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PERIODIC SOLUTIONS FOR A CLASS OF NON–AUTONOMOUS

NEWTON DIFFERENTIAL EQUATIONS

JAUME LLIBRE1 AND AMAR MAKHLOUF2

Abstract. We provide sufficient conditions for the existence of periodic so-
lutions of the second–order non–autonomous differential equation

ẍ = −∇xV (t, x),

in Rn, where V (t, x) =
∥x∥2

2
+ εW (t, x) with W (t, x) a 2π–periodic function

in the variable t, ε is a small parameter, x ∈ Rn and

∇xV (t, x) =

(
∂V

∂x1
, ...,

∂V

∂xn

)
.

Note that this is a particular class of non–autonomous Newton differential

equations. Moreover we provide some applications.

1. Introduction and statement of the main results

In this paper we shall study the existence of periodic solutions of the second–
order non–autonomous differential equation in Rn of the form

(1) ẍ = −∇xV (t, x),

where V (t, x) =
∥x∥2

2
+εW (t, x) with W (t, x) a 2π–periodic function in the variable

t, ε is a small parameter, x = (x1, . . . , xn) and

∇xV (t, x) =

(
∂V

∂x1
, ...,

∂V

∂xn

)
.

Here ∥∥ denotes the Euclidean norm in Rn. Note that this is a particular class of
non–autonomous Newton differential equations. The dot denotes derivative with
respect to the variable t.

Many authors have studied this system under various additional conditions, see
for instance [5] and the references quoted therein.

To obtain analytically periodic solutions is in general a very difficult work, usu-
ally impossible. The averaging theory reduces this difficult problem for the differ-
ential equation (1) to find the zeros of a nonlinear function. It is known that in
general the averaging theory for finding periodic solutions does not provide all the
periodic solutions of the system. For more information about the averaging theory
see section 2 and the references quoted there.

Our main result on the periodic solutions of the second–order non–autonomous
differential equation (1) is the following .
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Theorem 1. We define the functions

Fk =
1

2π

∫ 2π

0

sin t
∂W

∂xk
(t, x10 cos t+ y10 sin t, ..., xn0 cos t+ yn0 sin t)dt,

F2k = − 1

2π

∫ 2π

0

cos t
∂W

∂xk
(t, x10 cos t+ y10 sin t, ..., xn0 cos t+ yn0 sin t)dt,

for k = 1, . . . , n. If the function W (t, x1, . . . , xn) is 2π-periodic in the variable t,
then for every ε ̸= 0 sufficiently small and for every (x∗

10, . . . , x
∗
n0, y

∗
10, . . . , y

∗
n0)

solution of the system

(2)
Fk(x10, . . . , xn0, y10, . . . , yn0) = 0,
F2k(x10, . . . , xn0, y10, . . . , yn0) = 0, for k = 1, . . . , n,

satisfying
(3)

det

(
∂(F1, . . . ,F2n)

∂(x10, . . . , xn0, y10, . . . , yn0)

∣∣∣∣
(x10,...,xn0,y10,...,yn0)=(x∗

10,...,x
∗
n0,y

∗
10,...,y

∗
n0)

)
̸= 0,

the non–autonomous differential equation (1) has a 2π–periodic solution x(t, ε)
which tends to the 2π–periodic solution (x∗

10 cos t+ y∗10 sin t, ..., x
∗
n0 cos t+ y∗n0 sin t),

of ẍ+ x = 0 when ε → 0.

Theorem 1 is proved in section 3. Its proof is based in the averaging theory for
computing periodic solutions, see section 2. For others applications of the averaging
theory to the study periodic solutions, see [4] and [6].

Applications of Theorem 1 are the following.

Corollary 2. Consider the non–autonomous Newton differential equation (1) in

R with the potential V (t, x) =
x2

2
+ εW (t, x), where W (t, x) = (ax + bx3) sin t. If

ab < 0, then for ε ̸= 0 sufficiently small this differential equation has two periodic

solutions xk(t, ε) for k = 1, 2, tending to the periodic solutions 2

√
− a

3b
cos t and

2

3

√
−a

b
sin t of ẍ+ x = 0, when ε → 0.

Corollary 2 is proved in section 5.

Corollary 3. Consider the non–autonomous Newton differential equation (1) in

R2 with the potential V (t, x1, x2) =
x2
1 + x

2

2

2
+ εW (t, x1, x2), where W (t, x1, x2) =

(ax1 + bx2 + cx3
1 + dx3

2) sin t . If ac < 0 and bd < 0 then for ε ̸= 0 sufficiently
small this differential equation has four periodic solutions xk(t, ε) for k = 1, . . . , 4,
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tending to the periodic solutions(
−2

√
− a

3c
cos t,

2

3

√
− b

d
cos t

)
,(

2

√
− a

3c
cos t,

2

3

√
− b

d
sin t

)
,(

2

√
− b

3d
cos t,

2

3

√
−a

c
sin t

)
,(

2

3

√
−a

c
sin t,

2

3

√
− b

d
sin t

)
,

of ẍ+ x = 0, when ε → 0.

Corollary 3 is proved in section 5.

2. Basic results on averaging theory

In this section we present the basic results from the averaging theory that we
shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T–periodic solutions from differ-
ential systems of the form

(4) x′ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn and
F2 : R×Ω× (−ε0, ε0) → Rn are C2 functions, T–periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

(5) x′ = F0(t,x),

has a submanifold of dimension n of periodic solutions. A solution of this problem
is given using the averaging theory.

Let x(t, z, ε) be the solution of the system (5) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along the periodic solution x(t, z, 0) as

(6) y′ = DxF0(t,x(t, z, 0))y.

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (6).

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for each
z ∈ Cl(V ), x(t, z, 0) is T–periodic. The set Cl(V ) is isochronous for the system (4);
i.e. it is a set formed only by periodic orbits, all of them having the same period.
Then, an answer to the problem of the bifurcation of T–periodic solutions from the
periodic solutions x(t, z, 0) contained in Cl(V ) is given in the following result.

Theorem 4 (Perturbations of an isochronous set). We assume that there exists an
open and bounded set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ), the solution
x(t, z, 0) is T–periodic, then we consider the function F : Cl(V ) → Rn

(7) F(z) =

∫ T

0

M−1
z (t)F1(t,x(t, z, 0))dt.
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If there exists α ∈ V with F(α) = 0 and det ((dF/dz) (α)) ̸= 0, then there exists a
T–periodic solution φ(t, ε) of system (4) such that φ(0, ε) → α as ε → 0.

Theorem 4 goes back to Malkin [2] and Roseau [?], for a shorter proof see [1].

3. Proof of Theorem 1

If yi = ẋi, for i = 1, . . . , n, then the second–order non-autonomous differential
equation (1) can be written as the following first–order differential system in R2n

(8)
ẋi = yi,

ẏi = −xi − ε
∂W (t, x)

∂xi
,

for i = 1, . . . , n. For ε = 0 it follows that (x, y) = (0, 0) is the unique singular point
of system (8). The eigenvalues of the linearized system at this singular point are
all pure imaginary ±i, . . . ,±i. The solution (x(t), y(t)) of the unperturbed system
(i.e. system (8) with ε = 0) such that (x(0), y(0)) = (x0, y0) is

(9)
xi(t) = xi0 cos t+ yi0 sin t,
yi(t) = yi0 cos t− xi0 sin t,

for i = 1, . . . , n. Note that all these periodic orbits have period 2π.

Using the notation introduced in section 2, we have that x = (x, y), z = (x0, y0),
F0 (x, t) = (y,−x), F1 (x, t) = (0,−∇xW (t, x)) and F2 (x, t, ε) = (0, 0). The funda-
mental matrix solution Mz(t) is independent of z and we shall denote it by M(t).
An easy computation shows that

M(t) =



cos t 0 . . . 0 sin t 0 . . . 0
0 cos t . . . 0 0 sin t . . . 0
...

...
...

...
...

...
...

...
0 0 . . . cos t 0 0 . . . sin t

− sin t 0 . . . 0 cos t 0 . . . 0
0 − sin t . . . 0 0 cos t . . . 0
...

...
...

...
...

...
...

...
0 0 . . . − sin t 0 0 . . . cos t


,

and

M−1(t) =



cos t 0 . . . 0 − sin t 0 . . . 0
0 cos t . . . 0 0 − sin t . . . 0
...

...
...

...
...

...
...

...
0 0 . . . cos t 0 0 . . . − sin t

sin t 0 . . . 0 cos t 0 . . . 0
0 sin t . . . 0 0 cos t . . . 0
...

...
...

...
...

...
...

...
0 0 . . . sin t 0 0 . . . cos t


.

According to Theorem 4 we study the zeros α = (x0, y0) of the 2n components of the
function F(α) given in (7). More precisely we have F(α) = (F1(α), . . . ,F2n(α)),
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such that

Fk(α) =
1

2π

∫ 2π

0

sin t
∂W

∂xk
(t, x10 cos t+ y10 sin t, ..., xn0 cos t+ yn0 sin t)dt,

F2k(α) = − 1

2π

∫ 2π

0

cos t
∂W

∂xk
(t, x10 cos t+ y10 sin t, ..., xn0 cos t+ yn0 sin t)dt,

for k = 1, . . . , n. Now the rest of the proof of Theorem 1 follows directly from the
statement of Theorem 4.

4. Proof of Corollary 2

We must apply Theorem 1 with W (t, x) = (ax+ bx3) sin t. After computations
the functions F1 and F2 of Theorem 1 are

F1(x0, y0) =
1

8
(4a+ 3b(x2

0 + 3y20)),

F2(x0, y0) = −3

4
bx0y0.

If ab < 0 then system F1 = F2 = 0 has four solutions (x∗
0, y

∗
0) given by

(
±2

√
− a

3b
, 0

)
and

(
0,±2

3

√
−a

b

)
. Since the Jacobian

det

(
∂(F1,F2)

∂(x0, y0)

∣∣∣∣
(x0,y0)=(x∗

0 ,y
∗
0 )

)

for the first two solutions (respectively for the last two solutions) is
4a

3b
(respectively

−3ab

4
), we obtain using Theorem 1 only the two periodic solutions given in the

statement of the corollary,because two of them correspond to the same periodic
solution with different initial conditions.

5. Proof of Corollary 3

We must apply Theorem 1 with W (t, x) = (ax1 + bx2 + cx3
1 + dx3

2) sin t. After
computations the functions F1 and F2 of Theorem 1 are

F1(x10, x20, y10, y20) =
1

8
(4a+ 3c(x2

10 + 3y210)),

F2(x10, x20, y10, y20) =
1

8
(4b+ 3d(x2

20 + 3y220)),

F2(x10, x20, y10, y20) = −3

4
cx10y10,

F2(x10, x20, y10, y20) = −3

4
dx20y20.
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If ac < 0 and bd < 0, then system F1 = F2 = F3 = F4 = 0 has 16 solutions
(x∗

10, x
∗
20, y

∗
10, y

∗
20)) given by(

±2

√
− a

3c
,±2

3

√
− b

d
, 0, 0

)
,(

±2

√
− a

3c
, 0, 0,±2

3

√
− b

d

)
,(

0,±2

√
−b

3d
,±2

3

√
−a

c
, 0

)
,(

0, 0,±2

3

√
−a

c
,±2

3

√
− b

d

)
.

Since the Jacobian

det

(
∂(F1,F2,F3,F4)

∂(x10, x20, y10, y20)

∣∣∣∣
(x10,x20,y10,y20)=(x∗

10,x
∗
20,y

∗
10,y

∗
20)

)

for these four set of solutions is respectively
9

16
abcd, − 9

16
abcd, -

9

16
abcd and

9

16
abcd

we obtain using Theorem 1 the four periodic solutions given in the statement of
the corollary, because every set of solutions provides different initial conditions of
the same periodic orbit.
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