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PERIODIC SOLUTIONS OF CONTINUOUS THIRD–ORDER

DIFFERENTIAL EQUATIONS WITH PIECEWISE

POLYNOMIAL NONLINEARITIES

JAUME LLIBRE 1, BRUNO D. LOPES 2 AND JAIME R. DE MORAES 3

Abstract. We consider third–order autonomous continuous piecewise
differential equations in the variable x. For such differential equations
with nonlinearities of the form x

m, we investigate their periodic solutions
using the averaging theory.

1. Introduction and Statement of the Main Result

For studying some electrical circuits Sprott and Sun [9, 10, 11] considered
the third order differential equation

...
x = −ẋ− aẍ+ g(x), where g is an ele-

mental piecewise function. He showed that some of these equations exhibit
chaos.

In this paper we are interested in studying the third order of differential
equations of the form

(1)
...
x = −ẋ+ ε|ẍ| − εaxm,

where a and ε are parameters and ε is small. But our interest is in studying
how their periodic solutions depend on the parameter a and on the exponent
m.

We can write the third order differential equations (1) as the following
differential system of first order

ẋ = y,

ẏ = z,(2)

ż = −y + ε|z| − εaxm,

where the dot denotes derivative with respect an independent variable t,
usually the time.

We remark that the differential system (2) is only continuous due to the
existence of the term |z|, so we cannot apply to it the classical averaging
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theory for studying their periodic solutions because that theory needs that
the differential system be of class C2. We shall apply recent extensions of
the averaging theory to continuous differential systems, see section 2.

In what follows we state our main result. Recall that n!! denotes the
double factorial of n.

Theorem 1. Let |ε| 6= 0 be a sufficiently small parameter. Then the follow-

ing statements hold.

(a) If m is even and a > 0, then system (2) has a periodic solution of

the form

x(t, ε) = −r∗0 +O(ε), y(t, ε) = r∗0 sin t+O(ε), z(t, ε) = r∗0 cos t+O(ε),

where

r∗0 =

(

2(m)!!

aπ(m− 1)!!

) 1

m−1

,

bifurcating from the periodic solutions of system (2) with ε = 0 ob-

tained by using the averaging theory of first order.

(b) If either m is odd and a 6= 0, or m is even and a < 0, or a = 0, then
the averaging theory of fist order does not provide any information

on the periodic solutions of system (2).

Theorem 1 is proved in section 3. As we said we shall prove it using
the averaging theory of first order for continuous differential systems that
we summarize in section 2. Finally in section 4 we do an application of
Theorem 1 to a particular continuous differential system (2).

2. The averaging theory of first order for continuous

differential systems

Now we summarize the results on the averaging theory that we need for
proving Theorem 1.

We work with a system of the form

(3) ẋ = F0(t, x) + εF1(t, x) +O(ε2),

where ε 6= 0 is a small parameter and the functions F0, F1 : R × Ω → R
n

and F2 : R× Ω × (−ε0, ε0) → R
n are T−periodic in the first variable, F0 is

C1, DF0, F1 and R are locally Lipschitz in the variable x, and Ω ⊆ R
n is

an open subset.

We assume that there exists a submanifold of dimension n formed by
periodic solutions of the unperturbed system

(4) ẋ = F0(t, x).

Consider Cl(U) the closure of U . We suppose that there exists an open set
U with Cl(U) ⊂ Ω satisfying that for each z ∈ Cl(U) the solution x(t, z, 0)
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of the unperturbed system (4) is T−periodic. We note that Cl(U) is an
isochronous set for system (4), because all its periodic orbits have period T .

Consider x(t, z, ε) the solution of system (4) satisfying the initial condition
x(0, z, ε) = z. The linearization of system (4) in a periodic solution x(t, z, 0)
is given by

(5) ẏ = DxF0(t, x(t, z, 0))y,

where y is an n × n matrix. Let Mz(t) be the fundamental matrix of the
linearized system (5) such that Mz(0) is the identity matrix.

The next result of the averaging theory allows to obtain T−periodic solu-
tions of the differential system (3) with ε 6= 0 sufficiently small bifurcating
from the periodic solutions x(t, z, 0) contained in Cl(U) of the unperturbed
differential system (4). The first version of this result is due to Malkin [6]
and Roseau [7] for C2 differential systems, a more clear and shorter proof
of this result was done by Buică et al. in [2]. The extension of this result
to continuous differential systems has been done by Llibre et al. in [4]. For
a general introduction to the averaging theory see for instance the book of
Sanders et al. [8].

Theorem 2. Consider a continuous differential system (3). We suppose

that there exists an open and bounded set U with Cl(U) ⊂ Ω such that for

each z ∈ Cl(U), the solution x(t, z, 0) of system (4) is T−periodic. Let

f : Cl(U) → R
n be the function

f(z) =
1

T

∫ T

0
M−1

z (t)F1(t, x(t, z, 0))dt,

called the averaging function of first order. Then for each a ∈ U satisfying

f(a) = 0 there exists a neighborhood V of a such that f(z) 6= 0 for all

z ∈ V \ {a} and the Brouwer degree of f at a is not zero, i.e. dB(f, V, 0) 6=
0. Then there exists a T−periodic solution x(t, ε) of system (3) such that

x(0, ε) → a when ε → 0.

For details on the Brouwer degree see for instante the paper of Browder
[1]. We must note that if the averaging function f(z) is of class C1 then
Brouwer degree dB(f, V, 0) 6= 0 if the Jacobian det(Df(a)) 6= 0, see for
instance [5].

3. Proof of Theorem 1

First we consider the case m = 2n with n a positive integer. We write
the differential system (2) in the cylindrical coordinates (x, r, θ) defined by
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x = x, y = r sin θ, z = r cos θ, and we obtain the differential system

(6)

ẋ = r sin θ,

ṙ = ε cos θ
(

|r cos θ| − ax2n
)

,

θ̇ = 1 +
ε

r
sin θ

(

ax2n − |r cos θ|
)

.

Taking as new independent variable the variable θ, system (6) becomes

(7)

dx

dθ
= x

′

= r sin θ + ε sin2 θ
(

|r cos θ| − ax2n
)

+O(ε2),

dr

dθ
= r

′

= ε cos θ
(

|r cos θ| − ax2n
)

+O(ε2).

We note that this differential system is now in the normal form (3) for
applying the averaging theory described in section 2.

The unperturbed system (4) is now

(8)
x

′

= r sin θ,

y
′

= 0.

The solution of system (8) with initial condition (x0, r0) is ϕ(θ, (x0, r0)) =
(x0 + r0(1− cos θ), r0). So all the solutions with r0 > 0 of the unperturbed
system (8) are periodic with the same period 2π.

The fundamental matrix M(x0,r0)(θ) = M(θ) of the variational differential
system (5) associated to system (8) evaluated on the periodic solution (x0+
r0(1− cos θ), r0) is

(9) M(θ) =

(

1 1− cos θ
0 1

)

.

Note that M(0) is the identity matrix.

According with the averaging theory of section 2 for studying the periodic
solutions of the continuous differential system (7) we must study the zeros
of the averaging function

f(x0, r0) =
1

2π

∫ 2π

0
M(θ)−1F1(θ, ϕ(θ, (x0, r0)))dθ,

where

F1(θ, (x, r)) =
(

sin2 θ(|r cos θ| − ax2n), cos θ(|r cos θ| − ax2n)
)

.

Thus we have

f(x0, r0) =
1

2π

∫ 2π

0

(

(1− cos θ)
(

r0| cos θ| − a(r0 + x0 − r0 cos θ)
2n
)

cos θ
(

r0| cos θ| − a(r0 + x0 − r0 cos θ)
2n
)

)

dθ

=

(

f1(x0, r0)

f2(x0, r0)

)

.
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A simple computation shows

(10)

∫ 2π

0
r0 cos θ| cos θ|dθ = 0.

Therefore since r0 > 0 we have that

f2(x0, r0) = −
a

2π

∫ 2π

0
cos θ(r0 + x0 − r0 cos θ)

2ndθ

= −
a

2π

∫ 2π

0
r2n0 cos θ

(

r0 + x0
r0

− cos θ

)2n

dθ

= −
a

2π

∫ 2π

0
r2n0

2n
∑

k=0

(−1)k
(

2n
k

)(

r0 + x0
r0

)2n−k

cosk+1 θ dθ.

If k is even then

∫ 2π

0
cosk+1 θ dθ = 0. So we can rewrite f2 = f2(x0, r0)

as

f2 =
a

2π

n−1
∑

k=0

(

2n
2k + 1

)

r2n0

(

r0 + x0
r0

)2n−2k−1 ∫ 2π

0
cos2k+2 θ dθ

=
a

2π

n−1
∑

k=0

(

2n
2k + 1

)

r2k+1
0 (r0 + x0)

2n−2k−1
∫ 2π

0
cos2k+2 θ dθ

=
a

2π
r0 (r0 + x0)

n−1
∑

k=0

(

2n
2k + 1

)

r2k0 (r0 + x0)
2n−2k−2

∫ 2π

0
cos2k+2 θ dθ.

Analyzing the last right hand side of the previous equation it is clear that
the function f2(x0, r0) only vanishes at x0 = −r0. Replacing x0 = −r0 in
the integrant of the definition of the function f1(x0, r0) it becomes

B(θ) = −r0 cos θ| cos θ|+ r0| cos θ|+ ar2n0 (cos2n+1 θ − cos2n θ).

By using (10) and Formula Bl(68)(8) of [3] (p. 405, with a = 0 and b = 1)
we obtain that

f1(−r0, r0) =
1

π

(

2r0 − πa r2n0
(2n − 1)!!

(2n)!!

)

.

Solving f1(−r0, r0) = 0 in the variable r0, we get the unique real solution

r∗0 =

(

2(2n)!!

aπ(2n − 1)!!

) 1

2n−1

.

Note that a > 0 ensures the existence of the solution r∗0 > 0, and if a <
0 then the function f1(−r0, r0) has no positive real solutions for r0, and
consequently when m is even and a < 0 the averaging theory does not
provide any information on the periodic solutions of the differential system
(7).
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In summary, if m is even and a > 0 the averaging function f(x0, r0) has
the unique zero (−r∗0, r

∗
0) with r∗0 > 0. Now in order to verify the assumptions

of Theorem 2 we must prove that the Jacobian

(11) det(Df(−r∗0, r
∗
0)) =

∂(f1, f2)

∂(x0, r0)

∣

∣

∣

∣

(x0,r0)=(−r0,r0)

6= 0.

From the expression of f2(x0, r0) we obtain that

∂f2
∂x0

(−r0, r0) =
a

2π

(

2n
2n− 1

)

r2n−1
0 2π

(2n − 1)!!

(2n)!!

=
2an r2n−1

0 (2n − 1)!!

(2n)!!
,

and

∂f2
∂r0

(−r0, r0) =
∂f2
∂x0

(−r0, r0).

Analogously writing f1 as a binomial expression we get

∂f1
∂x0

(−r0, r0) = −
∂f2
∂x0

(−r0, r0),

∂f1
∂r0

(−r0, r0) = 2/π − 2
∂f2
∂x0

(−r0, r0).

Now replacing r0 by r∗0 in the previous derivatives we have the Jacobian
matrix

Df(−r∗0, r
∗
0) =







−
4n

π

2− 8n

π
4n

π

4n

π






,

and its determinant is
8n(2n− 1)

π2
6= 0 for all positive integer n. Hence (11)

holds and we can apply Theorem 2 to the continuous differential system (7).

From Theorem 2 it follows that system (7) has the periodic solution

x(θ, ε) = −r∗0 +O(ε), r(θ, ε) = r∗0 +O(ε).

Going back through the change of cylindrical coordinates system (2) has the
periodic solution

x(t, ε) = −r∗0 +O(ε), y(t, ε) = r∗0 sin t+O(ε), z(t, ε) = r∗0 cos t+O(ε).

This completes the proof of statement (a) of Theorem 1.
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Now suppose that m = 2n+ 1. Then we have that

f2(x0, r0) = −
a

2π

∫ 2π

0
cos θ(r0 + x0 − r0 cos θ)

2n+1dθ

= −
a

2π

∫ 2π

0
r2n+1
0 cos θ

(

r0 + x0
r0

− cos θ

)2n+1

dθ

= −
a

2π

∫ 2π

0
r2n+1
0

2n+1
∑

k=0

(−1)k
(

2n+ 1
k

)(

r0 + x0
r0

)2n+1−k

cosk+1 θ dθ.

If k is odd then

∫ 2π

0
cosk θ dθ = 0. So we can rewrite the function f2(x0, r0)

as follows

f2(x0, r0) =
a

2π

n
∑

k=0

(

2n+ 1
2k + 1

)

r2n+1
0

(

r0 + x0
r0

)2n−2k ∫ 2π

0
cos2k+2 θ dθ

=
a

2π
r0

n−1
∑

k=0

(

2n+ 1
2k + 1

)

r2k0 (r0 + x0)
2n−2k

∫ 2π

0
cos2k+2 θ dθ.

Therefore since r0 > 0 the function f2(x0, r0) does not vanish, and the
averaging function f(x0, r0) has no real zeros, and consequently if m is odd
the averaging theory of first order does not provide any information on the
periodic solutions of the differential system (2).

The case a = 0 is the most simple, because its averaging function is

f(x0, r0) =

(

2 r0
π

, 0

)

,

which again has no zeros when r0 > 0, and so the averaging theory of
first order does not provide any information on the periodic solutions of the
differential system (2).

In short, taking into account that inside the proof of statement (a) of
Theorem 1 we have shown that if m is even and a < 0 the averaging theory
of first order does not provide any information on the periodic solutions
of the differential system (2), the proof of statement (b) of Theorem 1 is
completed.

4. An application of Theorem 1

In this section we provide an application of Theorem 1. Consider the
perturbed system

(12)

ẋ = y,

ẏ = z,

ż = −y + ε

(

|z| −
4

π
x2
)

,
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where ε is a small parameter.

Writing system (12) in the previous cylindrical coordinates we obtain the
system

ẋ = r sin θ,

ṙ = ε cos θ
(

r| cos θ| − 4x2

π

)

,

θ̇ = 1 +
ε sin θ(4x2−πr| cos θ|)

πr
,

or equivalent the following system with the independent variable θ

x′ = r sin θ + ε sin2 θ

(

r| cos θ| −
4x2

π

)

,

r′ = ε cos θ

(

r| cos θ| −
4x2

π

)

.

The unperturbed system and the fundamental matrix associated to it are
given respectively in (4) and (9). For system (12) we have that the function

F1(θ, (x, r)) =

(

sin2 θ

(

r| cos θ| −
4x2

π

)

, cos θ

(

r| cos θ| −
4x2

π

))

.

So the averaging function

f(x0, r0) =
1

2π

∫ 2π

0
M(θ)−1F1(θ, ϕ(θ, (x0, r0)))dθ

=
1

2π

∫ 2π

0

(

(1− cos θ)(r0| cos θ| −A(θ))

cos θ(r0| cos θ| −A(θ))

)

dθ,

where

A(θ) =
4(r0 + x0 − r0 cos θ)

2

π
.

Computing the previous integral we obtain

f(x0, r0) = −
2

π

(

5r20 + 6r0x0 − r0 + 2x20,−2r0(r0 + x0)
)

.

The second component of the function f(x0, r0) vanishes at x0 = −r0. Re-
placing x0 = −r0 in the first component of the function f(x0, r0), we get

f1(x0, r0) = 2r0(r0 − 1).

Since r0 > 0 it is clear that f1(x0, r0) only vanishes when r0 = 1. So the
unique zero of the function f(x0, r0) is (x0, r0) = (−1, 1). Moreover the
Jacobian matrix of f(x0, r0) evaluated at the zero (−1, 1) is







−
4

π
−
6

π
4

π

4

π
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and its determinant is 8/π2 6= 0. Thus, from Theorem 1 system (12) has the
periodic solution

x(t, ε) = −1 +O(ε), y(t, ε) = sin t+O(ε), z(t, ε) = cos t+O(ε).
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Bellaterra, Barcelona, Catalonia, Spain.

E-mail address: jllibre@mat.uab.cat

2 IMECC–UNICAMP, CEP 13081–970, Campinas, São Paulo, Brazil.

E-mail address: brunodomicianolopes@gmail.com
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