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WE PROVE A CONJECTURE ON THE
INTEGRABILITY OF LIENARD SYSTEMS

JAUME LLIBRE, ADRIAN C. MURZA AND CLAUDIA VALLS

ABSTRACT. We consider the Liénard differential systems

(1) t=y+F), y=u=

in C? where F(x) is an analytic function satisfying F(0) = 0 and
F’(0) # 0. Then these systems have a strong saddle at the origin
of coordinates. It has been conjecture that if such systems have
an analytic first integral defined in a neighborhood of the origin,
then the function F'(z) is linear, i.e. F(z) = ax. Here we prove
this conjecture, and show that when F(z) is linear and system (1)
has an analytic first integral this is a polynomial.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

One of the main problems about the differential systems in C?, and
in particular for the Liénard differential systems

t=y+ F(x), y=n=x,

with the function F'(z) analytic, is to know when they are integrable or
not. If the function F' satisfies F'(0) = F'(0) = 0, then the eigenvalues
of the linear part of system (2) at the singular point located at the
origin of coordinates are +1, and consequently the origin is a weak
Recall that a saddle is weak if its eigenvalues are +\ with
0 # A € R, and a saddle is strong when its eigenvalues are A\j, Ay € R,
AL <0< A and Ay 7é -l

The vector field associated to the Liénard differential system (2) is

0 0
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We recall that the function H = H(x,y) is a first integral of system (2)
in an open subset U or C? if
OH OH

(3) XH:(y—I—F(:E))%—an—y:O on the points of U.

From Theorem 1 of Gasull and Giné [4] it follows the next result.

Theorem 1. The Liénard analytic differential system
(4) Tt =y+ F(zx), y=buz, with 0 # b € C,

and F(z) =3, a;x?, is locally integrable at the origin if and only if
F(z) is an even polynomial (i.e. F(—x) = F(z)) .

Note that in Theorem 1 as already noticed by the authors the origin
is a weak saddle.

Theorem 1 extends to C? and for all non-zero complex number b
the well known results on the existence of a local first integral in a
neighborhood of the origin for a polynomial Liénard differential (4) in
R? having at the origin a center (i.e. b = —1 obtained by Poincaré
[10]), or a weak saddle (i.e. b =1, see [1, 11, 14]).

In all the paper Z* and Q' denote the sets of non-negative integer
numbers and non-negative rational numbers, respectively. Consider
analytic differential systems in C? of the form

(5) U= u+---, V= —pv+---,

where A\ and p are non-zero complex numbers. In (5) the dots ---
denotes nonlinear terms. From Poincaré [10] and Furta [3] we know that
a necessary condition for the existence of an analytic first integral in a
neighborhood of the origin of system (2) is that A\/u = p/q € Q*\ {0}
with ged(p,q¢) = 1. When A and p satisfies this condition we say that
the origin is in [p : —q] resonance.

A [p : —q| resonant differential system (5) after a scaling of time if
necessary can be written as

with p,q € Z* \ {0}. The next result follows from Theorem 4 of [5].

Theorem 2. The Liénard analytic differential system (2) with a strong
saddle at the origin can be transformed into a system with a [p : —q|
resonant saddle at the origin.
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The study of the existence or not of a first integral in a neighborhood
of a [p : —q] resonant saddle is a difficult problem, see for instance [2, 7,
8, 12, 14] and the references quoted there. Hence Theorem 2 says that
the study of the existence or not of a first integral in a neighborhood of
a strong saddle for the Liénard differential system (2) is also difficult.

When a planar differential system has a (local) first integral we say
that it is (locally) integrable. In [4] the authors left open the following
problem (see the last sentence of their paper):

Open problem. We do not know if there are nonlinear integrable
cases in systems (2).

Later on in [5] appears explicitly the following:

Conjecture. The unique integrable case of the Liénard system (2) is
the linear one.

We remark that this conjecture is made for Liénard analytic differ-
ential systems having a strong saddle at the origin.

The objective of this note is to prove the previous conjecture re-
stricted to polynomial first integrals and restricted to Liénard poly-
nomial differential systems (2), i.e. the function F(x) is polynomial.
Thus our first main result is:

Theorem 3. If a Liénard analytic differential system (2) has a local
analytic first integral defined in a neighborhood of the origin, then

k1 — ko

VEiks’

where a # 0 and ki and kg are coprime positive integers.

(7) a=F'(0) =+

The proof of Theorem 3 is given in section 2. Note that since we
are interested in systems that are integrable, we must have a satisfying

(7).
When a = F’(0) does not satisfy (7) the analytical integrability of
the Liénard analytic differential system has been studied in [9].

Theorem 4. If a Liénard analytic differential system (2) with a as in
(7) has a polynomial first integral, then the degree of the polynomial
F(z) must be one, i.e, F(x) = ax, and the polynomial first integral H
18
o {(\/k_zx —VEy)" (VEir +VEay)™®  if a = (ki — ka)/VEiks,
(VEar + VEy)" (VEie — Vkey)® if a = (ke — k1) /VEiko.
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Note that Theorem 4 proves the conjecture restricted to polynomial
first integrals.

The next result proves the conjecture.

Theorem 5. If a Liénard analytic differential system (2) with a as in
(7) has an analytic first integral defined in a neighborhood of the origin,
then the degree of the polynomial F(z) must be one, i.e, F(x) = ax,
and the polynomial first integral H is the one given in Theorem 4.

Theorem 4 is proved in section 3, while Theorem 5 is proved in
section 4.

2. PROOF OF THEOREM 3

Before proving Theorem 3 we recall the following result whose proof
can be found in [3, 6, 10].

Theorem 6. Assume that the eigenvalues Ay and Ao of the Jacobian
matriz of system (2) at the singular point (0,0) do not satisfy the con-
dition

k1Al + kodg = 0, ]fl, ko € Z+, ki1 4+ ko > 0,
then system (2) has no local analytic first integral defined in a neigh-
borhood of the origin.

We first note that the origin is the unique singular point of system
(2) and that the eigenvalues of the Jacobian matrix at this point satisfy

/a2 & 4 _Ja2 14
A2—gA—1 =0, that is \; — % S0, M= % <0.
So we have that A\; Ay = —1, yielding Ay = —1/A;. Moreover, since by
assumptions the system has a local analytic first integral in a neigh-
borhood of the origin, in view of Theorem 6 we must have that

ky kM2 —k
0= kA +kodg = ki h — — = L2
A A

with ki, ko € Z" such that k; + ky > 0. So,

ko ky
VDY S W iy
1 klu 2 kz

Note that ki, ko € Z7 \ {0} because A\; and A, are not zero. Therefore

k?l k27
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or equivalently
a+at+4+20va?+4  ky d+ad+4-2aVa?+4 K

4 Tk 4 Ty

Hence,

ki ko

— == —aVva®+4,

ko Ky
that is

/{32 o k2
ava?+4="2_"1
k1ko
Hence _—
a=+——2 k. kyeZ"\ {0}

Vhkiks'
Moreover, ki and ko are different, otherwise a = 0 which is not possible
because the origin would be a weak saddle. Finally, we observe that
ki and ko are coprime. Otherwise setting k; = g.c.d{kl,kg}lgzl and
ky = g.c.d{kq, ]{32}];’2 we get

0= ig.C.d{kh k’g}(iﬁ — ]%2) _ ikl — ]2?2

\/(g.C.d{kl, ]{72})21%1]%2 \% 1%1]%2

This completes the proof of Theorem 3.

3. PROOF OF THEOREM 4
Without loss of generality we may write the polynomial first integral
H = H(z,y) as
H = go(x)y" + g1(2)y" " + ...+ go-1(2)y + gu(@),

where the ¢;(x) for i = 0,...,d are polynomials, and go(z) is not the
zero polynomial. Substituting H into (3) we get

Xh= (y+ F(x)) (géy” + 9y g+ 92)+

x(”.g(]yn_l + (n - 1)glyn_2 +..o+ 29n—2y + gn—l) = 07

where the prime denotes derivative with respect to the variable x. Now
we rewrite this equality as

9oy + (9o F + g)y" + (61 F + g5 + ngor)y" ' + ..
+(Gh1 + o+ 3gn-s2)y”
+(gl, + g1 F + 29, —22)y + (g, F + gn17) = 0.
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Since all coefficients of the previous polynomial in the variable y must
be zero, we get the following system of differential equations

90 =0, g, =0,
% _ —Fg,— g4
Jo = nxa g1 = (n—l)x )
 —Fgy— g, _ —Fg,—g;
(8) g2 = (n — 2)]} ) g3 = (Tl _ 3)1’ )
. —Fg, 1~ g, _ —Fyg,
gn72 - ) gnfl - .
2 T

From the first two equations of (8) we get that go and ¢g; are con-
stants, and additionally by assumptions we have that gy # 0. From the
third equation of (8) we obtain that go(x) is a polynomial of degree 2.

From the fourth equation, since ¢;,gs and g3 are polynomials we
get that F' must be a polynomial. Assume that the degree of the
polynomial F'is d > 1, then from the fourth equation of (8) it follows
that the degree of the polynomial g3 is d + 2. Now from the fifth
equation of (8) we get that the degree of the polynomial g4 is 2d + 2,
and from the sixth we obtain that the degree of the polynomial g5 is
3d + 2.

Thus recursively we have that the degree of the polynomial g, for
k=2 ...,nis (k—2)d+ 2. From the last equation of (8) we obtain
that the degree 1+ (n —3)d+ 2 of the polynomial xg,_; must be equal
to the degree d+ (n —2)d + 1 of the polynomial Fg/,, but this equality
is only possible if d = 1.

It is easy to check that the Liénard analytic differential system (2)
of degree 1, i.e.

T =1y 4+ aw, Y=,

with a as in (7) has the polynomial first integral H as in the statement
of the theorem. This completes the proof of Theorem 4.

4. PROOF OF THEOREM 5

Consider system (2) with one of the conditions given by Theorem 3,
namely the coefficient a of z in F(x) is equal to (k1 — ks)/v/k1ks (the
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case in which a = —(ky — k2)/v/ki1ks follows in the same way). Then

If a; =0 for j > 2 it follows from Theorem 4 that system (2) has a
polynomial first integral. Therefore we assume, first that a; # 0 for
some j > 2, and second that system (2) has an analytic first inte-
gral H defined in a neighborhood of the origin, and we will reach a
contradiction.

Under the assumptions on F' we have

ki —k - ,
i=y+ = 2x+2ajxj,
j=2

(9) Vkika

Y=

Making the change of variables

(10) w= Vet vVky v=Vke—VEy,

with inverse change
_VRutVEy  VEu- VR
B Ry +ky V= k1 + ko

and the rescaling of the time t = \/k1ko T, we have that system (9)
becomes

B (VEiu+ VEv\i
U’_klu‘f‘kl\/k’_sz:;aj( ]{,‘1—|—k2 ) y

(11)

v = _kQU + k2\/k_1iaj(\/k_lu - \/k_ZU)j>
j=2

k1 + ko

where the prime denotes derivative in the new variable 7.

If &y > ko (and so ky; > 1), we change from the variables (u,v) to the
variables (u, z) where z = uf2v*1 and so v = z/Fiy~k2/k1,

If ko > ky (and so ko > 1), we change from the variables (u,v) to
(z,v) where z = uF20" and so u = z'/k2y=k/kz,

From now on we assume that k; > k9 because the other case is done
in a similar manner. Hence we take

(12) 2 =u0" thatis v = 2/Fyke/k
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Then from (11) we have

00 k, k, l/k‘l —k‘g/lﬂ y
W = b+ by /_k2zaj(\/_1u+\/_zz U )J’
j=2

k1 + ko

(13) Z/ — k1k2u(k27k1)/k1 (klfl)/kl \/_u_|_ \/_Z]./klufka/kl)

0 \/_u—i—\/_zl/klu ka/k1
'Z < ky + ko >

j=2

We write H(z, ) as a formal first integral of system (9). Then A H(u,v) =
H(x,y) is a formal first integral of system (11) and H (u, z) = H (u, v) is
a formal first integral of system (13). Writing H (u,v) = > im0 Hj(u)v!
with H; a formal series in u, we can write H(u, z) as

= Au2) = w2,
=0

where H;(u) = H;(u)u=7*/%_ Since H is a first integral we can assume
that it has no constant term. Note that H satisfies

(14) UW—— 42— =0,
with (u/,2’) as in (13). We will show by induction that
(15) Hj(u) =0 forj >0.

Note that to conclude the proof of the theorem it is enough to show
that (15) holds, because in this case we reach to a contradiction.

First note that equation (14) restricted to z = 0 becomes

(o] k‘ . B
(klu +hiVE Y a <%)J) H(u) =0,
j=2

where the prime denotes derivative with respect to the variable u. Thus
H[) is a constant. Since HO has no constant terms we get HO = 0. This
proves (15) for j = 0.

We assume that (15) is satisfied for j = 0,...,n — 1 with n > 1 and
we shall prove it for j = n. By the induction hypothesis we have that

B = 3 M)/ = o/, 2),

3>0
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with g(u,0) = F[n(u) Now after simplifying equation (14) by 2"/,
and after restricting to z = 0, equation (14) becomes

[e.9] k . B
(/{:1u + k1\/k_22 a; (%)J) H! (u) =0.
j=2

Therefore H,(u) = 0. This proves (15) for j = n. In short, the theorem
is proved.
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