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Abstract. We provide the phase portraits of the 3–dimensional com-
petitive Lotka–Volterra systems

ẋ = x(a− x− y − z), ẏ = y(b− x− y − z), ż = z(c− x− y − z),

for all the values of the parameters a, b and c with 0 < a < b < c in the
positive octant of the Poincaré ball.

1. Introduction and statement of the main results

We say that a polynomial vector fieldX = (P (x, y, z), Q(x, y, z), R(x, y, z))
in R

3 is quadratic if the maximum of the degrees of the polynomials P , Q
and R is 2. A Lotka–Volterra system in R

3 is a quadratic polynomial vector
field X with x a factor of P , y a factor of Q, and z a factor of R.

The Lotka–Volterra systems, were initially proposed as a model for study-
ing the interactions between species in two dimension, developed indepen-
dently by Alfred J. Lotka in 1925 [17] and by Vito Volterra in 1926 [24].
Later on in 1936 Kolmogorov [13] extended these systems to arbitrary di-
mension and arbitrary degree, these kinds of extended differential systems
are called Kolmogorov systems.

The Lotka–Volterra systems can model many natural phenomena such as
the time evolution of conflicting species in biology [19], chemical reactions
[9], hydrodynamics [5], economics [23], the coupling of waves in laser physics
[14], the evolution of electrons, ions and neutral species in plasma physics
[15], etc. The interest in the 3-dimensional Lotka–Volterra systems becomes
more important after the work of Brenig and Goriely [3, 4], because they
proved that many other differential systems, coming from physics, biology,
chemistry and economics, can be transformed, using a quasimonomial for-
malism, into 3-dimensional Lotka–Volterra systems.

In general the dynamics of the Lotka–Volterra systems are far from being
understood, although some dynamics for special families of these systems
have been revealed (see [1], [2], [16], [25], [26]). Thus for instance, the theory
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on cooperative or competitive systems was developed by Hirsch in the papers
[10]-[11], where he proved that these systems generically exhibits a global
attractor which lies on a 2-dimensional manifold.

In this work we consider the following class of competitive Lotka–Volterra
systems

(1)
ẋ = x(a− x− y − z),
ẏ = y(b− x− y − z),
ż = z(c− x− y − z),

which depends on the three parameters a, b and c such that 0 < a < b < c.
Here the dot denotes derivative with respect to the time t. We recall that a
general3-dimensional Lotka–Volterra system

ẋ = x(a− a1x− a2y − a3z),
ẏ = y(b− b1x− b2y − b3z),
ż = z(c− c1x− c2y − c3z),

is called competitive if all its parameters a, ai, b, bi, c, ci for i = 1, 2, 3 are
positive.

The competitive systems are of interest for their applications in nature,
these system can describe the dynamics of two or more species competing
for the same limited food source; for the territory (which is related to food
resources too), or in some way inhibit each other their growth. In com-
petitive systems it is assumed always that the growth of each species is
directly proportional to the number of individuals of the species (see [8]).
For more details on the competitive systems see the mentioned papers of
Hirsch [10]-[11].

For a survey of competitive and related types of systems see the book
by Freedman (1980) [8]. Only very special competitive systems have the
desirable property that every trajectory converges to an equilibrium as t→
+∞.

The region of ecological interest in competitive systems is the first octant
of R3 and the infinity of this region, that will be studied using the Poincaré
compactification (see section 2).

An invariant is a first integral depending on the time. The invariants of
the form f(x, y, z)est with s ∈ R \ {0} are called Darboux invariants. The
existence of a Darboux invariant allows to obtain information on the α–limits
and ω–limits of the orbits of the differential system. So when they exist,
they play an important role in the study of the dynamics of a differential
system.

Note that system (1) has the Darboux invariant

(2) I(x, y, z) = e(2c−b−a)txy

z2
,
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because on the solutions (x(t), y(t), z(t)) of system (1) we have

∂I

∂x
ẋ+

∂I

∂y
ẏ +

∂I

∂z
ż +

∂I

∂t
= 0.

For more information about the Darboux invariants see Theorem 8.7 of [7].
Note that if 2c = a + b, then I is a first integral of system (1), but this
situation will not be considered here because under the assumption that
0 < a < b < c we always have that 2c > a+ b.

The objective of this work is to describe the dynamics of the Lotka–
Volterra systems (1) in the positive octant of R3 adding the infinity, i.e. we
are interest in describe the dynamics of system (1) on the region

D = {(x, y, z) ∈ D
3 : x ≥ 0, y ≥ 0, z ≥ 0}

of the Poincaré ball D3.

Roughly speaking the Poincaré ball D3 is the closed unit ball centered at
the origin of R3, where its interior is identified with R

3 and its boundary S
2

is defined as the infinity R
3, in the sense that in the space R3 we can go to or

come from the infinity in as many directions as points has the 2–dimensional
sphere S

2. A polynomial differential system in R
3, i.e. in the interior of D3

can be extended to the its boundary S
2 in a unique analytic way, this ex-

tension is called the Poincaré compactification of a polynomial differential
system, because it was done by first time by Poincaré in [22] for the polyno-
mial differential systems in R

2, for its extension to polynomial differential
systems in R

3 see [6]. For a brief introduction to Poincaré compactification
see section 2.

We say that two compactified polynomial differential systems on the
Poincaré ball D3 are topologically equivalent if there is a homeomorphism
of D3 which send orbits of one system into orbits of the other system pre-
serving or reversing the orientation of all+ the orbits.

In the next theorem we describe the phase portrait on the positive octant
of the Poincaré ball, i.e. on D, of the 3–dimensional competitive Lotka–
Volterra systems (1).

Theorem 1. For every 3–dimensional competitive Lotka–Volterra system
(1) the following statements hold.

(a) Its phase portraits on the three invariant faces x = 0, y = 0 and
z = 0 in the positive octant of the Poincaré ball are topologically
equivalent to the ones of Figure 1(a).

(b) All the points at the infinity in the positive octant of the Poincaré
ball are equilibrium points. Every one of these infinite equilibria is
the α–limit of a unique orbit not contained at infinity.
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(c) The plane Π(x, y, z) = bcx + acy + abz − abc = 0 is invariant by
the flow of system. The phase portrait of the system on this plane is
topologically equivalent to the one described in Figure 1(b).

(d) Let φt(q) be the solution of the system such that φt(q) = q with q in
the interior of the positive octant and satisfying that Π(q) 6= 0.
(d.1) Then φt(q) tends to the attractor point (0, 0, c) when t→ +∞.

(d.2) If Π(q) < 0, then φt(q) tends to the repeller (0, 0, 0) when t →
−∞.

(d.3) If Π(q) > 0, then when t → −∞ the orbit φt(q) tends to some
infinite equilibrium point contained in the boundary of the pos-
itive octant of the Poincaré ball.

This work is organized as follows. In section 2 we present some basic
definitions and some preliminary results necessary to prove Theorem 1. In
section 3 we prove Theorem 1.

2. Preliminaries

2.1. Poincaré compactification of R
3. In order to give a detailed proof

of Theorem 1 we need the Poincaré compactification.

We consider a polynomial vector field X = (P,Q,R) associated to the
polynomial differential system

ẋ = P (x, y, z), ẏ = Q(x, y, z), ż = R(x, y, z).

The degree n of X is defined as n = max{deg(P ),deg(Q),deg(R)}.

Now we shall describe the equations of the Poincaré compactification of
a polynomial differential system in R

3.

We consider the local charts (Uk, φk) and (Vk, ψk) for k = 1, 2 on the disc
D
3 defined by

Uk = {x = (x1, x2, x3) ∈ D
3 : xk > 0},

Vk = {x = (x1, x2, x3) ∈ D
3 : xk < 0},

where the diffeomorphisms φk : Uk → R
3 for k = 1, 2, 3 are

φ1(x) =

(

x2
x1
,
x3
x1
,
1

x1

)

= (z1, z2, z3), φ2(x) =

(

x1
x2
,
x3
x2
,
1

x2

)

= (z1, z2, z3),

φ3(x) =

(

x1
x3
,
x2
x3
,
1

x3

)

= (z1, z2, z3),

and ψk(x) = −φk(x).

Note that the coordinates (z1, z2, z3) have different meaning depending
on local chart, but the points of the infinity, i.e. the points of the boundary
S
2 of D3 all have the coordinate z3 = 0.
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Figure 1. The phase portraits of system (1) in the positive
first octant of the Poincaré ball. (a) On the boundaries x = 0,
y = 0 and z = 0. (b) On the invariant plane Π : bcx +
bcy + abz − abc = 0. (c) In the interior of the Poincaré ball,
considering one orbit passing for q such that Π(q) < 0, other
with Π(q) = 0 and other with Π(q) > 0. (d) Phase portrait
in the first octant of the Poincaré ball, the dashed lines are
in the boundaries, the dashed and doted line satisfied Π(q) <
0.

Now we give the expression of the compactified vector filed p(X )of the
polynomial vector field X = (P,Q,R) in each local chart. The expression of
the compactified analytical vector field p(X ) of X of degree n on the local
chart U1 of D3 is

(3) zn3 (−z1P (z) +Q(z),−z2P (z) +R(z),−z3P (z)) ,
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where z = (1/z3, z1/z3, z2/z3).

In a similar way the expression of p(X ) in U2 is

(4) zn3 (−z1Q(z) + P (z),−z2Q(z) +R(z),−z2Q(z)) ,

where z = (z1/z3, 1/z3, z2/z3).

Finally the vector field p(X ) in U3 is

(5) zn3 (−z1R(z) + P (z),−z2R(z) +Q(z),−z2R(z)) ,

where z = (z1/z3, z2/z3, 1/z3).

The singular points of p(X ) which are on the boundary S
2 of D

3 (at
z3 = 0) are called infinite singular points, and we call finite singular points
to the ones which are in the interior of D3.

From equations (3), (4) and (5) it follows that the infinity S
2 of the

Poincaré disc is invariant under the flow of the compactified vector field
p(X ). For studying its infinite singular points we only need to study the
ones that are on the local chart U1, in U2 with z1 = 0, and the origin of the
local chart U3 in case that this be a singular point.

The expression for p(X ) in the local chart Vk is the same as in Uk mul-
tiplied by (−1)n−1. Therefore the infinite singular points appear on pairs
diametrally opposite on S

2 with the same stability if n is odd and with the
opposite stability if n is even. For more details on the Poincaré compactifi-
cation in R

3 see [6].

As we said in the introduction two compactified polynomial differential
systems on the Poincaré ball D3 are topologically equivalent if there is a
homeomorphism of D

3 sending orbits of one to the other system, either
preserving or reversing the orientation of all the orbits.

2.2. Poincaré compactification of R
2. See chapter 5 of [7] for the ex-

pressions of the compactified vector field of a polynomial differential system
in R

3.

Now we shall see how to characterize the phase portrait of a compactified
vector field p(X) in the Poincaré disc D

2 defined by the invariant planes
x = 0, y = 0 and z = 0.

Let Y be the restriction of the Lotka–Volterra system (1) on some of
the invariant planes x = 0, y = 0 and z = 0. A separatrix of p(Y ) is an
orbit which is either an equilibrium point, or a trajectory which lies in the
boundary of a hyperbolic sector of a finite or an infinite equilibrium point,
or any orbit contained in S

1 (the boundary of D2, i.e. the infinity of the
plane), or a limit cycle. Neumann [20] proved that the set formed by all
separatrices of p(Y ), denoted by S(p(Y )) is closed.
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The open connected components of D2 \ S(p(Y )) are called canonical re-
gions of Y or of p(Y ). A separatrix configuration is the union of S(p(Y ))
plus one orbit chosen in each canonical region. Two separatrix configura-
tions S(p(Y )) and S(p(Y)) are topologically equivalent if there is an orien-
tation preserving or reversing homeomorphism which maps the trajectories
of S(p(Y )) into the trajectories of S(p(Y)). The following result is due to
Markus [18], Neumann [20] and Peixoto [21], who found it independently.

Theorem 2. The phase portraits in the Poincaré disc D2 of two compactified
polynomial vector fields p(Y ) and p(Y) are topologically equivalent, if and
only if, their separatrix configurations S(p(Y )) and S(p(Y)) are topologically
equivalent.

3. Phase Portraits of system (1)

In this section we study all the phase portraits of the 3–dimensional
Lotka–Volterra systems (1) in the positive octant of the Poincaré ball. Ini-
tially we study the finite and infinite singular points as function of the
parameters a, b and c.

First note that system (1) has always the three invariant planes x = 0,
y = 0 and z = 0.

We start with the study of the infinite singular points, for this purpose
we use the Poincaré compactification. System (1) in local chart U1 is

(6) ż1 = z1z3(b− a), ż2 = z2z3(c− a), ż3 = z3(1 + z1 + z2 − az3),

in the local chart U2 is

(7) ż1 = z1z3(a− b), ż2 = z2z3(c− b), ż3 = z3(1 + z1 + z2 − bz3),

and in the local chart U3 is

(8) ż1 = z1z3(a− c), ż2 = z2z3(b− c), ż3 = z3(1 + z1 + z2 − cz3).

From systems (6), (7) and (8) we get that all the points at infinity (i.e. all
the points having the coordinate z3 = 0) are equilibrium points. Moreover,
the eigenvalues of the linear part of those systems at these equilibrium points
have always one positive eigenvalue, and the eigenvalue 0 with multiplicity
two. So by the theory of normal hyperbolicity (see for instance [12]) every
equilibrium point is the α–limit of a unique orbit. Roughly speaking, the
whole infinity of the positive octant in the Poincaré ball is a repeller. In
short we have proved statement (b) of Theorem 1.

Now we study the finite singular points. System (1) has four finite equi-
libria: namely

e1 = (0, 0, 0), e2 = (a, 0, 0), e3 = (0, b, 0) and e4 = (0, 0, c).
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The linear matrix of system (1) is

(9) M =





a− 2x− y − z −x −x
−y b− x− 2y − z −y
−z −z c− x− y − 2z



 .

Since the eigenvalues at the origin of the matrix M are a, b and c, the
origin is a repeller.

The eigenvalues of M at e2 are −a, b−a and c−a, so taking into account
their eigenvectors the equilibrium e2 has an 1–dimensional stable manifold
contained in the positive x–axis, and a 2–dimensional unstable manifold.
Moreover the equilibrium e2 restricted to the planes y = 0 and z = 0 is a
saddle.

The eigenvalues of M at e3 are a− b, −b and c− b, so taking into account
their eigenvectors the equilibrium e3 has a 2–dimensional stable manifold
contained in the positive quadrant of the plane z = 0 (restricted to this plane
e3 is a stable node), and an 1–dimensional unstable manifold contained in
the positive quadrant of the plane x = 0 (restricted to this plane e3 is a
saddle).

Finally the eigenvalues of M at e4 are a− c, b− c and −c, therefore e4 is
an attractor.

We note that the finite equilibria are all on the boundary of the positive
octant of R3, more precisely at the origin and on the positive axes of this
octant.

We shall study the phase portrait of system (1) on the three faces x = 0,
y = 0 and z = 0 of the closed positive octant in the Poincaré ball. Taking
into account the local phase portraits of the finite equilibria on these three
faces, and that the axes x, y and z are invariant (i.e. if an orbit has point
on some of these axes it is contained in that axis), then we obtain the phase
portraits described in Figure 1(a). This completes the proof of statement
(a) of Theorem 1.

Now we shall study the phase portrait of system (1) in the interior of the
positive octant.

First we shall prove that the plane Π(x, y, z) = bcx+ acy+ abz− abc = 0
that contains the three equilibria e2, e3 and e4 is invariant by the flow of
system (1). Indeed, since

fΠ

dt
= D[Π, x]ẋ+D[Π, y]ẏ +D[Π, z]ż = −(x+ y + z)Π,

on the points (x, y, z) where Π(x, y, z) = 0 its derivative with respect to the
time t also is zero, consequently the plane Π(x, y, z) = 0 is invariant by the
flow of system (1).
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An easy analysis of the phase portrait of system (1) restricted to the
invariant plane Π(x, y, z) = 0, provides that this phase portrait is the one
shown in Figure 1(b). Note that isolating z from the invariant plane Π = 0
and substituting it into the differential system (1) we get the system:

(10)
ẋ = x

(

a− c+
(

c

b
− 1

)

y
)

+ x2
(

c

a
− 1

)

,

ẏ = y
(

b− c+
(

c

a
− 1

)

x
)

+ y2
(

c

b
− 1

)

.

System (10) has three equilibria: an attractor at the origin, a repeller in
(a, 0), and a saddle in (0, b); the infinity is filled of equilibria.

We have already studied the phase portrait on the invariant planes x = 0,
y = 0 and z = 0, then we need to study the orbit of a point q = (x, y, z) for
xyz 6= 0 such that Π(q) = 0. On this plane Π, there exist a finite saddle in
(0, b), a repeller in (a, 0), and an attractor in (a, 0). This and the continuity
of the solutions implies that the point q has its α-limit in (a, 0) and its ω-
limit in (0, 0). Thus, we have that the phase portrait on the invariant plane
Π ⊂ R

3 is the one shown in Figure 1(b). Note that we must consider the
correspondence (0, 0) → (0, 0, c), (a, 0) → (a, 0, 0) and (0, b) → (0, b, 0).

This completes the proof of statement (c) of Theorem 1.

From Figure 1(b) it follows that the 2–dimensional unstable manifold of
the equilibrium e2 restricted to the positive octant is contained in the plane
Π(x, y, z) = 0; and that the 2–dimensional stable manifold of the equilibrium
e3 restricted to the positive octant is contained in the plane z = 0.

The next lemma completes the phase portrait of the competitive Lotka–
Volterra system (1), proving statement (d) of Theorem 1.

Lemma 3. Let φt(q) = (x(t), y(t), z(t)) be the solution of the Lotka–Volterra
system (1) such that φt(q) = q with q = (x, y, z) in the interior of the positive
octant and satisfying that Π(q) 6= 0.

(a) Then φt(q) → e4 when t→ +∞.

(b) If Π(q) < 0, then φt(q) → e1 when t→ −∞.

(c) If Π(q) > 0, then when t → −∞ the orbit φt(q) tends to some
infinite equilibrium point contained in the boundary of the positive
octant inside the Poincaré ball.

Proof. Considering the Darboux invariant (2) and a point q = (x, y, z) in
the interior of the Poincaré ball, it holds that I(q) = cte /∈ {0,±∞}. We
want to remark that due to the fact that we only consider the vector field
defined in the first octant of the compactified ball (in a compact), all its
solutions are defined in the maximal interval (−∞,+∞) of time.
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Now for the Darboux invariant I = e(2c−a−b)txyz−2, and since 2c−a−b >
0 we obtain the following relations

(11) lim
t→+∞

e(2c−a−b)t → +∞; lim
t→−∞

e(2c−a−b)t → 0.

Due to the fact that this Darboux invariant it is constant on the orbits,
this implies that we needs satisfies that lim

t→+∞

xyz−2 → 0, then the ω-limit

must be in x = 0, or y = 0, or in z = ∞. Since the infinity is a repeller,
the ω-limit must be the equilibrium point e4 = (0, 0, c) which is the unique
attractor in {x = 0} ∪ {y = 0}. This proves statement (a) of Lemma 3.

On the other hand the α-limit, according with the second expression in
(11), is conditioned by the relation lim

t→−∞

xyz−2 → ∞, then can be in x→ ∞,

or y → ∞, or z → 0. We recall that the plane Π is invariant under the flow,
then a orbit passing for q such that Π(q) < 0 must have their α-limit on e1
(we know that e1 is the unique repeller (even more is the unique equilibrium)
on the region Π(q) < 0), and an orbit passing for a point q with Π(q) > 0
has it α-limit at the infinity, because there are not finite equilibria on this
region and the infinity is a repeller. These affirmations prove statements (b)
and (c) of Lemma 3. Figure 1(c) shows one orbit in each region Π(q) > 0,
Π(q) = 0 and Π(q) < 0. �

In short the phase portrait of system (1) in the first octant is as is shown
in Figure 1(d).
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