On the global dynamics of a three-dimensional forced-damped differential system

Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
jllibre@mat.uab.cat
Y. Paulina Martínez
Centre de Recerca Matemática, Campus Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Catalonia, Spain
Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile
yohanna.martinez@uab.cat; ymartinez@ubiobio.cl
Claudia Valls
Departamento de Matemática, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
cvalls@math.ist.utl.pt

Received 30 April 2019
Accepted 14 October 2019

Abstract

In this paper by using the Poincaré compactification of \mathbb{R}^{3} we make a global analysis of the model $x^{\prime}=-a x+$ $y+y z, y^{\prime}=x-a y+b x z, z^{\prime}=c z-b x y$. In particular we give the complete description of its dynamics on the infinity sphere. For $a+c=0$ or $b=1$ this system has invariants. For these values of the parameters we provide the global phase portrait of the system in the Poincaré ball. We also describe the α and ω-limit sets of its orbits in the Poincaré ball.

Keywords: Global dynamics; Poincaré compactification; forced-damped system; invariant algebraic curve; invariant.

2000 Mathematics Subject Classification: 34C05, 34C07, 34C08

1. Introduction and statement of the main results

We consider the autonomous polynomial differential system

$$
\begin{align*}
& \dot{x}=-a x+y+y z \\
& \dot{y}=x-a y+b x z \tag{1.1}\\
& \dot{z}=c z-b x y
\end{align*}
$$

where a, b, c are real parameters and $b>0$. As usual the dot denotes derivative with respect to the time t. This system was proposed and studied by Pehlivan extending a previous study of Craik and Okamoto [2] including linear forcing and damping, for more details on that system and on the notions of forcing and damping see [9]. It is a relevant system because it arises in mechanical,

