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Abstract. In this article we consider non-constant holomorphic
maps on Riemann surfaces and product of Riemann spheres, we
give conditions on the maps in order that they have arbitrary large
prime numbers as periods. We use Lefschetz �xed point theory and
in particular we compute the Lefschetz numbers of period m for
large m's.

1. Introduction

In the theory of the dynamical systems and mainly in the study of
the iteration of self-maps on a topological manifold X, the periodic
orbits play an important role. More precisely, let f : X → X be a
continuous map, a point x ∈ X is periodic of period k ∈ N if fk(x) = x
and f j(x) 6= x for j = 1, . . . , k − 1. The set {x, f(x), . . . , fk−1(x)} is
the periodic orbit of the periodic point x of period k. If k = 1 then
the periodic point x is called a �xed point. We shall denote by Per(f)
the set of periods of the map f . A natural question is to ask for all
the possible periods that the map f can exhibit. In some situations
the knowledge of some possible periods of the map gives understanding
of some global properties of the dynamics of the map, as in the case
for continuous self�maps on the interval. If a continuous map on the
interval has a periodic orbit of period three, then the map has orbits
of all possible periods (cf. [8, 12]).

The di�erential topological methods are very useful for understand-
ing the periodic structure of continuous self-maps on manifolds on di-
mensions greater than 1, because the topology of the manifold plays an
important role, in particular we use the Lefschetz �xed point theory.
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In this article we study the periodic structure of non-constant holo-
morphic maps on Riemann surfaces and product of Riemann spheres,
in particular we give conditions on homology such that the maps have
arbitrary large prime numbers as periods; the corresponding results are
Theorems 4, 5 and Corollary 8. In section 2 we consider the self-maps
on Riemann surfaces and in section 3 the maps on product of Riemann
spheres.

Let X be an n�dimensional topological manifold and f a continuous
self�map on X. The map f induces a homomorphism on the k�th
rational homology group of X for 0 ≤ k ≤ n, i.e. f∗k : Hk(X,Q) →
Hk(X,Q). The Hk(X,Q) is a �nite dimensional vector space over Q
and f∗k is a linear map whose matrix has integer entries.

The Lefschetz number of f is de�ned as

(1) L(f) :=
n∑
k=0

(−1)ktrace(f∗k).

The Lefschetz Fixed Point Theorem states that if L(f) 6= 0 then f
has a �xed point (cf. [3] or [9]).

The Lefschetz numbers of period m, introduced in [4] and [10], are
de�ned by

(2) `(fm) :=
∑
r|m

µ(r)L(fm/r),

where the sum is taken over all divisors r of m and µ is the Möbius
function de�ned by

µ(m) :=

 1 if m = 1;
0 if there is a k such that k2 divides m;
(−1)s if m = p1 · · · ps with pi distinct primes.

By the Möbius inversion formula

L(fm) =
∑
r|m

`(f r).

Observe that L(fm) and `(fm) are integer numbers for all m.

The Lefschetz zeta function of f is de�ned as

ζf (t) = exp

(∑
m≥1

L(fm)

m
tm

)
.

This function keeps the information of the Lefschetz number for all the
iterates of f , so this function gives information about the set of periods
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of f . This function is rational, moreover its expression is

(3) ζf (t) =
n∏
k=0

det(Id∗k − tf∗k)(−1)
k+1

,

where n = dimM , nk = dimHk(M,Q), Id := Id∗k is the identity map
on Hk(M,Q), and by convention det(Id∗k− tf∗k) = 1 if nk = 0 (cf. [6]).

Using formal computations we can write the Lesfchetz zeta function
as a formal in�nite product that involves the `(fd), for details see [1]:

(4) ζf (t) = exp

(∑
m≥1

L(fm)

m
tm

)
=
∏
d≥1

(1− td)−
`(fd)

d .

The following result characterizes when the product in the identity
(4) has a �nite number of nontrivial factors, i.e. when `(fd) 6= 0 for
only �nitely many m.

Theorem 1. Let X be an n�dimensional topological manifold and f a
continuous self�map on X. The zeros and poles of the Lefschetz zeta
function of f are roots of unity if and only if `(fm) 6= 0 for only �nitely
many m.

Proof. �The only if part�. Let m1, . . . ,mk be the only values of m such
that `(fm) 6= 0. Accoding to (4),

ζf (t) = (1− tm1)−`(f
m1 )/m1 · · · (1− tmk)−`(f

mk )/mk .

Therefore the roots and poles of ζf (t) are roots of unity.

�The if part�. Since ζf (t) is a rational function it has only a �nite
number of poles and zeros, i.e. let ω1, . . . , ωl be such zeros and poles.
So they are of the form ωj = e2πirj/kj , for some positive integer kj and
0 ≤ rj ≤ kj − 1. According to Gauss's lemma the minimal polynomial
of ωj over the integers is the kj-th cyclotomic polynomial, i.e. Φkj(t).
Hence Φk1 , . . .Φkl are factors either in the numerator or denominator
of ζf (t). By basic properties of the cyclotomic polynomials (cf. [7]):

Φkj(t) =
∏
d|kj

(1− td)µ(kj/d).

Therefore there exist non-zero integers ci, with 1 ≤ i ≤ s, for some s,
such that

ζf (t) =
s∏
i=1

(1− tdi)ci

where di is a divisor of the least common multiple of k1 · · · kl. �
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The relationship between the numbers `(fm) and the periodic struc-
ture for holomorphic maps was given in [5] in the following result.

Theorem 2 (Theorem A of [5]). Let M be a compact complex manifold
and f : M →M be a nonconstant holomorphic map. Then, there exists
M > 0 such that for all p ∈ N prime and p > M , l(fp) 6= 0 if and only
if p ∈ Per(f).

2. Compact Riemann surfaces of genius g

LetX = Mg be a compact surface of genus g endowed with a complex
structure and f : Mg →Mg be a non-constant holomorphic map. The
homology groups of X with rational coe�cients are:

H0(Mg,Q) = H2(Mg,Q) = Q, H1(Mg,Q) = Q⊕ · · · ⊕Q︸ ︷︷ ︸
2g

.

The identity (3) allows to write the Lefschetz zeta function of f as

(5) ζf (t) =
p(t)

(1− t)(1−Dt)
,

where D is the degree of f and p(t) = det(Id− tf∗1), which is a poly-
nomial of degree at most 2g.

Proposition 3. Let f : Mg →Mg be a continuous map. Then

(a) If p(t) is not a product of cyclotomic polynomials, then `(fm) 6=
0 for in�nitely many m.

(b) If |D| 6= 0, 1 and D−1 is not an eigenvalue of f∗1 of multiplicity
1, then `(fm) 6= 0 for in�nitely many m.

Proof. For continuous self-maps on Mg an expression of its Lefschetz
zeta function is given in (5), which is written in irreducible form, i.e.
1 − t and 1 − Dt are not factors of p(t). If p(t) is not a product of
cyclotomic polynomials then ζf (t) has zeros which are not roots of
unity, according to Theorem 1, there are in�nitely many m's such that
`(fm) 6= 0.

If D 6= 0 and D−1 is not an eigenvalue of f∗1 of multiplicity 1, then
D−1 is a root or pole of ζf (t), because p(t) = det(Id − tf∗1). So if
D 6= −1, 1 since D is an integer, we have that ζf (t) has a root or pole
which is not a root of unity. Therefore `(fm) 6= 0 for in�nitely many
m's. �

From Proposition 3 and Theorem 2 it yields the following result.



PERIODS OF TRANSVERSAL MAPS ON THE TORUS 5

Theorem 4. Let Mg be an orientable surface of genus g endowed with
a complex structure and f : Mg → Mg be a nonconstant holomorphic
map such that its Leftschetz zeta function is given in (5).

(a) If p(t) is not a product of cyclotomic polynomials.
(b) If |D| 6= 0, 1 and D−1 is not an eigenvalue of f∗1 of multiplicity

1.

Then there exists an integer N > 0 such that for all prime p > N , p is
a period of the map f .

Theorem 5. Let Mg be an orientable surface of genus g endowed with
a complex structure and f : Mg → Mg be a nonconstant holomorphic
map. Let λ1, . . . λ2g be the eigenvalues of f∗1 and D the degree of f . If
any of these conditions hold

(a) |D| > max{1, |λ1|, . . . , |λ2g|}.
(b) There exists |λj| > max{1, |D|, |λi| : i 6= j}.
(c) There exists i1, . . . , ik such that λi1 = · · · = λik and

|λi1| > max{1, |D|, |λj| : j 6= i1, . . . , ik}.

(d) There exists i1, . . . , ik such that

|λi1| = · · · = |λik | > max{1, |D|, |λj| : j 6= i1, . . . , ik}.

Then there exists an integer N > 0 such that for all prime p > N , p is
a period of the map f .

Proof. From the de�nition of the Lefschetz numbers (1) and for all
m ∈ N we have

L(fm) = 1− (λm1 + · · ·+ λm2g) +Dm.

For p prime, according to (2)

`(fp) = L(fp)− L(f)

=
(
1− (λp1 + · · ·+ λp2g) +Dp

)
− (1− (λ1 + · · ·+ λ2g) +D)

= (Dp −D)− (λp1 − λ1)− · · · − (λp2g − λ2g).

If conditions (a) or (b) are held, it can be easily checked that `(fp) 6=
0 for su�ciently large prime p. Hence, by Theorem 2 these prime
numbers belong to Per(f).

If λi1 = · · · = λik , the number `(fp) can be written as

`(fp) = −k(λpi1 − λi1) + (Dp −D)−
∑

j 6=i1,...ik

(λpj − λj).
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Hence

|`(fp)| ≥ k|λpi1 − λi1| − |D
p −D| −

∑
j 6=i1,...ik

|λpj − λj|

= |λpi1 − λi1 |

(
k − |D

p −D|
|λpi1 − λi1 |

−
∑

j 6=i1,...ik

|λpj − λj|
|λpi1 − λi1|

)
.

If |λi1| > max{1, |D|, |λj| : j 6= i1, . . . , ik}, the ratios

|Dp −D|
|λpi1 − λi1|

,
|λpj − λj|
|λpi1 − λi1 |

are arbitrary small for su�ciently large p. Hence |`(fp)| > 0 for large
prime numbers p. So by Theorem 2, these numbers p belong to Per(f).
This proves statement (c).

If |λi1 | = · · · = |λik | > 1 then

`(fp)| ≥ (|λpi1 − λi1 + · · ·+ λpik − λik |)− |D
p −D| −

∑
j 6=i1,...ik

|λpj − λj|

= |λi1|p−1((λi1 − 1) + · · ·+ (λik − 1))− |Dp −D| −
∑

j 6=i1,...ik

|λpj − λj|

≥ C1|λi1|p − |Dp −D| −
∑

j 6=i1,...ik

|λpj − λj|,

for some constant C1 > 0.

Hence

`(fp)| ≥ |λi1|p
(
C1 −

|Dp −D|
|λi1|p

−
∑

j 6=i1,...ik

|λpj − λj|
|λi1 |p

)
.

If |λi1| > max{1, |D|, |λj| : j 6= i1, . . . , ik} then the ratios

|Dp −D|
|λi1|p

,
|λpj − λj|
|λi1|p

.

are small for arbitrary large p. Therefore we can conclude `(fp) 6= 0,
for large p. This proves statement (d). �

We note that the minimal periods of holomorphics maps on surfaces
has been studied in [11].
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3. Product of Riemann spheres

In this section we consider the product of Riemann spheres, which
have a natural complex structure. We de�ne X(n) := S2 × · · · × S2︸ ︷︷ ︸

n−times

.

Theorem 6. Let f : X(n)→ X(n) be a continuous map. Let λ1, · · · , λn
be the eigenvalues of f∗2.

(a) If |λi| > 1 for 1 ≤ i ≤ n, then `(fp) 6= 0 for all prime number
p.

(b) If λi = −1 for some i then `(fp) = 0, for all odd prime numbers.
(c) If λi = −1 for some i and λj 6= 0 for 1 ≤ j ≤ n then `(f 2) 6= 0.

Before proving Theorem 6 we present the following result that de-
termines the value of the Lefschetz numbers for the maps on X(n).

Theorem 7 ([2]). Let f : X(n) → X(n) be a continuous map. Then,
for all m > 0,

L(fm) = det(Id + fm∗2),

where Id is the identity map on Qn. In particular,

L(fm) = (−1)nCfm∗2(−1),

where Ch(t) := det(t Id − h) denotes the characteristic polynomial of
h.

Proof of Theorem 6. Due to Theorem 7, we have

L(fm) = (−1)n(1 + λm1 ) · · · (1 + λmn ).

If p is a prime number then

`(fp) = L(fp)− L(f)(6)

= (−1)n((1 + λp1) · · · (1 + λpn)− (1 + λ1) · · · (1 + λn)).(7)

If λi > 1 for 1 ≤ i ≤ n then λpi > λi so (−1)n`(fp) > 0 for every prime
p.

If λi < −1 for 1 ≤ i ≤ n then λpi < λi for every prime p > 2. If n is
even then `(fp) > 0 and if n is odd `(fp) < 0. Similarly if p = 2 then
(−1)n`(fp) > 0 for all n. This proves statement (a).

If λi = −1 for some i, then it follows from (7) that `(fp) = 0 for p
an odd prime. Moreover if λj 6= 0 for all 1 ≤ j ≤ n then, from (7) we
have `(f 2) 6= 0. This proves statements (b) and (c), respectively. �
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The following corollary is a consequence of Theorem 6 and Theo-
rem 2.

Corollary 8. Let f : X(n) → X(n) be a non-constant holomorphic
map. Let λ1, · · · , λn be the eigenvalues of f∗2. If |λi| > 1, for 1 ≤ i ≤ n
then there exists an integer N such that all prime numbers p > N are
periods of f .

Theorem 9. Let f : X(n) → X(n) be a non-constant holomorphic
map. If f∗2 has an eigenvalue bigger than one in modulus and that it
does not have root of unity as eigenvalues. Then there exists N such
that all prime numbers p > N are periods of f .

Theorem 9 is a particular case of the following more general result
proved in [13].

Theorem 10. Let f : X(n)→ X(n) be a continuous map. We assume
that f∗2 has an eigenvalue bigger than one in modulus and that it does
not have root of unity as eigenvalues. Then there exists N such that
`(fm) 6= 0 for m ≥ N .
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