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ON THE CENTERS OF CUBIC POLYNOMIAL DIFFERENTIAL

SYSTEMS WITH FOUR INVARIANT STRAIGHT LINES

JAUME LLIBRE

Abstract. Assume that a cubic polynomial differential system in the plane

has four invariant straight lines in generic position, i.e. they are not paral-
lel and no more than two straight lines intersect in a point. Then such a

differential system only can have 0, 1 or 3 centers.

1. Introduction and statement of the main results

A center of a differential system in R2 is an equilibrium point p for which there
exists a neighborhood U of p such that U \ {p} is filled by periodic orbits. The
equilibrium point p is a focus if there exists a neighborhood U of p where all the
orbits in U \ {p} spiral tending to p either in backward, or in forward time. These
definitions of focus and center goes back to Dulac [10] and Poincaré [23].

The problem of distinguish between a focus or a center (known as the center-
focus problem) is a classical problem in the qualitative theory of planar polynomial
differential systems, which is related to the Hilbert 16th problem, see Hilbert [14],
Ilyashenko [15], Li [19].

For the polynomial differential systems of degree 2 the center–focus problem
was solved by Bautin [3], Kapteyn [16, 17], Schlomiuk [24], Vulpe [25], Żo la̧dek
[28]. However, this problem remains unsolved for polynomial differential systems
of degree 3, simply called from now on cubic systems.

The centers of many different subclasses of cubic differential systems have been
studied. Thus reversible cubic systems with a center has been classified by Żo la̧dek
[30, 31], and Buzzi et al [4]. the centers of cubic systems without quadratic terms

also were classified by Malkin [21], Vulpe and Sibirskii [26], Żo la̧dek [29], ... The
classification of the Hamiltonian linear type centers and the nilpotent ones for
cubic systems without quadratic terms has been recently classified by Colak et al
[5, 6, 7, 8]. The centers of the Kolmogorov cubic systems have been analyzed and
classified in [20].

In this work we study the centers for the cubic systems having four invariant
straight lines in generic position, i.e. they are not parallel and no more than two
straight lines intersect in a point. Our main result is the following.
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Theorem 1. Cubic systems having four invariant straight lines in generic position
only can have 0, 1 or 3 centers.

Theorem 1 is proved in section 3.

In section 2 we summarize some well known results that we shall use for proving
Theorem 1.

2. Preliminary results

2.1. Equilibrium points. We say that an equilibrium point p of a differential
system in R2 is elementary if the determinant of the linear part of the system at p
is non–zero.

An elementary equilibrium p is hyperbolic if the two eigenvalues of the linear
part of the system at p have non-zero real part. The elementary equilibria only
can be saddles with topological index −1 and the corresponding determinant neg-
ative; nodes or foci, these last two with topological index 1 and the corresponding
determinant positive. We recall that the trace of the matrix of the linear part of
a planar differential system at an elementary node is not zero. For a proof and
definitions of saddle, node and focus and their properties here mentioned see for
instance Chapter 2 of [11].

It is known that an elementary equilibrium point of an analytic differential sys-
tem in R2 which is not hyperbolic, has eigenvalues purely imaginary, and only can
be a focus or a center, for more details see [1].

2.2. Poincaré compactification. Let S2 = {y ∈ R3 : ||y|| = 1} be the 2–
dimensional sphere, here || · || denotes the Euclidean norm in R3. The Poincaré
compactification of a polynomial vector field X , denoted by p(X ), is an induced vec-
tor field on the sphere S2 defined as follows. For additional details on the Poincaré
compactification see Chapter 5 of [11].

Let TyS2 be the tangent space to S2 at the point y. Consider X defined in the
plane T(0,0,1)S2 identified with R2. The central projection f : T(0,0,1)S2 → S2 sends

every point y of the plane T(0,0,1)S2 to two points on S2, the ones which are in

the intersection of S2 with the straight line passing through the point y and the
center of the sphere S2, i.e. the origin of coordinates. This map defines two copies
of X , one in the open northern hemisphere H+ and other in the open southern
hemisphere H−. Denote by X ′ the vector field Df ◦ X defined on S2 except on its
equator S1 = {y = (y1, y2, y3) ∈ S2 : y3 = 0}. Clearly the infinity of R2 ≡ T(0,0,1)S2
is identified with the equator S1 of S2. The polynomial vector field X ′ of degree n
can be extended to an analytic vector field p(X ) on S2 taking p(X ) = yn−13 X ′. On
S2 \ S1 = H+ ∪H− there are two copies of X , one in H+ and the other in H−, and
knowing the behaviour of p(X ) around S1, we know the behaviour of X at infinity.
The Poincaré compactification has the property that S1 is invariant under the flow
of p(X ).

The finite equilibrium points of X or of p(X ) are the equilibrium points of X ,
while the equilibrium points of p(X ) contained in S1, i.e. at infinity, are called the
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infinite equilibrium points of X or of p(X ). We note that the infinity equilibrium
points appear in pairs diametrically opposed.

Let R[x, y] be the ring of real polynomials in the variables x and y. A planar
polynomial differential system of degree m is a differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

with P,Q ∈ R[x, y] satisfying max{degP,degQ} = m. As usual the dot denotes
derivative with respect to an independent variable t, usually called the time. We
denote by

X = P
∂

∂x
+Q

∂

∂y

the polynomial vector field associated to system (1).

For working with the vector field p(X ) on the sphere S2 we use the six local
charts given by Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3.
The corresponding local maps φk : Uk → R2 and ψk : Vk → R2 are defined
as φk(y) = −ψk(y) = (ym/yk, yn/yk) for m < n and m,n 6= k. We denote by
z = (u, v) the value of φk(y) or ψk(y) for any k, so the coordinates (u, v) will play
different roles depending on the local chart we are considering. The points in the
infinity S1 in any chart have the coordinate v = 0.

The expression for p(X ) in local chart (U1, φ1) is given by

(2)

u̇ = vm
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
,

v̇ = −vm+1P

(
1

v
,
u

v

)
.

The expression for (U2, φ2) is

(3)

u̇ = vm
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
,

v̇ = −vm+1Q

(
u

v
,

1

v

)
,

and for (U3, φ3) is

u̇ = P (u, v),
v̇ = Q(u, v).

The expression for p(X ) in the charts (Vk, ψk) is the same as for (Uk, φk) multiplied
by (−1)d−1, for k = 1, 2, 3.

2.3. Poincaré–Hopf Theorem. The next result is the Poincaré–Hopf Theorem
for a vector field defined on the 2-dimensional sphere S2, see an elementary proof
in Chapter 6 of [11].

Theorem 2. For every tangent vector field on the sphere S2 with a finite number
of equilibria, the sum of their topological indices is 2.
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2.4. Arrangement of four straight lines. We consider an arbitrary arrangement
of four straight lines in generic position. Then doing an affine change of variables
we can assume that these four straight lines are x = 0, y = 0, x + ay + b = 0 and
x+ cy + d = 0, satisfying that

(4) abcd(a− c)(b− d)(bc− ad) 6= 0.

For more information on arrangements of straight lines see for instance [22].

2.5. Normal forms of polynomial differential systems having a set of given
generic invariant algebraic curves. The algebraic curve C(x, y) = 0 of R2 is
called an invariant algebraic curve of system (1) if

PCx +QCy = KC,

for some real polynomial K(x, y). With this definition it is easy to check that the
algebraic curve C = 0 is formed by orbits of system (1).

Theorem 3. Let Ci = 0 for i = 1, · · · , p be irreducible invariant algebraic curves in

R2, and let r =
p∑
i=1

degree(Ci). We assume that all Ci satisfy the following generic

conditions:

(i) There are no points at which Ci and its first derivatives are all vanish.
(ii) The highest order terms of Ci have no repeated factors.
(iii) If two curves intersect at a point in the finite plane, they are transversal at

this point.
(iv) There are no more than two curves Ci = 0 meeting at any point in the

finite plane.
(v) There are no two curves having a common factor in the highest order terms.

If r = m+ 1 then any polynomial vector field X of degree m tangent to all Ci = 0
is of the form

X =

p∑
i=1

αi


p∏

j = 1
j 6= i

Cj

XCi ,(5)

with αi ∈ R.

Theorem 2 is proved in [9], where also it is explained the history of this result.

Let U be an open subset of R2. A non–locally constant function H : U → R is
a first integral of system (1) in U if it is constant on all the orbits of system (1)
contained in U , i.e.

Ḣ = XH = P
∂H

∂x
+Q

∂H

∂y
= 0,

in all the points of U .

A function R : U → R not identically zero is an integrating factor of system (1)
if it satisfies

∂(RP )

∂x
+
∂(RQ)

∂y
= 0.
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A first integral H associated to this integrating factor R is

H(x, y) = −
∫
R(x, y)P (x, y)dy + f(x),

where H(x, y) must satisfy ∂H/∂x = RQ.

Theorem 4. Under the assumptions of Theorem 3 the polynomial vector field (5)
has the integrating factor 1/(C1 · · ·Cp).

For a proof see the paper of Christopher and Kooij [18].

2.6. Bezout Theorem. For a proof of the next result known as the Bezout The-
orem see for instance [12].

Theorem 5. Let R(x, y) and S(x, y) be two real polynomials. If both polynomials
do not share a non-trivial common factor, then the algebraic system of equations

R(x, y) = S(x, y) = 0

has at most degree(R)degree(S) solutions in R2.

We recall that a simple equilibrium (x0, y0) of system (1) is an equilibrium sat-
isfying

det

(
∂(P,Q)

∂(x, y)
(x0, y0)

)
6= 0.

If a polynomial differential system (1) of degree m has its maximum number of
equilibria m2, then all its equilibria are simple, and consequently elementary. See
for a proof [2] or [13].

3. Proof of Theorem 1

We consider the four straight lines in generic position described in subsection
2.4. Applying Theorem 3 we obtain all cubic systems having the mentioned four
straight lines as invariant algebraic curves, which are

(6)

ẋ = −x
(
bdβ + (b+ d)βx+ (ad(β + γ) + bc(β + δ))y + βx2

+(a(β + γ) + c(β + δ))xy + ac(β + γ + δ)y2
)
,

ẏ = y
(
bdα+ (b(α+ δ) + d(α+ γ))x+ (ad+ bc)αy + (α+ γ + δ)x2

+(a(α+ δ) + c(α+ γ))xy + aαcy2
)
.

By Theorem 4 we know that the function

R(x, y) =
1

xy(x+ ay + b)(x+ cy + d)

is an integrating factor of system (6), and from subsection 2.5 the associated first
integral to this integrating factor is

(7) H(x, y) = xαyβ(x+ ay + b)γ(x+ cy + d)δ.

Claim 1: If some of parameters α, β, γ and δ is zero, then the cubic system (6) has
at most one center.
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Proof of Claim 1. We assume that α = 0, the proof if β, γ or δ is zero is exactly
the same. Then the equilibria of system (6) are all the points of the straight line
x = 0 and the points

(−b, 0), (−d, 0),

(
bc− ad
a− c

,
d− b
a− c

)
,(

b(c(β + δ)− aδ)− d(a(β + γ)− cγ)

(a− c)(β + γ + δ)
,

β(d− b)
(a− c)(β + γ + δ)

.

)
.

Since the unique equilibrium point which is not on an invariant straight line is the
last one if exists, i.e. if β + γ + δ 6= 0, it is clear that when α = 0 at most we can
have one center. �

From Claim 1 in what follows we can assume that

(8) αβγδ 6= 0.

Since the four invariant straight lines are in generic position they intersect in six
equilibrium points, namely

(9) (0, 0), (−b, 0), (−d, 0),

(
0,− b

a

)
,

(
0,−d

c

)
,

(
bc− ad
a− c

,
d− b
a− c

)
.

Note that from (4) all these equilibria exist. The determinant of the linear part
of system (6) in these equilibria are

(10)

−b2d2αβ, −b2(b− d)2βγ, −(b− d)2d2βδ, −b
2(bc− ad)2

a2
αγ,

−d
2(bc− ad)2

c2
αδ, − (b− d)2(bc− ad)2

(a− c)2
γδ,

respectively. From (4) and (8) all these determinants never vanish, consequently
all the equilibria (9) are elementary. Therefore, by subsection 2.1 they only can
be saddles, nodes, focus or centers, but since they are on invariant straight lines
they are either saddles or nodes. Saddles when their corresponding determinant is
negative, and nodes when they are positive.

On the other hand by Bezout Theorem (see Theorem 5) the cubic system (6) has
at most nine equilibria, since six of them are on invariant straight lines it follows
that system (6) has at most three centers.

Claim 2: The trace of the matrix of the linear part of the cubic system (6) at an
equilibrium point which is not on the invariant straight lines is zero, or system (6)
has at most one center.

Proof of Claim 2. The equilibria which are not on the invariant straight lines are
solution of the system ẋ/x = ẏ/y = 0, with the exception of the equilibrium point
((bc − ad)/(a − c), (d − b)/(a − c)). We isolate x2 from the equation ẋ/x = 0 and
substitute it into the equation ẏ/y = 0. Now from this last equation we isolate x
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and we obtain x = −p1(y)/p2(y) assuming that p2(y) 6= 0, where

p1(y) = bc(αδ + (β + δ)(γ + δ))) + (ad(αγ + (β + γ)(γ + δ))y
+ac(γ + δ)(α+ β + γ + δ) + bβd(γ + δ)y2,

p2(y) = β(bγ + dδ) + (α+ β + γ + δ)(aγ + cδ)y.

Later on we shall study the case p2(y) = 0.

Substituting x = −p1(y)/p2(y) into the equation ẋ/x = 0 we get the following
equation only in the variable y:

βγδ(b− d+ (a− c)y)p3(y)

p2(y)2
= 0,

where

p3(y) = bβ2d(b− d) + β

(
bd(a(α+ 2(β + γ) + δ)− c(α+ 2β + γ + 2δ))

−ad2(α+ β + γ) + b2c(α+ β + δ)

)
y + (α+ β + γ + δ)(

a2d(β + γ) + ac(b(α+ 2β + δ)− d(α+ 2β + γ))− bc2(β + δ)

)
y2

+ac(a− c)(α+ β + γ + δ)2y3.

The real roots of the polynomial p3(y) provide the coordinates y of the equilibria
which are not on the invariant straight lines, and substituting these roots into
x = −p1(y)/p2(y) we obtain the coordinate x of these equilibria.

Substituting x = −p1(y)/p2(y) into the divergence of the cubic system (6), i.e.
into ∂ẋ/∂x+ ∂ẏ/∂y we obtain

(11) divergence =
p3(y)p4(y)

p2(y)2
,

where

p4(y) = bγ(β(γ + 2δ)− δ(α+ γ + δ)) + dδ(γ(α− 2β + γ) + δ(γ − β))

+

(
aγ(α(γ − 2δ) + β(γ + 2δ) + (γ + δ)(γ − 2δ))− cδ

(
δ(α+ β − γ)

−2γ(α− β + γ) + δ2
))
y.

Since the real roots of the polynomial p3(y) provide the y coordinate of the
equilibria which are not on the invariant straight lines, and this polynomial is a
factor of the divergence of the system, it follows that the linear part of system (6)
at all the equilibria which are not on the invariant straight lines is zero when the
polynomial p2(y) is not the zero polynomial.

Now assume that p2(y) = 0, looking at the two coefficients of this polynomial
we consider four cases.

Case 1: β = 0 and δ = −α − γ. In this case it is easy to check that all the
equilibrium points of system (6) are on the invariant straight lines, consequently
this system has no centers.
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Case 2: β = 0 and γ = −cδ/a. Now the unique equilibrium point of system (6)
which is not on the invariant straight lines is(

a(bc− ad)α

(a− c)(a(α+ δ)− cδ)
,
d− b
a− c

)
.

Consequently system (6) has at most one center.

Case 3: γ = d(α + β)/(b − d) and δ = b(α + β)/(d − b). As in Case 1 in this case
system (6) has no equilibria outside the invariant straight lines, so no centers.

Case 4: γ = −cδ/a = −dδ/b. This case is not possible because would imply that
ad− bc = 0, in contradiction with (4).

This completes the proof of this claim. �

In order to complete the proof of Theorem 1 we need to prove the following four
claims.

Claim 3: Provide an example of cubic system (6) having exactly three center.

Claim 4: Provide an example of cubic system (6) having exactly one center.

Claim 5: Provide an example of cubic system (6) without centers.

Claim 6: Show that the cubic systems (6) cannot have only two centers.

Figure 1. Phase portrait in the Poincaré disc of the cubic system (12).

Proof of Claim 3. Take a = d = β = γ = δ = 1, b = −1, c = −2 and α = −4, then
system (6) becomes

(12)
ẋ = x(1− 6y − x2 + 2xy + 6y2),

ẏ = y(4− 12y − 2x2 + 3xy + 8y2).

This system has three equilibria which are not on the invariant straight lines, namely

(x1, y1), (x2, y2), (x3, y3),

where
x1 is the root 0.648190032939388.. of the polynomial p(x) = 16− 24x− 3x2 + 3x3,
and y1 is the root 0.630709938165919.. of the polynomial q(y) = −2−3y+6y2+6y3;
x2 is the root 3.04974949521986.. of the polynomial p(x), and y2 is the root
−1.184541590375086.. of the polynomial q(y);



CENTERS FOR CUBIC POLYNOMIAL DIFFERENTIAL SYSTEMS 9

x3 is the root −2.697939528159256.. of the polynomial p(x), and y3 is the root
−0.446168347790832.. of the polynomial q(y).
We note that there are explicit exact expressions for the roots of a cubic polynomial,
but we prefer present these roots in this shorter way.

The determinants of the matrices of the linear part of system (12) at the equi-
librium points (xk, yk) for k = 1, 2, 3 are:
For k = 1 is 0.8200842208962.., a root of the polynomial r(λ) = −4800 + 6000λ−
180λ2 + λ3;
For k = 2 is 136.2086577457645.., a root of the polynomial r(λ);
For k = 3 is 42.9712580333392.., a root of the polynomial r(λ).

Since the three determinants at the equilibrium point (xk, yk) for k = 1, 2, 3 are
positive, by subsection 2.1 these equilibria only can be nodes, foci or centers. They
cannot be foci because in a neighborhood of them it is defined the first integral (7),
also they cannot be nodes because the the trace of the matrix of the linear part of
a differential system at a node is not zero, but we know by the Claim 2 that the
trace of every equilibrium point which is not on the invariant straight lines is zero.
In short these three equilibria are centers. See the phase portrait in the Poincaré
disc of the cubic system (12) in Figure 1. �

Figure 2. Phase portrait in the Poincar’e disc of the cubic system (13).

Proof of Claim 4. Take a = d = α = β = γ = δ = 1, b = −1 and c = −2, then
system (6) becomes

(13)
ẋ = x(1− 6y − x2 + 2xy + 6y2),

ẏ = y(1− 3y − 3x2 + 2xy + 2y2).

This system has three equilibria which are not on the invariant straight lines, namely

(x1, y1), (x2, y2), (x3, y3),

where
x1 is the root 0.11303685689460.. of the polynomial p(x) = 1 − 9x + 12x3, and y1
is the root 0.702574789251432.. of the polynomial q(y) = −2− 9y + 24y3;
x2 is the root −0.916993298352020.. of the polynomial p(x), and y2 is the root
−0.282066739245770.. of the polynomial q(y);
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x3 is the root 0.803956441457416.. of the polynomial p(x), and y3 is the root
−0.420508050005661.. of the polynomial q(y).

The determinants of the matrices of the linear part of system (12) at the equi-
librium points (xk, yk) for k = 1, 2, 3 are:
For k = 1 is 0.1615865516314450.., a root of the polynomial r(λ) = −108 + 621λ+
288λ2 + 32λ3;
For k = 2 is −4.269300326605967.., a root of the polynomial r(λ);
For k = 3 is −4.89228622502547.., a root of the polynomial r(λ).

As in the proof of Claim 3 the equilibrium point having positive determinant is
a center, and from subsection 2.1 the two equilibrium points with negative deter-
minant are saddles. See the phase portrait in the Poincaré disc of the cubic system
(13) in Figure 2. �

Figure 3. Phase portrait in the Poincar’e disc of the cubic system (14).

Proof of Claim 5. Take a = d = β = γ = δ = 1, b = −1, c = −2 and α = −1, then
system (6) becomes

(14)
ẋ = x(1− 6y − x2 + 2xy + 6y2),

ẏ = y(1 + x2 − 3y + 2y2).

This system has only one equilibrium point which is not on the invariant straight
lines, namely

(x1, y1) = (−0.2616677544145299.., 0.918121959154146..),

where x1 is a of the polynomial 1 + 3x + 12x3, and y1 is a root of the polynomial
−2 + 15x− 36x2 + 24x3.

The determinant of the matrix of the linear part of system (14) at the equilibrium
point (x1, y1) is −0.946250815810897.., a root of the polynomial 36+117λ+144λ2+
64λ3. Since this determinant is negative the equilibrium point (x1, y1) is a saddle.
Hence system (14) has no centers. See the phase portrait in the Poincaré disc of
the cubic system (14) in Figure 3. �

Now we shall study the equilibrium points of system (6) at infinity using the
Poincaré compactification described in subsection 2.2. Thus system (6) in the local
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chart U1 has the expression

(15)

u̇ = (α+ β + γ + δ)(u− u2 − 2u3) + (γ − δ)uv + (3α+ 3β + γ + 2δ)u2v
−(α+ β)uv2,

v̇ = βv − (β − γ + 2δ)uv − βv3 − 2(β + γ + δ)u2v + (3β + γ + 2δ)uv2.

In this local chart the system has three equilibrium at infinity (0, 0), (−1/a, 0) and
(−1/c, 0). The determinants of the matrices of the linear part of system (15) at
these equilibria are

(16) β(α+β+γ+δ), ((a−c)2γ(α+β+γ+δ))/a2 and ((a−c)2δ(α+β+γ+δ))/c2,

respectively.

System (6) in the local chart U2 has the expression

(17)

u̇ = (α+ β + γ + δ)(2u+ u2 − u3)− (3α+ 3β + γ + 2δ)uv
+(δ − γ)u2v + (α+ β)uv2,

v̇ = α(2v − 3v2 + v3) + (α+ 2γ − δ)uv − (α+ β + γ + δ)u2v
+(δ − γ)uv2.

The unique infinite equilibrium point of system (17) which is not already in the
chart U1 is the origin, and the determinant of the matrix of the linear part of
system (17) at the origin is

(18) a2c2α(α+ β + γ + δ).

Proof of Claim 6. We have that αβδγ 6= 0, see (8). Then the six equilibria which
are in the intersection of the four invariant straight lines are elementary because
the determinants of the matrices of the linear part of system (6) at them given in
(10) are non–zero, so their topological indices are −1 or 1. From the paragraph
previous to this proof the infinite equilibria are also non–elementary again because
the corresponding determinants are non-zero, and again their topological indices
are −1 or 1.

From the proof of Claim 2 we know that at most we have three additional finite
equilibria which are not contained on the invariant straight line. We denote by I
the sum of the topological indices of these finite equilibria outside the invariant
straight lines, of course we take I = 0 if such equilibria do not exist. Now we shall
study the possible values of I.

We shall prove that the unique possible values for I are −1, 0 or 3. Note that
these values of I prevents the existence of only two centers. Indeed, if I = −1 and we
have only two centers these contribute to I with a 2 (because the topological index
of a center is 1). Since at most there is one additional finite equilibria outside the
invariant straight lines, and if exists its index is −1 or 1 (because the cubic system
reaches the maximal number of finite equilibria, nine, and then all the equilibria
are elementary, see subsection 2.6), so adding this 1 or −1 to 2 never we can reach
−1. On the other hand if this third equilibrium outside the invariant straight lines,
the two centers cannot produce that I = 1.

If I = 3 and the system has the two centers outside the invariant straight lines,
then must be a third equilibrium outside the invariant straight lines with index 1,
and by the Claim 2 this third equilibrium is a center, because its trace is zero and
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since they are elementary (because the cubic system has nine finite equilibria) with
index one only can be nodes, foci or centers, but the elementary nodes and foci
have trace non–zero.

Now we shall prove that the unique possible values for I are −1 or 3. Recall
that αβδγ 6= 0. Taking into account only the signs of α, β, γ and δ we need only
to consider the following three cases because changing the sign of the independent
variable of system (6), i.e. changing the sign of the time, we get all the other
possibilities and we do not change the topological indices of the equilibria.

Case 1: All the signs of α, β, γ and δ are positive. Then, from (10) the sum
of the topological indices of the six equilibria which are in the intersection of the
invariant straight lines is −6, while the sum of the eight infinite equilibria (recall
that these equilibria appears in pairs diametrally opposite in S1) is 8, see (16) and
(18). Therefore from the Poincaré–Hopf Theorem and taking into account that on
the sphere S2 we have two copies of the finite equilibria we obtain −12+2I+8 = 2.
Hence I = 3.

Case 2: Three of the signs of α, β, γ and δ are positive, and the other is negative.
We distinguish three subcases.

Subcase 2.1: α + β + γ + δ > 0. Now from (10) the sum of the topological indices
of the six equilibria which are in the intersection of the invariant straight lines is
0, and from (16) and (18) the sum of the eight infinite equilibria is 4. So from the
Poincaré–Hopf Theorem we have 0 + 2I + 4 = 2, and consequently I = −1.

Subcase 2.2: α+β+ γ+ δ = 0. In this case the polynomial p3(y) given in the proof
of Claim 2, whose real roots are the y coordinate of the equilibria which are outside
the invariant straight lines, at most has one real root and if it exists is

bd(d− b)β
ad(b(β + γ) + dδ)− bc(bγ + d(β + δ))

.

So in this case at most one center.

Subcase 2.3: α+ β + γ + δ < 0. Again from (10) the sum of the topological indices
of the six equilibria which are in the intersection of the invariant straight lines is 0,
and from (16) and (18) the sum of the eight infinite equilibria is −4. Therefore by
the Poincaré–Hopf Theorem we have 0 + 2I − 4 = 2, and I = 3.

Case 3: Two of the signs of α, β, γ and δ are positive, and the other two negative.
Here we only consider that α+ β + γ + δ 6= 0, because the case α+ β + γ + δ = 0
follows as in the subcase 2.2. From (10) the sum of the topological indices of the
six equilibria which are in the intersection of the invariant straight lines is 2, and
from (16) and (18) the sum of the eight infinite equilibria is 0. Therefore by the
Poincaré–Hopf Theorem we have 4 + 2I + 0 = 2, and I = −1.

This completes the proof of the claim. �
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Pures Appl. 7 1881, 375–422.
[24] D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center,

Trans. Amer. Math. Soc. 338 (1993), 799–841.



14 J. LLIBRE

[25] N. I. Vulpe, Affine–invariant conditions for the topological discrimination of quadratic sys-

tems with a center, Differential Equations 19 (1983), 273–280.

[26] N.I. Vulpe and K.S. Sibirskii, Centro–affine invariant conditions for the existence of a
center of a differential system with cubic nonlinearities, (Russian) Dokl. Akad. Nauk sssR

301 (1988), 1297–1301; translation in Soviet Math. Dokl. 38 (1989), 198–201

[27] Z. Zhang, T. Ding, W. Huang and Z. Dong, Qualitative Theory of Differential Equations,
Translations of Mathematical Monographs 101, Amer. Math. Soc., Providence, 1991.
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