

Check for updates

Periodic structure of transversal maps on sum-free products of spheres

Jaume Llibre^a and Víctor F. Sirvent^b

^aDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain; ^bDepartamento de Matemáticas, Universidad Católica del Norte, Antofagasta, Chile

ABSTRACT

In this article, we study the periodic structure of transversal maps on the product of spheres of different dimensions. In particular, we give sufficient conditions in order that such maps have infinitely many even and odd periods. Moreover, we also provide sufficient conditions for having non-zero Lefschetz numbers of period *m* for infinitely many *m*'s. We extend these results to transversal maps on rational exterior spaces of rank 1.

ARTICLE HISTORY

Received 21 October 2018 Accepted 24 March 2019

KEYWORDS

Transversal maps; Lefschetz numbers; periodic point; product of spheres

2010 MATHEMATICS SUBJECT CLASSIFICATIONS 37C25; 37C30; 37E15

1. Introduction and statement of the main results

Let *f* be a continuous self-map on *X*. If $x \in X$ and f(x) = x, we say that *x* is a *fixed point* of the map *f*. If $f^n(x) = x$ and $f^k(x) \neq x$ for all k = 1, ..., n - 1, then we say that *x* is a *periodic point* of the map *f* of *period n*. We denote by Per (*f*) the set of the periods of all periodic points of a map $f : X \to X$.

Let *X* be a *n*-dimensional topological manifold and *f* a continuous self-map on *X*. The map *f* induces a homomorphism on the *k*th rational homology group of *X* for $0 \le k \le n$, i.e. $f_{*k} : H_k(X, \mathbb{Q}) \to H_k(X, \mathbb{Q})$. The $H_k(X, \mathbb{Q})$ is a finite dimensional vector space over \mathbb{Q} and f_{*k} is a linear map whose matrix has integer entries.

The *Lefschetz number* of the map *f* is an integer defined as

$$L(f) = \sum_{k=0}^{n} (-1)^k \operatorname{trace}(f_{*k}).$$

The *Lefschetz Fixed Point Theorem* states that if $L(f) \neq 0$ then f has a fixed point (cf. [2] or [15]).

The Lefschetz numbers of period m are defined by

$$\ell(f^m) := \sum_{r|m} \mu(r) L(f^{m/r}),$$

CONTACT Víctor F. Sirvent 🖾 victor.sirvent@ucn.cl

© 2019 Informa UK Limited, trading as Taylor & Francis Group