)|.

We take the notation

Jθ(y) =
ρn−1

1− (n− 1)ρn−1
∫ θ

−π
(a(s) + b(s)y(s)ℓ) ds

.

We define

A = max
θ∈[−π,π]

|a(θ)|, B = max
θ∈[−π,π]

|b(θ)|.

Proposition 3. For

(9) 0 ≤ ρ < min

{
1(

4π(n− 1)(A+BM ℓ)
)1/(n−1)

,
(M

2

)1/(n−1)
}
,

the operator T : BM → C([−π, π]) is continuous and compact. Moreover T (BM ) ⊂
BM .

Proof. For each y1, y2 ∈ C([−π, π]), we have

|T (y1)(θ)− T (y2)(θ)| =
∣∣(n− 1)Jθ(y1)Jθ(y2)

∣∣∣∣∣∣ ∫ θ

−π

b(s)(y1(s)
ℓ − y2(s)

ℓ) ds

∣∣∣∣,
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for θ ∈ [−π, π]. Note that since

0 ≤ ρ ≤ 1(
4π(n− 1)(A+BM ℓ)

)1/(n−1)
,

we have

|(n− 1)ρn−1

∫ θ

−π

(a(s) + b(s)y(s)ℓ) ds| ≤ 2π(n− 1)ρn−1(A+BM ℓ) <
1

2
.

Therefore

(10) 1− (n− 1)ρn−1

∫ θ

−π

(a(s) + b(s)y(s)ℓ) ds > 1/2,

which yields Jθ(y) ≤ 2ρn−1. Moreover, since m ≥ 2n − 1 we have that ℓ ≥ 1 and
by the Mean Value theorem we get

|y1(s)ℓ − y2(s)
ℓ| ≤ ℓM ℓ−1∥y1 − y2∥∞.

Hence

|T (y1)(θ)− T (y2)(θ)| ≤ 4(n− 1)ρ2n−2

∫ θ

−π

∣∣b(s)(y1(s)ℓ − y2(s)
ℓ)
∣∣ ds

≤ 8π(n− 1)ρ2n−2BℓM ℓ−1∥y1 − y2∥∞,

for each θ ∈ [−π, π]. So,

∥T (y1)− T (y2)∥∞ ≤ 8π(n− 1)ρ2n−2BℓM ℓ−1∥y1 − y2∥∞
for all y1, y2 ∈ C([−π, π]). Hence the operator T is continuous.

For proving that the operator T is compact, we shall see that T is bounded
and equicontinuous. Now we prove that it is bounded. Indeed, by (10) and the
condition in ρ in (9) we have

|T (y)(θ : −π)| ≤ 2ρn−1, for all y ∈ BM and θ ∈ [−π, π]

and so

(11) ∥T (y)∥∞ ≤ 2ρn−1 for all y ∈ BM ,

proving that the operator T is bounded.

Now we show that T is equicontinuous. For each θ1, θ2 ∈ [−π, π] (that without
loss of generality we can assume that θ2 > θ1), and any y ∈ BM , we have

|T (y)(θ1)− T (y)(θ2)| =
∣∣(n− 1)Jθ1(y)Jθ2(y)

∣∣×∣∣∣∣ ∫ θ1

−π

(a(s) + b(s)y(s)ℓ) ds−
∫ θ2

−π

(a(s) + b(s)y(s)ℓ) ds

∣∣∣∣
≤ 4(n− 1)ρ2n−2

∫ θ2

θ1

|a(s) + b(s)y(s)ℓ| ds

≤ 4(n− 1)ρ2n−2(A+BM ℓ)|θ2 − θ1|.
Therefore T (BM ) is an equicontinuous subset of C([−π, π]). By Ascoli-Arzela The-
orem (see for instance [9]) we have that T : BM → C([−π, π]) is compact.

Since the functions a(θ) and b(θ) are odd and by assumptions y(θ) is an even
function (and so also y(θ)ℓ is an even function), we have that a(s) + b(s)y(s)ℓ is
odd. Taking into account that the integral of an odd function is an even function
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we conclude that
∫ θ

−π
(a(s) + b(s)y(s)ℓ) ds is an even function in θ. Hence, for each

y ∈ E we have that T (y)(θ) = T (y)(−θ) for all θ ∈ [−π, π]. Therefore, T (y) ∈ E
for every y ∈ E. Moreover, by (9) and (11) we have that

∥T (y)∥∞ ≤ 2ρn−1 < M for all y ∈ BM .

So T : BM → BM is well defined. This concludes the proof of the proposition. �
Proposition 4. Under the assumptions of Theorem 1 there are infinitely many
closed even solutions r(θ; ρ) of system (1) for ρ satisfying (9).

Proof. It follows from Proposition 3 that the operator T : BM → BM is well defined,
continuous and compact. By the Schauder fixed point Theorem, see [9], the operator
T has a fixed point y satisfying

T (y)(θ) = y(θ) =
ρ

1− (n− 1)ρn−1
∫ θ

−π
(a(s) + b(s)y(s)ℓ) ds

and y(−π) = ρn−1 for each ρ satisfying (9). From (7) there exists r(θ; ρ) such that

r(θ; ρ) =
ρ(

1− (n− 1)ρn−1
∫ θ

−π
(a(s) + b(s)r(s; ρ)m−n) ds

) 1
n−1

and r(−π; ρ) = ρ. Note that r(−θ; ρ) = r(θ; ρ) and so the solution is closed and
even. In short, there are many closed even solutions of system (1) near the origin.

�

Proof of Theorem 1. To prove Theorem 1 we first show that if r̄(θ; ρ) is a solution
of equation (1) that satisfies r̄(−π; ρ) = ρ with ρ satisfying (9), then r̄(θ; ρ) is
closed and even. Indeed, by Proposition 4 there is r(θ; ρ) a closed even solution
of system (1) such that r(−π; ρ) = ρ, and by the uniqueness of solutions of an
ordinary differential equation, we obtain that r̄(θ; ρ) = r(θ; ρ). Hence if a and b
are odd functions in the variable θ, then each solution of equation (1) with initial
condition ρ satisfying (9) is a closed even solution. Hence, for any ρ satisfying (9)
we have ∫ π

−π

a(s) ds = 0 and

∫ π

−π

b(s)r(s; ρ)m−n ds = 0.

Therefore it follows from Proposition 2 that r = 0 is a center for equation (1). �
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