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Abstract. Consider the class of reversible quadratic systems

ẋ = y, ẏ = −x+ x2 + y2 − r2,

with r > 0. These quadratic polynomial differential systems have a
center at the point ((1−

√
1 + 4r2)/2, 0) and the circle x2+y2 = r2

is one of the periodic orbits surrounding this center. These systems
can be written into the form

ẋ = y + (4 +A)x2 −Ay2, ẏ = −x,

with A ∈ (−2, 0). We prove for all A ∈ R that the averaging
theory up to seven order applied to this last system perturbed
inside the whole class of quadratic polynomial differential systems
can produce at most two limit cycles (respectively one limit cycle)
bifurcating from the periodic orbits surrounding the center (0, 0)
of that system. Up to now this result was only know for A = −2
(see [22, 23]).

1. Introduction and statement of the main results

One of the important problems in the qualitative theory of differ-
ential equations is the study of their limit cycles. The second part of
the well-known Hilbert’s 16th problem [26] asks about the maximal
number and the possible relative positions of limit cycles in the planar
polynomial differential systems of degree n ≥ 2. This problem is still
open, even for the case n = 2.

An easier problem than the Hilbert’s 16th problem is the study of
the number of limit cycles which can bifurcate from the periodic orbits
surrounding a center of a polynomial differential system. Many authors
these last years have studied this last problem restricted to the centers
of the quadratic polynomial differential systems, see for instance the
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a

Figure 1. The phase portrait in the Poincaré disc of system (1).

book of Christopher and Li [6] and the hundreds of references quoted
therein.

The tools for studying the limit cycles bifurcating from the peri-
odic orbits surrounding a center are the Poincaré return map (see
for instance [3, 20]), the Poincaré-Melnikov integrals (see for exam-
ple [13, 14]), the Abelian integrals (see [1, 6, 28]), the averaging theory
(see for instance [2, 7]), and the inverse integrating factor (see [11]).
While the first three methods only provide the number of bifurcated
limit cycles, the averaging method and method which use the inverse
integrating factor can also give the shape of bifurcated limit cycles. For
a general overview and more details about the mentioned methods see
reference [12].

According with Iliev [17] and using complex notation the centers
of the quadratic polynomial differential systems are classified into the
following five families:

ż = −iz − z2 + 2|z|2 + (b̄+ ic̄)z̄2, Hamiltonian (QH
3 ),

ż = −iz + az2 + 2|z|2 + bz̄2, Reversible (QR
3 ),

ż = −iz + 4z2 + 2|z|2 + (b+ ic)z̄2, |b+ ic| = 2, codimension four (Q4),

ż = −iz + z2 + (b+ ic)z̄2, Generalized Lotka-Voltera (QLV
3 ),

ż = −iz + z̄2, Hamiltonian triangle,

where a, b, c are arbitrary real constants.

The major part of papers studying the bifurcation of limit cycles
from the periodic orbits surrounding a center consider centers of poly-
nomial Hamiltonian systems. Thus this problem for the centers of the
quadratic polynomial Hamiltonian systems has been solved completely,
see [5, 10, 15, 16, 19, 21].
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Here for r > 0 we consider the following family of quadratic polyno-
mial differential systems

(1) ẋ = y, ẏ = −x+ x2 + y2 − r2,

which have the circle x2 + y2 = r2 as a periodic orbit surrounding the
center

(

(1−
√
1 + 4r2)/2, 0

)

. The phase portraits in the Poincaré disc
of these quadratic polynomial differential systems have been studied
in [25], see Figure 1. It is easy to check that system (1) has the non-
algebraic first integral

H(x, y) = e−2x(x2 + y2 − r2).

Taking z = x+ iy we obtain that any quadratic reversible center QR
3

can be written in the following real form

(2) ẋ = y + (a + b+ 2)x2 − (a+ b− 2)y2, ẏ = −x [1− 2(a− b)y] .

There are some papers studying the limit cycles which bifurcate from
the periodic orbits surrounding the centers of (2) with a 6= b, see for
instance [4, 18]. The study of the case a = b is more difficult because the
first integral contains an exponential function. The following lemma
shows that system (1) is a reversible system (2) with a = b.

Lemma 1. Systems (1) are inside the class of QR
3 because they can be

written as

(3) ẋ = y + (4 + A)x2 − Ay2, ẏ = −x,

where a = b = 1 +
A

2
and A ∈ (−2, 0).

This lemma is proved in section 3.

As far as we know the first work on the bifurcation of limit cycles from
the periodic orbits surrounding a center of a system (3) under quadratic
perturbations was done by Li [22] for A = −2 proving that at most 2
limit cycles bifurcate from that center. Note that for A = −2 system
(3) with the change of variables (x, y, t) → (x/2, y/2,−t) becomes the
system

ẋ = −y − x2 − y2, ẏ = x,

studied by Li. Later on Liu [23] provided a shorter proof of the result
of Li. In this paper we study this problem for all values of A.

From statement (ii) of Theorem 1 in Iliev [17] the essential quadratic
perturbations for finding the upper bound on the number of limit cycles
which can bifurcate from the periodic orbits surrounding the center
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(0, 0) of the reversible quadratic polynomial differential systems (3)
under general quadratic perturbations are

(4) ż = (λ1(ε)− i)z + (a+ iλ3(ε))z
2 + 2|z|2 + (b+ iλ5(ε))z̄

2,

where we can take the λk(ε) for k = 1, 3, 5 as real analytical functions
in ε sufficiently small with λk(0) = 0. That is λk(ε) = Σ∞

j=1λkjε
j. In

fact according with Iliev it would be sufficient to take λk(ε) = λkε, but
since we shall use averaging theory up to order seven for studying the
limit cycles of system (4) it is convenient to take λk(ε) = Σ∞

j=1λkjε
j.

In short, for studying the maximum number of limit cycles which
can bifurcate from the periodic orbits surrounding the center (0, 0) of
system (3) perturbed by a general quadratic polynomial, it is enough
to study for ε 6= 0 sufficiently small the limit cycles of system (4), or
equivalently the limit cycles of system (4) written in the real variables
(x, y) where z = x+ iy, i.e.

(5)

ẋ = y + (4 + A)x2 − Ay2 +
∞
∑

i=1

εi (λ1ix+ 2(λ5i − λ3i)xy) ,

ẏ = −x+
∞
∑

i=1

εi
(

λ1iy + (λ3i + λ5i)(x
2 − y2)

)

.

Our main result is the following one.

Theorem 2. For |ε| 6= 0 sufficiently small and for all A ∈ R the

maximum number of limit cycles of system (5) obtained using averaging

theory up to seven order is two.

Theorem 2 is proved in section 3.

As far as we know in this paper it is the first time that it is used in
an application the average functions until order seven. We note, as it
is shown in the proof of Theorem 2, that the two limit cycles can be
obtained already from the fifth average function when A ∈ R\{−4, 6},
and only from the seventh average function when A ∈ {−4, 6}.

2. Preliminary results

In this section we recall the results on the averaging theory that we
need for proving Theorem 2.

We consider a differential system of the form

(6) ẋ =

k
∑

i=1

εiFi(t, x) + εk+1G(t, x, ε),
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where Fi : R×D → R
n for i = 1, ..., k, and G : R×D× (−ε0, ε0) → R

n

are continuous functions and T-periodic in the first variable, D is an
open subset of Rn and ε a small parameter.

From [27] (see also (1.103), (1.104) and section 1.3.4 of [24]) we define
the functions yi(t, z) and the average functions fi(z) for i = 1, ..., 7
associated to system (6). In these functions we denote by ∂kFm(s, z)
the k-th partial derivative of the function Fm(s, z) with respect to the
variable z. Thus we have

y1(t, z) =

∫ t

0

F1(s, z)ds,

y2(t, z) =

∫ t

0

(2F2(s, z) + 2∂F1(s, z)y1(s, z)) ds,

y3(t, z) =

∫ t

0

(

6F3(s, z) + 6∂F2(s, z)y1(s, z) + 3∂2F1(s, z)y1(s, z)
2

+3∂F1(s, z)y2(s, z)) ds,

y4(t, z) =

∫ t

0

(

24F4(s, z) + 24∂F3(s, z)y1(s, z) + 12∂2F2(s, z)y1(s, z)
2

+ 12∂F2(s, z)y2(s, z) + 12∂2F1(s, z)y1(s, z)y2(s, z)

+4∂3F1(s, z)y1(s, z)
3 + 4∂F1(s, z)y3(s, z)

)

ds,

y5(t, z) =

∫ t

0

(

120F5(s, z) + 120∂F4(s, z)y1(s, z) + 60∂2F3(s, z)y1(s, z)
2

+ 60∂F3(s, z)y2(s, z) + 60∂2F2(s, z)y1(s, z)y2(s, z)

+20∂3F2(s, z)y1(s, z)
3 + 20∂F2(s, z)y3(s, z)

)

+ 20∂2F1(s, z)y1(s, z)y3(s, z) + 15∂2F1(s, z)y2(s, z)
2

+ 30F1(s, z)y1(s, z)
2y2(s, z) + 5∂4F1(s, z)y1(s, z)

4

+5∂F1(s, z)y4(s, z)) ds.

y6(t, z) =

∫ t

0

(720F6(s, z) + 720∂F5(s, z)y1(s, z) + 360∂F4(s, z)y2(s, z)

+ 360∂2F4(s, z)y1(s, z)
2 + 120∂F3(s, z)y3(s, z)

+ 360∂2F3(s, z)y1(s, z)y2(s, z) + 120∂3F3(s, z)y1(s, z)
3

+ 30∂F2(s, z)y4(s, z) + 120∂2F2(s, z)y1(s, z)y3(s, z)

+ 30∂4F2(s, z)y1(s, z)
4 + 90∂2F2(s, z)y2(s, z)

2

+ 180∂3F2y1(s, z)
2y2(s, z) + 6∂F1(s, z)y5(s, z)
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+ 30∂2F1(s, z)y1(s, z)y4(s, z) + 60∂2F1(s, z)y2(s, z)y3(s, z)

+ 60∂3F1(s, z)y1(s, z)
2y3(s, z) + 60∂4F1(s, z)y1(s, z)

3y2(s, z)

+90∂3F1(s, z)y1(s, z)y2(s, z)
2 + 6∂5F1(s, z)y1(s, z)

5
)

ds.

Moreover we have

f1(z) =
1

T

∫ T

0

F1(t, z)dt,

f2(z) =
1

T

∫ T

0

(F2(t, z) + ∂F1(t, z)y1(t, z)) dt,

f3(z) =
1

T

∫ T

0

(

F3(t, z) + ∂F2(t, z)y1(t, z) +
1

2
∂2F1(t, z)y1(t, z)

2+

+
1

2
∂F1(t, z)y2(t, z)

)

dt,

f4(z) =
1

T

∫ T

0

(

F4(t, z) + ∂F3(t, z)y1(t, z) +
1

2
∂2F2(t, z)y1(t, z)

2

+
1

2
∂F2(t, z)y2(t, z) +

1

2
∂2F1(t, z)y1(t, z)y2(t, z)

+
1

6
∂3F1(t, z)y1(t, z)

3 +
1

6
∂F1(t, z)y3(t, z)

)

dt,

f5(z) =
1

T

∫ T

0

(

F5(t, z) + ∂F4(t, z)y1(t, z) +
1

2
∂2F3(t, z)y1(t, z)

2

+
1

2
∂F3(t, z)y2(t, z) +

1

2
∂2F2(t, z)y1(t, z)y2(t, z)

+
1

6
∂3F2(t, z)y1(t, z)

3 +
1

6
∂F2(t, z)y3(t, z)

+
1

6
∂2F1(t, z)y1(t, z)y3(t, z) +

1

8
∂2F1(t, z)y2(t, z)

2

+
1

4
∂3F1(t, z)y1(t, z)

2y2(t, z) +
1

24
∂4F1(t, z)y1(t, z)

4

+
1

24
∂F1(t, z)y4(t, z)

)

ds.

f6(z) =
1

T

∫ T

0

(

F6(t, z) + ∂F5(t, z)y1(t, z) +
1

2
∂F4(t, z)y2(t, z)

+
1

2
∂2F4(t, z)y1(t, z)

2 +
1

6
∂F3(t, z)y3(t, z)

+
1

2
∂2F3(t, z)y1(t, z)y2(t, z) +

1

6
∂3F3(t, z)y1(t, z)

3

+
1

24
∂F2(t, z)y4(t, z) +

1

6
∂2F2(t, z)y1(t, z)y3(t, z)

+
1

4
∂3F2(t, z)y1(t, z)

2y2(t, z) +
1

8
∂2F2(t, z)y2(t, z)

2
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+
1

24
∂4F2(t, z)y1(t, z)

4 +
1

120
∂F1(t, z)y5(t, z)

+
1

24
∂2F1(t, z)y1(t, z)y4(t, z) +

1

12
∂2F1(t, z)y2(t, z)y3(t, z)

+
1

12
∂3F1(t, z)y1(t, z)

2y3(t, z) +
1

12
∂4F1(t, z)y1(t, z)

3y2(t, z)

+
1

8
∂3F1(t, z)y1(t, z)y2(t, z)

2 +
1

120
∂5F1(t, z)y1(t, z)

5

)

dt.

f7(z) =
1

T

∫ T

0

(F7(s, z) + ∂F6(s, z)y1(s, z)

+
1

2
∂F5(s, z)y2(s, z) +

1

2
∂2F5(s, z)y1(s, z)

2

+
1

6
∂F4(s, z)y3(s, z) +

1

2
∂2F4(s, z)y1(s, z)y2(s, z)

+
1

6
∂3F4(s, z)y1(s, z)

3 +
1

24
∂F3(s, z)y4(s, z)

+
1

6
∂2F3(s, z)y1(s, z)y3(s, z) +

1

4
∂3F3(s, z)y1(s, z)

2y2(s, z)

+
1

24
∂4F3(s, z)y1(s, z)

4 +
1

8
∂2F3(s, z)y2(s, z)

2

+
1

120
∂F2(s, z)y5(s, z) +

1

24
∂2F2(s, z)y1(s, z)y4(s, z)

+
1

8
∂3F2(s, z)y1(s, z)y2(s, z)

2 +
1

12
∂3F2(s, z)y1(s, z)

2y3(s, z)

+
1

12
∂4F2(s, z)y1(s, z)

3y2(s, z) +
1

120
∂5F2(s, z)y1(s, z)

5

+
1

12
∂2F2(s, z)y2(s, z)y3(s, z) +

1

720
∂F1(s, z)y6(s, z)

+
1

120
∂2F1(s, z)y1(s, z)y5(s, z) +

1

12
∂3F1(s, z)y1(s, z)y2(s, z)y3(s, z)

+
1

48
∂3F1(s, z)y1(s, z)

2y4(s, z) +
1

16
∂4F1(s, z)y1(s, z)

2y2(s, z)
2

+
1

36
∂4F1(s, z)y1(s, z)

3y3(s, z) +
1

48
∂5F1(s, z)y1(s, z)

4y2(s, z)

+
1

120
∂6F1(s, z)y1(s, z)

6 +
1

48
∂2F1(s, z)y2(s, z)y4(s, z)

+
1

48
∂3F1(s, z)y2(s, z)

3 +
1

72
∂2F1(s, z)y3(s, z)

2

)

ds.

If we denote the solution of the differential system (6) with x(t, z, ε)
such that x(0, z, ε) = z, then we have

x(T, z, ε)− z =

7
∑

i=1

εfi(z) + . . .

Therefore by using the Implicit Function Theorem we conclude that if
f1(z) = f2(z) = ... = fk−1(z) ≡ 0 and fk(z) 6≡ 0, then the simple zeros
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of fk(z) provide limit cycles of the differential system (6). For more
details see Theorem A of [27].

3. Proof of Theorem 2

Before proving Theorem 2 we prove Lemma 1.

Proof of Lemma 1. First we translate the center ((1−
√
1 + 4r2)/2, 0)

of the differential system (1) to the origin of coordinates and we obtain
the differential system

(7) ẋ = y, ẏ = −
√
1 + 4r2 x+ x2 + y2.

Doing the linear change (x, y) = (v/ 4

√

(1 + 4r2), u) we write the linear
part of the differential system (7) into its canonical real Jordan normal
form, and system (7) becomes

(8)
u̇ = − 4

√

(1 + 4r2) v + u2 +
v2√

1 + 4r2
,

v̇ = 4

√

(1 + 4r2)u.

Performing the transformation u = αX , v = βY with

α = −β = 4

√

(1 + 4r2)3

(√
1 + 4r2 − 1

r2

)

,

and changing (X, Y ) by (x, y) the differential system (8) becomes sys-

tem (3) with A =
1−

√
1 + 4r2

r2
. Moreover system (3) is into the form

(2) of reversible quadratic centers taking a = b = 1 +
A

2
. �

Proof of Theorem 1. The aim of this section is to study the limit cycles
of the quadratic system (5) when ε 6= 0 is sufficiently small by using
the averaging theory of six order.

We see that system (5) has a center at the origin and the linear part
of the system is in its canonical real Jordan normal form when ε = 0.
We consider the change to polar coordinates x = r cos θ, y = r sin θ
and we get the differential system (5) in polar coordinates (ṙ, θ̇).

After rescaling the variable r as r = εR and taking the angle θ as
the new independent variable, we obtain the differential equation

(9)
dR

dθ
=

7
∑

i=1

εiFi(θ, R) +O(ε7),
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Now we can apply the averaging theory described in section 2 to this
differential system, because system (9) is equivalent to system (6) tak-
ing x = R, t = θ and T = 2π.

For the differential equation (9) we have that Fi = Fi(θ, R) for i =
1, 2, 3, 4 are

F1 = −λ11R +− cos θ((A+ 2) cos(2θ) + 2)R2,

F2 = −λ12R + sin θ(cos(2θ)((A+ 2)λ11 − 2λ51) + 2λ11 + λ31 − λ51)R
2

+
1

2
sin(2θ)((A+ 2) cos(2θ) + 2)2R3,

F3 = −λ13R + (sin θ(cos(2θ)((A+ 2)λ12 − 2λ52) + 2λ12 + λ32 − λ52)

−λ11(λ31 cos θ + λ51 cos(3θ)))R
2 +

1

4
((A+ 2) cos(2θ) + 2)

(cos(4θ)((A+ 2)λ11 − 4λ51)− 2Aλ11 cos(2θ)

+(A− 2)λ11 − 4λ31)R
3 − sin2 θ cos θ((A + 2) cos(2θ) + 2)3R4,

F4 = −λ14R + (sin θ(cos(2θ)((A+ 2)λ13 − 2λ53) + 2λ13 + λ33 − λ53)

+ cos θ(−λ11λ32 − λ12λ31)− cos(3θ)(λ11λ52 + λ12λ51))R
2

+
1

8
(−2 cos(4θ) ((A2 − 4) λ12 + 8λ52)− 2 ((A2 + 4)λ12 + 8λ32)

+4 sin(2θ)((A− 2)λ11λ51 + 4λ11λ31 + λ31(λ31 − 2λ51))

+4λ11 sin(4θ)((A+ 2)λ31 − (A− 2)λ51) + 4λ51 sin(6θ)

((A+ 2)λ11 − λ51) + cos(2θ)((A− 2)(3A+ 2)λ12

−4(A + 2)(2λ32 + λ52)) + (A+ 2) cos(6θ)((A+ 2)λ12 − 4λ52))R
3

+
1

4
sin θ((A+ 2) cos(2θ) + 2)2(2 cos(2θ)(Aλ11 + λ31 + λ51)

− cos(4θ)((A+ 2)λ11 − 6λ51)−Aλ11 + 2λ11 + 6λ31)R
4

+ sin3 θ cos θ((A+ 2) cos(2θ) + 2)4R5.

We do not provide the functions Fi(θ, R) for i = 5, 6, 7 because their
expressions are huge, and they are easy to compute with the help of
an algebraic manipulator as mathematica or mapple.

From the formulas of section 2 we can compute again by using an
algebraic manipulator as mathematica or mapple the average functions.
Thus the average function of first order is

f1(R) = −λ11R.

It is clear that f1(R) = 0 has no positive roots. Therefore we get no
information about the bifurcated limit cycles of system (5) from the
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average function of first order. By setting λ11 = 0, we have f1(R) ≡ 0.
So computing the average function of second order we obtain

f2(R) = −λ12R.

Again f2(R) does not provide any information about the limit cycles.
Taking λ12 = 0 we compute the third order average function

f3(R) = −λ13R− 2λ31R
3.

Clearly equation f3(R) = 0 has at most one simple positive root, show-
ing that the third average function can provide one limit cycle for the
differential equation (9).

If λ13 = λ31 = 0, then f3(R) ≡ 0 and we compute the fourth order
average function

f4(R) = −λ14R− 2λ32R
3.

Therefore as in the case of the third average function the fourth one
can provide at most one limit cycle for the differential equation (9).

By setting λ14 = λ32 = 0 we compute

f5(R) = −λ15R− 2λ33R
3 − 1

3
(A− 6)(A+ 4)λ51R

5.

It follows immediately that equation f5(R) = 0 can have at most two
simple positive roots if A /∈ {−4, 6}, and consequently the fifth average
function can provide at most two limit cycles for the differential equa-
tion (9) if A /∈ {−4, 6}. When A ∈ {−4, 6} as for the third average
function the fifth average function can provide at most one limit cycle
for the differential equation (9). Now we must distinguish three cases.

Case 1: λ15 = λ33 = λ51 = 0. Then we compute the sixth order
averaging function and we obtain

f6(R) = −λ16R− 2λ34R
3 − 1

3
(A− 6)(A+ 4)λ52R

5.

So the same conclusions than for the fifth average function, and we
must consider three subcases.

Subcase 1.1: λ16 = λ34 = λ52 = 0 and we obtain the seventh order
averaging function

f7(R) = −λ17R− 2λ35R
3 − 1

3
(A− 6)(A+ 4)λ53R

5.

Again the same conclusions than for the fifth average function.

Subcase 1.2: λ16 = λ34 = 0, A = −4. Then the seventh order averaging
function is

(10) f7(R) = −λ17R− 2λ35R
3.
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So equation f7(R) = 0 can have at most one simple positive root, and
consequently the seventh average function can provide at most one
limit cycle for the differential equation (9).

Subcase 1.3: λ16 = λ34 = 0, A = 6. Therefore the seventh order
averaging function is (10). So the same conclusion than in the subcase
1.2.

Case 2: λ15 = λ33 = 0, A = −4 and we obtain the sixth order averaging
function

(11) f6(R) = −λ16R− 2λ34R
3.

Therefore in this case we can obtain at most one limit cycle for the
differential equation (9). Taking λ16 = λ34 = 0 we get that the seventh
order averaging function is

f7(R) = −λ17R− 2λ35R
3 +

11011

1296
λ51R

7.

Hence equation f7(R) = 0 can have at most two simple positive roots,
and consequently the seventh average function can provide at most two
limit cycles for the differential equation (9). In short, when A = −4
the two limit cycles appear in order seven and not in order five as it is
the case for A ∈ R \ {−4, 6}.
Case 3: λ15 = λ33 = 0, A = 6 and we obtain the sixth order average
function is (11). So at most one limit cycle at order sixth. Taking
λ16 = λ34 = 0 we get that the seventh order averaging function is

f7(R) = −λ17R− 2λ35R
3 − 193594

81
λ51R

7.

Again as in the case A = −4 for A = 6 the two limit cycles do not
appear until order seven.

This completes the proof of Theorem 2. �
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Recerca grant 2017 SGR 1617, and the European project Dynamics-
H2020-MSCA-RISE-2017-777911. The second and third authors are
supported by Isfahan University of Technology (IUT).



12 J. LLIBRE, A. NABAVI AND M. MOUSAVI

References

[1] A. Atabaigi, N. Nyamoradi and H. Zangeneh, The number of limit cycles
of a quintic polynomial system with a center, Nonlinear Anal. 7 (2009), 3008–
3017.

[2] R. Benterki and J. Llibre, Centers and limit cycles of polynomial differ-
ential systems of degree 4 via averaging theory, J. Comput. Appl. Math. 407
(2013), 16–22.

[3] T. Blows and L. Perko, Bifurcation of limit cycles from centers and sepa-
ratrix cycles of planar analytic systems, SIAM Rev. 36 (1994), 341–376.

[4] G. Chen, C. Li, C. Liu and J. Llibre, The cyclicity of period annuli of
some classes of reversible quadratic systems, Disc. Contin. Dyn. Sys. 16 (2006),
157–177.

[5] F. Chen, C. Li, J. Llibre and Z. Zhang, A unified proof on the weak
Hilbert 16th problem for n = 2, J. Differential Equations 221 (2006), 309–342

[6] C. Christopher and C. Li, Limit cycles of differential equations, Advanced
Courses in Mathematics. CRM Barcelona. Birkhuser Verlag, Basel, 2007.

[7] B. Coll, J. Llibre and R. Prohens, Limit cycles bifurcating from a per-
turbed quartic center, Chaos Solitons Fractals 44 (2011), 317–334.

[8] F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of
degree four: (IV) figure eight loop, J. Diff. Eqs. 188 (2003), 512–554.

[9] F. Dumortier, J. Llibre and J.C. Artés, Qualitative Theory of Planar
Differential Systems, Springer Verlag, New York, 2006.

[10] L. Gavrilov and E. Horozov, Limit cycles of perturbations of quadratic
Hamiltonian vector fields, J. Math. Pures et appl. 72 (1993), 213–238.

[11] H. Giacomini, J. Llibre and M. Viano, On the shape of limit cycles that
bifurcate from Hamiltonian centers, Nonlinear Anal. 41 (2000), 523–537.

[12] M. Han, Asymptotic expansions of Melnikov functions and limit cycle bifur-
cations, Int. J. Bifur. Chaos 22(12) (2012) 1250296 (30 pp).

[13] M. Han, J. Yang and P. Yu, Hopf bifurcations for near-Hamiltonian sys-
tems, Int. J. Bifur. Chaos 19 (2009), 4117–4130.

[14] M. Han and P. Yu, Normal forms, Melnikov functions and bifurcations of
limit cycles, Applied Mathematical Sciences, vol. 181, Springer, London, 2012.

[15] E. Horozov and I.D. Iliev, On the number of limit cycles in perturbations of
quadratic Hamiltonian systems, Proc. London Math. Soc. 69 (1994), 198–224.

[16] I.D. Iliev, High-order Melnikov functions for degenerate cubic Hamiltonian,
Adv. Diff. Eqns. 1 (1996), 689–708.

[17] I.D. Iliev, Perturbations of quadratic centers, Bull. Sci. Math. 122 (1998),
107–161.

[18] I.D. Iliev, C. Li and J. Yu, Bifurcation of limit cycles from quadratic non-
Hamiltonian systems with two centers and two unbounded heteroclinic loops,
Nonlinearity 18 (2005), 305–330.

[19] C. Li and J. Llibre, A unified study on the cyclicity of period annulus or
reversible quadratic Hamiltonian systems, J. Dynamics and Differential Equa-
tions 16 (2004), 271–295.

[20] C. Li, J. Llibre and Z. Zhang, Weak focus, limit cycles and bifurcations
for bounded quadratic systems, J. Diff. Eqns. 115 (1995), 193–223.

[21] C. Li and Z. Zhang, Remarks on 16th weak Hilbert problem for n = 2,
Nonlinearity 15 (2002), 1975–1992.



CYCLICITY OF QUADRATIC REVARSIBLE CENTERS 13

[22] J. Li, Limit cycles bifurcated from a reversible quadratic center, Qual. Theory
Dyn. Syst. 6 (2002), 205–215.

[23] C. Liu, Limit cycles bifurcated from some reversible quadratic centers with a
non-algebraic first integral, Nonlinearity 25 (2012), 1653–1660.

[24] J. Llibre, R. Moeckel and C. Simó, Central Configurations, Periodic
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