Topological Methods in Nonlinear Analysis Volume 55, No. 2, 2020, 387–402 DOI: 10.12775/TMNA.2020.004

O2020 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University in Toruń

ON THE CENTERS OF CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS WITH FOUR INVARIANT STRAIGHT LINES

JAUME LLIBRE

ABSTRACT. Assume that a cubic polynomial differential system in the plane has four invariant straight lines in generic position, i.e. they are not parallel and no more than two straight lines intersect in a point. Then such a differential system only can have 0, 1 or 3 centers.

1. Introduction and statement of the main results

A center of a differential system in \mathbb{R}^2 is an equilibrium point p for which there exists a neighbourhood U of p such that $U \setminus \{p\}$ is filled by periodic orbits. The equilibrium point p is a *focus* if there exists a neighbourhood U of p where all the orbits in $U \setminus \{p\}$ spiral tending to p either in backward, or in forward time. These definitions of focus and center goes back to Dulac [10] and Poincaré [23].

The problem of distinguish between a focus or a center (known as the *center-focus problem*) is a classical problem in the qualitative theory of planar polynomial differential systems, which is related to the Hilbert 16th problem, see Hilbert [14], Ilyashenko [15], Li [19].

²⁰²⁰ Mathematics Subject Classification. 37K10, 37C27, 37K05.

 $Key\ words\ and\ phrases.$ Cubic system; cubic polynomial differential systems; centers; invariant straight line.

The author is partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.