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Resumo

Jimenez, Jeidy Johana. On the crossing limit cycles for piecewise linear
differential systems on the plane. Goiania, 2019. 162p. Tese de doutorado.
Instituto de Matematica e Estatistica, Universidade Federal de Goias.

Neste trabalho estudamos a versdo do 16th problema de Hilbert para sistemas suaves
por partes para um caso particular, mais precisamente no Capitulo 2 estudamos sobre
o nimero maximo de ciclos que podem ter os sistemas lineares por partes separados
por uma linha reta ¥ e formados por dois sistemas lineares diferenciais X, X cujas
singularidades sdo simétricas com relagdo a linha de descontinuidade X e estdo sobre a
linha reta y = sx, s € R. Em [24, 27] foi provado que os sistemas lineares suaves por
partes formados por centros lineares separados por uma linha reta ndo tém ciclos limite
costurantes no entanto em [20, 28] foram estudados estes mesmos sistemas quando a
curva de descontinuidade ndo é uma linha reta e foi mostrado que o nimero de ciclos
limite costurantes nesses sistemas € diferente de zero. Por esta razao € interesante estudar
a influéncia da curva de descontinuidade no nimero de ciclos limite costurantes que
sistemas suaves por partes formados por centros lineares podem possuir. No Capitulo
3 estudamos sobre as cotas superiores para o nimero maximo de ciclos limite costurantes
com dois ou quatro pontos sobre a curva de descontinuidade ¥, quando X é uma conica
qualquer. Finalmente no Capitulo 4 estudamos sobre o nimero de ciclos limite costurantes
com quatro pontos sobre a curva de descontinuidade X, quando X é uma ctbica redutivel

formada por um circulo e uma linha reta ou por uma pardbola e uma linha reta.

Palavras—chave
Sistemas diferencias suaves por partes, ciclos limite costurantes, centros diferen-

cias lineares, cOnicas, cubicas.



Abstract

Jimenez, Jeidy Johana. On the crossing limit cycles for piecewise linear
differential systems on the plane. Goiania, 2019. 162p. PhD. Thesis . Instituto
de Matematica e Estatistica, Universidade Federal de Goias.

In this work we analyze the version of Hilbert’s 16th problem for piecewise linear
differential systems in the plane for a particular case, more precisely in Chapter 2
we study on the maximum numbers of crossing limit cycles that can have the planar
piecewise linear differential systems separated by a straight line X and formed by two
linear differential systems X —, X which singularities are symmetrical with respect to the
straight line of discontinuity ¥ and they are on the straight line y = sx, s € R. In [24, 27]
it was proved that piecewise linear differential centers separated by a straight line have no
crossing limit cycles nevertheless in [20, 28] were studied planar discontinuous piecewise
linear differential centers where the curve of discontinuity is not a straight line, and it
was shown that the number of crossing limit cycles in these systems is non-zero. For this
reason it is interesting to study the role which plays the shape of the discontinuity curve in
the number of crossing limit cycles that planar discontinuous piecewise linear differential
centers can have. In Chapter 3 we study on the upper bounds for the maximum number
of crossing limit cycles with either two or four points on the discontinuity curve X, when
Y is any conic. And finally in Chapter 4 we study on the numbers of crossing limit cycles
with four points on the discontinuity curve X, when X is a reducible cubic curve formed

either by a circle and a straight line, or by a parabola and a straight line.

Keywords
Piecewise linear differential systems, crossing limit cycles, linear differential

centers, conics, cubic.



Introduction

The study of the discontinuous piecewise differential systems in the plane started
with Andronov, Vitt and Khaikin in [1], and from there these systems have been a topic
of great interest in the mathematical community due to their applications in various areas,
because they are used for modeling real phenomena and different modern devices, see for
instance the books [6, 37] and references quoted therein.

In the qualitative theory of differential systems in the plane, a limit cycle is a
periodic orbit which is isolated in the set of all periodic orbits of the system. This concept
was defined by Poincaré [31]. In several papers, as [3, 21, 30], it was shown that the limits
cycles model many phenomena of the real world. Subsequently these works, the non-
existence, existence, the maximum number and other properties of the limit cycles were
extensively studied by mathematicians and physicists and more recently, by biologists,
economist and engineers, see for instance [6, 38].

As for the general case of planar differential systems one of the main problems
for the case of the piecewise differential systems is to determine the existence and the
maximum number of crossing limits cycles that these systems can exhibit, that is the
version of Hilbert’s 16th problem for PWLS in the plane [15]. In this work, we study the
crossing limit cycles which are periodic orbits isolated in the set of all periodic orbits of
the piecewise differential system, which only have isolated points of intersection with the
discontinuity curve.

The class of piecewise linear differential systems (PWLS for short) in R? with
two zones separated by a straight line X is the simplest class of piecewise differential
systems. We can consider without loss of generality that the discontinuity straight line is
Y = {(x,y) € R* :x=0}. It separates the plane into two regions, namely

L ={(xy) €R*:x<0} and 2" = {(x,y) eR*:x>0}.
Therefore we obtain the PWLS

. X =AX+B", if (x,y)eX,
X = (0-1)
Xt =ATX+B*t, if(x,y)eXt,



where

+ +
a a b
A* = ( lil f), Bt = ( i) and X = (x,y)" € R?
ayy Adyp b,

In [29] Lum and Chua conjectured that a continuous PWLS (0-1) has at most one
crossing limit cycle. In [8] Freire et al. proved this conjecture. There are several papers
tried to investigate the problem of Lum and Chua for the class of discontinuous PWLS
in the plane. For instance in [14] Han and Zhang conjectured that discontinuous PWLS
(0-1) have at most two crossing limit cycles. Via a numerical example with three crossing
limit cycles in a discontinuous PWLS, Huan and Yang gave a negative answer to this
conjecture, see [18]. Later on in [11, 26] were given analytical proofs for the existence
of these three crossing limit cycles. Nevertheless until today it is an open problem to
know if three is the upper bound for the maximum number of crossing limit cycles of
discontinuous PWLS (0-1).

Due to the difficulty of this problem several researchers study the upper bounds
of crossing limit cycles of system (0-1) under some special conditions, see [2, 7, 8, 9,
10, 12, 18, 16, 17, 35, 24, 26, 23, 33, 36]. In [10] the authors studied systems (0-1)
such that have a maximal crossing set, and with a focus-focus dynamics, they proved
that if al_zafr2 > 0, then systems (0-1) have at most one crossing limit cycle. In [33] it
was proved that systems (0-1) with focus-saddle type with b7 = 0 have at most one
crossing limit cycle. Recently in [35] it was proved that systems (0-1) having a unique
non-degenerated equilibrium can have at least three crossing limit cycles depending on
the configurations of the equilibrium points for each linear differential system in (0-1).
In [24] the authors proved that when one of linear differential systems of (0-1) has the
equilibrium point on X, systems (0-1) have at most two crossing limit cycles and this
upper bound is reached. In particular, in that paper it was proved that the class of planar
discontinuous piecewise linear differential centers (PWLC for short) has no crossing limit
cycles. However, recently in [20, 28] were studied planar discontinuous PWLC where the
curve of discontinuity is not a straight line, and it was shown that the number of crossing
limit cycles in these systems is non-zero. For this reason it is interesting to study the role
which plays the shape of the discontinuity curve in the number of crossing limit cycles
that planar discontinuous PWLC can have. For example, in this work, we study the planar
discontinuous PWLC when the discontinuity curve is: either a conic; or a reducible cubic
curve formed either by a circle and a straight line or by a parabola and a straight line.

This work consists of four parts, first one in Chapter 1 we briefly present some
of the basic concepts, definitions and results used through this work.

In Chapter 2 we study the maximum number of crossing limit cycles that the
planar PWLS (0-1) can have when the equilibrium points of the differential linear systems

X~ and X+ are symmetric with respect to the line of discontinuity X and these singularities



can be real or virtual.

Chapter 3 is devoted to provide an upper bound for the maximum number of
crossing limit cycles of the planar discontinuous PWLC separated by a conic X.

And finally in Chapter 4 we study on the number of crossing limit cycles of the
discontinuous PWLC in R? separated by a reducible cubic curve formed either by a circle

and a straight line, or by a parabola and a straight line.
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Two crossing limit cycle of type 67 (magenta and blue), two crossing limit
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CHAPTER 1

Preliminaries

Here some basic concepts, results, and tools necessary to the development of
this work are presented. Most part of the results are given without proof, however
references where they can be found, are included. In this work, we concern about planar
discontinuous vector fields defined in two or more zones, for this reason, we present a

generic definition for this type of vector fields.

1.1 Discontinuous Vector Fields

Definition 1.1 A differential system defined in R? is a piecewise linear differential system
(PWLS) in R? if there exists a set of 3—tuples {(Ai,Bi,R;)};c; where A; is a 2 x 2 real
matrix; B; € R* and R; are connected and open regions in R? separated by a discontinuity
manifold X. These regions satisfy Ri\R; = 0 for i # j and Uje/R; UL = R?; and Aix + B,
is the vector field in R; when x € R;.

The switching manifold or discontinuity manifold X is described as
L={(xy) €R*:H(x,y) =0},

where H : R — R is a C” function, r > 1, and O is a regular value of H.

Under these conditions, a PWLS can be written as following
Z(p) =Xi(p) =Ap+B;, peR;, ic{l, .. n} (I-1)

where each vector field X; is smooth, and defines a smooth flow @x.(p,#) within any open
set U C R;. In particular, each flow @y, (p,?) is well defined on both sides of the boundary
OR;.

We note that Definition 1.1 does not specify a rule for the evolution of the
dynamics within a discontinuity set. This depends basically of the behavior of the vector
fields X(;_) and X; close to the discontinuity manifold for i € {1,2,3,...,n}, where we
denote that i — I = n when i = 1. Here we namely X; 1); = R(;_1)NR; C X. For to extend
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the evolution of the dynamics on the discontinuity manifold X, we divide each X(;_1y; in
three regions. See Figure 1.1.

e Crossing region: Zfl._l)l. ={pe Li—nilXi—nH(p) - X:H (p) > 0},

e Escaping region: Zfl.fl)l. ={pe X(i—1)ilX(i—1yH(p) < 0 and X;H (p) > 0},

e Sliding region: Zfl._])i ={pe L(i—1)ilXi—1yH(p) > 0 and X;H (p) < 0}.

AN T AN
A S

(b) (c)
Figure 1.1: The regions X;_,; in (a), I

; i1 i (b) and Iy in
(c)-

N

The regions Zfi_])l., Zfl._ i and Z(l._ 1y are relatively open in X. The points p € X;_1); such
that X;H (p) = 0 are called tangency points of the vector field X; and p € ¥;; is said to be a
tangency of order k of X; if X;H (p) =0, ...,Xik’IH(p) =0, and X*H (p) # 0. For instance
if k =2 we say that p is a quadratic tangency of X;. On the other hand, if X;H (p) # 0 we
say that X; is transversal to X at p.

When p € Zfl.fl)l. it is natural to consider that the trajectories of Z(p) = X(;_)(p)
are given by concatenations of trajectories of X(; 1) and X;. So, for to determine all
possible trajectories of such a vector field it is necessary to define the dynamics in regions
Zfl.fl)i and Zfl.fl)l.. In Zii—l)
convex combination of X(; 1) and X; which is tangent to X;_); at p, see Figure 1.2. This

isifpe Z?i—l)i szi—l)i’ then

U Zfl.fl)i we define a vector field Zfl.fl)i given by the unique

1
~ X;H(p) — X;_1)H(p

7 (XH (0)X(i-1) () = X H(P)Xi(P)

Therefore we define the local trajectory for Filippov vector fields as follows. For

more details see [13].

Definition 1.2 The local trajectory of a Filippov vector field of the form (1-1) through a
point p is defined as follows:
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Figure 1.2: Filippov vector field Z‘("l.fl)i(p) whenp € Zzifl)i'
e For p € R; such that X;(p) # 0, i = 1,...,n, the trajectory is given by @z(p,t) =
©x,(p,t) forp € Riandt € I CR.

e Forp € Zfi—l)i such that X;—1H(p),X;H(p) > 0 and taking the origin of time at p,
the trajectory is defined as ¢z (p,t) = @x,_, (p,t) fort € I, N (—e0,0] and ¢z(p,t) =
Ox,(p,t) fort € 1,N[0,00). For the case X;_1H(p),X;H(p) < O the definition is the

same reversing time.

o Forp € ¥{;_,;UX],_,, such that Zgl.fl)l.(p) #0, oz(p,t) = (PZf,-,l),-@?t)fort c€l,C
R.

e Forp € azgiil)iUE)Z?FI)I.UBZ?FI)I. such that the definitions of trajectories for
points in X(;_1);, in both sides of p, can be extended to p and coincide, the trajectory

through p is this trajectory. We will call these points regular tangency points.

e For any other point ©z(p,t) =p for all t € R. This is the case of the tangency
points in X;_y); which are not regular and such that we will be called called the
singular tangency points and the critical point of X;—1 in X;_1, X; in ¥; and Zfi—l)i
in Z((31'71)1’ Uz’fifl)i’

In the particular case when the planar discontinuous vector field is defined in
only two regions, we have that Z(p) = (X1, X>), then given a trajectory ¢z(q,) € RjUR»
and p € Xy, p is said to be a departing point (resp. arriving point) of ¢z(q,?) if there

exists zy < 0 (resp. 7y > 0) such that lirrl ¢z(q,t) = p (resp. lim @z(q,r) = p). With these
I*)[O t—>l(;

definitions if p € X{,, then it is a departing point (resp. arriving point) of @, (q,) for any
q €Y' (p) (resp. q € ¥’(p)), where

Y'(p) = {@z(p,1);t €Nt >0} and v*(p) = {@z(p,1);t €Nt <0},

are the trajectories of linear differential systems X; and X, in Ry and R, through p,
respectively. These definitions are analogous if the piecewise linear differential system

(1-1) is defined in n connected and open regions.
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Definition 1.3 A periodic orbit I" of the discontinuous piecewise linear differential system
(1-1) is a smooth piecewise curve which is formed by pieces of orbits of each linear
differential system X;, I = UjcrY, contained in the regions R;, respectively, and it is such
that @z(p,t +T) = @z(p,t), for some T > 0, where T is called of period of the orbit
periodic .

IfYNX CX€ foralli=1,...,n, then the periodic orbit T is called the crossing

periodic orbit, otherwise is called sliding periodic orbit.

Definition 1.4 [f a periodic orbit I is isolated in the set of all periodic orbits of Z, then it

is called limit cycle of piecewise linear differential system (1-1).

Definition 1.5 Consider two discontinuous vector fields Z and Z defined in open sets, U
and U, of R? with discontinuity curves © and ¥, respectively. Then,

e Z and Z are Y-equivalent if there exists an orientation preserving homeomorphism
h:U — U that sends ¥ to ¥ and sends orbits of Z to orbits of Z;

e Z and Z are topologically equivalent if there exists an orientation preserving

homeomorphism h: U — U sends orbits of Z to orbits of Z.

1.2 The Poincaré maps

First we collect the basic idea of the Poincaré map from the qualitative theory of
the ordinary differential equations.

One of the most important tools in the study of flows in the neighborhood of
periodic orbits is the so called Poincaré map. We consider a locally Lipschitz vector field
F :U — R" and let @(x,s) be the flow defined by the differential equation x = F(x).
Let L be a hypersurface in R" and take a point p € LNU. The flow ¢ is said to be a
transverse flow to L at point p if F(p) is not contained in the tangent space to L at point
p. If F(p) € TpL, then the point p is called a contact point of the flow with L. Let V be an
open subset of L. We say that the flow is transverse to L at V' if the flow is transverse to L
at every pointin V.

Now we consider two open hypersurfaces L,L, and two points p; € L1 NU,
P, € LoNU such that p, = @(py,s1). There exist a neighborhood V; of p; in LiNU, a
neighborhood V; of p, in L, NU and a function t : V; — R satisfying t(p;) = s; and
¢(q,T(q)) € V, for every q € V;. Moreover, if the vector field F is globally Lipschitz, C"
with r > 1, or analytic, then the function 7 is also continuous, C” with » > 1 or analytic,
respectively. In this situation we define the Poincaré map as being the map w: V| — V,
such that

n(q) = ¢(q,7(q)), foreveryqe V.
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When the vector field is globally Lipschitz, C" with r > 1 or analytic, the Poincaré map ©
is also continuous, C" with » > 1 or analytic, respectively. By reversing the sense of the
flow it is possible to conclude that the Poincaré map is invertible and the inverse map !
is continuous, C” with r > 1 or analytic, respectively. In the particular case of L; = L; the
Poincaré map 7 will be called a return map.

Consider p € L and let y(p) be a periodic orbit. From the continuous dependence
of the flow on the initial conditions, it follows that a return map 7 can be defined in a
neighborhood of p, and p is a fixed point of w. Conversely if p € L; is a fixed point of a
return map T then y(p) is a periodic orbit. Hence limit cycles are associated to isolated
fixed points of return maps.

When we consider the PWLS (1-1) we can distinguish two different kind of
periodic orbits I" depending on their location in the phase plane. First the periodic orbits
I" which are contained in one of the open regions R; where the systems are linear then
periodic orbits in the class appear only inside of a linear center. And second the periodic
orbit I" that intersect the boundaries X(;_py;, this is I' = UierY, where I = {1,2,3,....n},

wheni =1 we denotei — 1 = n.

Y12

Enl

TeTo; - -oT(p)

Z(n-l)n

Yin)
Figure 1.3: Poincaré map of PWLS (1-1).

Definition 1.6 We define a section map w; of system (1-1) in R; as follows: for any
P € X(;_1);, a part from the origin, T;(p) is the first intersection of the flow of system
(1-1) with X(;, 1), where the flow starting from p will always stay in R; until it arrives at
the point W;(p). This is T; : X(;_1); — Zi(i1) Such that

Ti(p) = ¢x,(p,Ti(p)), foreveryp € X yy;.

The complete return map 7 associated to system (1-1) is given by the composition of these
section map m;, see Figure 1.3. Thisis w: X(;_1); — X(;_1); and

T(p) =M oMy—10---T(p), foreveryp € Xy
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When i = 2 and the discontinuity curve ¥ is a straight line, we have that ¥ split
the phase plane into the half—planes ¥+ and we obtain the PWLS (0-1), then T : £ — X

and

n(p) =7y (n_(p)), foreveryp € X.

In order to have limit cycles for PWLS (0-1) we must determine the fixed points

of the function .

1.3 Extended Complete Chebyshev systems

The functions fy, f1, ..., fn, defined on an open set U C R are linearly indepen-

dent functions if

n
forevery r € U, Zoc,-f,-(t) = 0 implies that op =0 =... = o, = 0.
i=0

Proposition 1.7 Let fy, f1,..., fn be analytic functions defined on an open interval U C R.

If the functions fy, f1,..., fn are linearly independent then there exists fi,...,ti, € U and
n
0o, 01, ..., 0, € R such that 'y, 0;f;(f;) =0, forevery j€{l,...,n}.
i=0
For a proof of Proposition 1.7 see [19] or [22].
Now we recall the concept of Chebyshev systems. For more details see [19].

Definition 1.8 Let = {fo, f1,..-, [u} be an ordered set of smooth real functions defined
on an interval I C R. The set F is an Extended Chebyshev system (ET-system) on I if
and only if the maximum number of zeros counting multiplicities by any non-trivial linear
combination of functions in ‘F is at most n, and this number is reached. The family F
is an Extended Complete Chebyshev system (ECT-system) on I if and only if for any
k€ {0,1,...,n} the set Fr. ={fo, f1,--, fi} is an Extended Chebyshev system.

We recall the definition of the Wronskian of a set of functions:

Wi(fo, -1 fi) (s) = detM (fo, ..., fir) (s),

where

M(fo, f1,-- fi)(s) =

Proposition 1.9 The ordered set of functions F is an ECT-system on I if and only if the
Wronskians Wi(fo, f1, -, fx)(t) # 0, on I for each k € {0,1,...,n}.
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For a proof see [19].

1.4 Lambert function

In mathematics, the Lambert W/ function, also called the omega function or

product logarithm, is a set of functions, namely the branches of the inverse relation of
the function f(z) = ze?, this is

7= f1(ze%) = W (2¢%).

It is called in this way due to mathematical Johann Heinrich Lambert. The relation W

! T-2
\
l
(NS

1
|
|
|
-4

Figure 1.4: The Lambert function.

is multivalued (except at 0) and it decreases if z < —1 and creases if z > —1. The global
minimum of function f(z) = ze* is f(—1) = —1/e. Then W(z) defines a single-valued
function in (—1/e,00).

For more details see [4].

1.5 First integrals

The aim of this section is to introduce the terminology of the Darboux theory of
integrability for real planar polynomial differential systems. For a detailed discussion of

this theory see [5]. A real planar polynomial differential system or simply a polynomial
system will be a differential system of the form

dx dy
ds X (x,y), ds y Q(X7y)7 ( )

where x and y are real variables, the independent one (the time) s is real, and P and Q

are polynomials in the variables x and y with real coefficients. The degree of polynomial

23
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system (1-2) is defined as m = max {degP,degQ}. The vector field X associated to system
(1-2) is defined by
x-pliod
ox dy
System (1-2) is integrable on an open subset U of R? if there exists a non constant analytic
function H : U — C, called a first integral of (1-2) on U, which is constant on all orbits
of system (1-2) contained on U.

1.6 Bezout inequality

In this section we consider the intersection of two algebraic curves. Suppose
the curves are given by F(x,y) = 0 and G(x,y) = 0, then we shall be interested in
their common solutions. In order to solve this system of equations we need to introduce
some elimination theory for polynomial equations. In general this is done using so-called
Grobner basis techniques or with the resultant of the two polynomials. Consider that R
is an integral domain and consider two polynomials F(x),G(x) € R [x] and write them in
the form F(x) = ppX™ 4 pm_1X™ ' 4 ... + p1x + po, G(x) = gux" + ... + q1x + qo. The

resultant of F and G is given by the determinant of the so called Sylvester matrix

pO pl e pm 0 e 0
0 Po - Pm—1 Pm 0
o 0 ---
RES(F7G): po pl pm
@ @ a0 0
0 q0 "°° 4n—1 Yn 0
0 0 -~ g “ Gu-1 gn

Theorem 1.10 Ler F,G € k|x,y| and suppose the total degree of F is m and the total

degree of G is n. Then Res,(F,G) is either zero or a polynomial of degree < mn in y.

Let F,G € k|x,y] be two polynomials without common non-constant factor. Let xp, yo be
such that F(xq,y0) = G(x0,y0) = 0. Then Res,(F,G)(yo) = 0 as well. Since Res,(F,G)
has degree at most mn we see that at most mn values of yo are possible. Similarly at
most mn values of xy are possible. As a consequence the set of points xg,yo satisfying
F(x0,y0) = G(x0,y0) = 0 is at most finite. We can phrase this alternatively. Consider
two algebraic curves C,D given by the equations F(x,y) = 0 and G(x,y) = 0. We shall

say that C,D have a common component if F,G have non-constant common divisor
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H € k|x,y]. The common component is then the curve given by the equation H(x,y) = 0.
If F,G do not have a non-constant common factor we say that the curves do not have a
common component. Any point xg, yo satisfying F'(xo,yo) = G(x0,y0) = 0 can be seen as
an intersection point of C and D. So we see that two algebraic curves without common

component intersect in finitely many points. We can say a bit more though.

Theorem 1.11 (Bezout Theorem) Let C,D be two algebraic curves of degree m,n re-
spectively. Suppose that the curves have no common component. Then the number of

intersection points of C,D is at most mn.

For more details, see [34].



CHAPTER 2

Crossing limit cycles for PWLS separated by a
straight line and having symmetric equilibrium

points

2.1 Introduction

The study to provide a sharp upper bound for the maximum number of crossing
limit cycles for discontinuous PWLS separated by a curve is a very difficult problem,
even when this curve is a straight line. And there are two reasons that make difficult the
analysis of this problem. First, even one can easily integrate the solution of every linear
differential system X~ and X T, respectively, it is difficult to determine explicitly the time
that an orbit expends in each region governed by each linear differential system. And
second, the number of parameters needed to analyze all possible cases is in general not
small.

In order to simplify the determination of the time that each orbit expends in each
region of a discontinuous PWLS separated by a straight line, several researchers restrict
these systems to some special cases and study the upper bounds for maximum number
of crossing limit cycles for them. For instance, in [24] it was studied the case when one
of the linear differential systems in (0-1) has its equilibrium point on the straight line of
discontinuity, [10] the authors studied systems (0-1) such that have a maximal crossing
set and in [35] it was studied the case when the discontinuous PWLS (0-1) has a unique
non-degenerated equilibrium.

In this chapter we study the maximum number of crossing limit cycles that can
have the planar PWLS (0-1) when the equilibrium points of the differential linear systems
X~ and X" are symmetric with respect to the line of discontinuity X.

The singularities considered in these cases can be real or virtual. We say that
P’ € R? is a real singularity of system (0-1) if P" = (x1,x7) is such that either x; < 0 and
X~ (P")=0,o0rx; >0and X*(P") = 0. On the other hand P" = (x1,x,) € R? is a virtual
singularity if either x; > 0 and X ~(P") =0, or x; < 0 and X" (P") = 0. It follows that the
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singularities of system (0-1) can be of type virtual-virtual (P”,PY ), virtual-real (P",P’)
and real-real (P", P ) depending on the singularities of the systems X ~ and X * are either
virtual or real.

In order to reduce the number of parameters on which the PWLS (0-1) depends

we use the canonical forms in the Propositions 2.1 and 2.2.

2.1.1 Canonical forms

We observe that the PWLS (0-1) depends on twelve parameters. Then in order

to simplify the analysis of these systems we consider the following canonical forms.

Proposition 2.1 There exists a topological equivalence between the phase portrait of the
discontinuous PWLS (0-1) and the phase portrait of the discontinuous PWLS (2-1) for all

the orbits not having points in common with the sliding set.

B 20 -1\ [x 0\ B
X (x,y)= . + , if(x,y)€X™,
I“—a 0 y a
X(x,y) = (2-1)
N 2r -1 x b i N
Xty ={, + , if (xy)ext,
r-—pB 0 y c

\

where o, € {i,0,1}. If o = i, we have that the equilibrium point of a linear differential
system X~ has eigenvalues 7»;2 =141 soitis afocus if | # 0 or a center if | = 0. When
o = 0, then the equilibrium point of a linear differential system X~ has one eigenvalue
of multiplicity 2, namely A~ =1 # 0, so it is a non-diagonalizable node. If o. = 1 the
equilibrium point of a linear differential system X~ has eigenvalues A = [ —1 and
A, =141, then we have that the equilibrium point of X~ is a saddle if |I| <1 or it
is a diagonalizable node if |l| > 1. Analogously for the linear differential system X .

For a proof of Proposition 2.1 see [8].
Other normal form which is independent of the change of coordinates it is

provide in the following proposition.

Proposition 2.2 Consider the linear differential system

Xy = () () (). (2-2)
a1 ax/) \y by

it has a singularity
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(a) of type focus(F) (resp. a center(C)) if

X(x,) . ? <x> + <b1> 2.3)
X,y) = o M2 _ 2 R -
(A g) d 20—-A) \» by

with B < 0 and C # 0 (resp. C =0 and B < 0);

(b) of type diagonalizable node(N) (resp. an improper node(iN)) if

X(x,) ; ’ (x> 4 <b1> (2-4)
X,y) = — —0)? 2 ) -
(A-C) +d 20-A) \» by

B

with C?> > d*> >0 and B < 0 (resp. d =0 and B < 0);
(c) of type saddle(S) if

X (x,y) j ’ <x> + (l”) (2-5)
X,y) = — — )2 2 ) -
(A ? +d 20-A) \»y by

with 0 < C? < d? and B < 0.

Where the parameters C,A and B in (2-3), (2-4) and (2-5) are such that 2C = a1 + a»,
A=aj and B = ay>.

Proof. We know that the eigenvalues of linear differential system (2-2) are

apl +axn £/ (a1 —axn)?+4anan)
o= v 5 ) : (2-6)

(a) If we consider aj; + ax = 2C, this is a»n = 2C —ayy, with C,a;; € R and (a1 —
axn)? +4apay = —4d?, thisis ay; = (—(ay; —C)* —d?) /aia, with d,aj» € R. Then
the eigenvalues (2-6) are A; » = C % id, therefore the singularity of linear differential
system (2-2) is a focus (F) if C # 0, and a center (C) if C # 0. Considering aj; = A
and ajp = B, we obtain system (2-3).

(b) We consider aj; + ax = 2C, then analogously to the above case ay; = 2C — A, and
we assume that (a1 —ap)? +4apa1 = 4d?, then ay; = (—(A—C)?+d?)/B. Then
the eigenvalues (2-6) are Aj » = C+d, therefore the singularity of linear differential
system (2-2) is a diagonalizable node (N), if C? > d? > 0 and B < 0, because the
two eigenvalues would have the same sign, and it is a improper node (iN), if d = 0,

because the two eigenvalues would be equals. Therefore we obtain system (2-4).
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(c) Analogously to the previous case we consider az; = 2C — A and ap) = (—(A—
C)? +d?)/B. Then the eigenvalues (2-6) are A; » = C 4 d, therefore the singularity
of linear differential system (2-2) is a saddle(S), if 0 < C? < d? and B < 0, because
with this condition we have that A;A; < 0. Therefore we obtain system (2-5). O

2.1.2 Closing equations method

Usually the name closing equations method, means a method for determining
periodic orbits in piecewise linear dynamical systems. The main idea of the method is to
integrate the corresponding system in each linear zone and obtain a system of equations,
called closing equations, whose solutions correspond to the periodic orbits of the initial
PWLS. This method was used for instance in the papers [1, 32].

We consider the method for the PWLS (0-1) where £ = {(x,y) : x =0} is the
discontinuity straight line. Our interest is to analyze the properties of periodic orbits that
intersect both zones of R?, namely X*; on the contrary there should be periodic orbits
totally contained in one of the half-spaces £~ or £, thereby being purely linear periodic
orbits belonging to a linear center. If we assume the existence of one periodic orbit I'
which intersects X at the two points p = (0,y9) and q = (0,y;). If #; > 0 is the finite time
that an orbit of linear differential system X~ expends inside X~ starting at the point p
and entering in X~ in forward time, and let #, > 0 be the finite time that an orbit of linear
differential system X+ expends inside " starting at the point q and entering in " in
forward time. We consider that the point p is mapped into q by the flow on the left region.
Since the PWLS (0-1) is formed by two linear differential systems in each region, we have

that the solution of linear differential system X starting at p is

t

Ox-(p,1) = (v (1), (1) =" 'p+ / A B g

0
Therefore t
1
a=(0.1) =" p+ [ B as (2-7)
0
Analogously in the region £, we conclude that
15)
_ _ A A=) g+
P=(0,50)=¢" “q+ B™ds. (2-8)
0

Then we obtain that (2-7) and (2-8) form a nonlinear system with 4 equations and 4
unknowns. Namely yo,y; and the the flight times #; and #,. As we have that q = w_(p),
this is y; = y~(#;) we obtain that system (2-7) is equivalent to equation x~(¢;) = 0. In
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order to reduce the unknowns in the system formed by (2-7) and (2-8) we consider —¢, be
the finite time that an orbit of linear differential system X expends inside X" starting at

the point p and entering in £ in backward time. With these conditions system (2-8) is

0
q=(0,y))=e*"2p— / e TIBTas, 29)

We summarize the above ideas in the following result.

Proposition 2.3 Assume that the PWLS (0-1) has a crossing periodic orbit that trans-
versely intersecting the straight line X in the points p = (0,y0) and q = (0,y) where
y1 =y (t1) and yo > y1, with flight times t; > 0 and t; > 0 in the zones £~ and L7,

respectively. Then (t1,t2,y0) are real solutions of the closing equations:

=0, (2-10)

2.2 Statement of the main results

We analyze the possible configurations that to arise when the equilibrium points
of the linear differential systems X ~ and X ™ are symmetric with respect to the straight line
Y. We denote those configurations like (P, P, ) depending of type and the position of the
equilibrium points, P_, Py € {C",C",F",F’",N",N" iN" iN",S",S"}. Where (C") denotes
a singularity of real center type; (C") denotes a singularity of virtual center type; (F")
denotes a singularity of real focus type; (F") denotes a singularity of virtual focus type;
(N") denotes a singularity of real diagonal node type; (N”) denotes a singularity of virtual
diagonal node type; (iN") denotes a singularity of real improper node type; (iN") denotes
a singularity of virtual improper node type; (S”) denotes a singularity of real saddle type
and (S") denotes a singularity of virtual saddle type.

We observed that the equilibrium points P and P, can not be a saddle S", a
diagonalizable node N” or an improper node iN” because the first return map for the
linear differential systems X~ or X' is not defined on the discontinuity straight line X.

We assume that the equilibrium points P_ and P of linear differential systems
X~ and X, respectively are symmetric with respect to the line of discontinuity X. Then
we obtain two options, first the case when the singularities of X~ and X ™ are symmetric
with respect X and they are on the straight line y = €, € € R, this is, the singularities are
(—k,€) or (k,€), with k € RT. Second we have the case when the singularities of linear
differential systems X~ and X ™ are symmetric with respect X and they are on the straight

line y = sx, with s € R, this is, the equilibrium points are (—k, —sk) and (k, sk).



2.2 Statement of the main results 31

In Theorem A we assume that the singularities P_ and P, are on the straight line
y = sx, with s € R and we observe that this condition is sufficient to analyze the above
two cases because when € = 0 the equilibrium points are (—k,0) and (k,0) which are on
the straight line y = sx, with s = 0 and it is possible to verify that the number of crossing
limit cycles when the equilibrium point are on the straight line y = € independent of the
epsilon.

If the linear differential system X~ has a center (C) we have the follow-
ing options of configurations: (C",C"),(C",F"),(C",S"),(C",C"),(C",F"),(C",N") and
(C",iN"). In the paper [24] it was proved that if the planar PWLS (0-1) has the configu-
ration (C",C") or (C”,C"), then there are no crossing limit cycles. Therefore in statement
(i) of Theorem A we study the remaining five cases.

When the singularity P_ of the linear differential system X~ is a focus (F)
we have the following options: (F",C"),(F",F"),(F",S"),(F",C"),(F",F"),(F',N") and
(FV,iN"), here we observed that due to that having symmetric equilibrium points with
respect the discontinuity straight line X, the configurations (F”,C") and (C",F"); (F",C")
and (C",F") are equivalent. Then we study the remaining five cases in statement (i) of
Theorem A.

If P_ is a saddle (S) we have the configurations (S",C"),(S",F") and (S",S"),
but the configurations (S”,C") and (C",S") are equivalent, and the configurations (S”, F")
and (F",S") are equivalent, then in this case we only have one possible new configuration
(S”,8") which is analyzed in statement (iii) of Theorem A.

When P_ is a diagonalizable node (N), we have the following configurations:
(N”,C"), (N,F"), (N”,N") and (N",iN"), since the previous two cases have been already
studied, we only need to study the cases (N',N") and (N",iN") in statement (iv) of
Theorem A. The configuration (N, F") is in the statement (ii) of Theorem because it is
equivalent to the configuration (F”,N") due to that having symmetric equilibrium points
with respect the discontinuity straight line X.

When the singularity P_ is an improper node (iN), we only study the
configuration (iNV,iN") in statement (v) of Theorem A, because having symmetric
equilibrium points with respect to discontinuity straight line X, the configurations
(iN",C"),(iNY,F"),(iN",N") are considered in the above cases.

We denote the maximum number of crossing limit cycles of planar PWLS (0-1)

by N(P*>P+>'

Theorem A Consider that the linear differential systems X~ and X+ in (0-1) have
symmetric equilibrium points with respect the discontinuity straight line ¥. and they are

on the straight line y = sx, s € R. Then the following statements hold.

(i) N(C",F") = N(C",8") = N(C",F") = N(C",N") = N(C",iN") = 1. Moreover

these upper bounds are reached and the crossing limit cycles are stables.
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(ii) N(F",F") >2, N[(F",S") >2, N[(F",F") > 2, N.(F'",N") > 1 and N(F",iN") >
2. See Figures 2.6, 2.7, 2.8, 2.9 and 2.11, respectively.

(iii) N(S",S") > 1. See Figure 2.12.
(iv) N(N",N") >2 and N(N",iN") > 2. See Figures 2.13,2.15.
(v) N(iNY,iN") > 1. See Figure 2.16.

Theorem A is proved in Section 2.3.

Proposition 2.4 The upper bound for the maximum number of crossing limit cycles
provided in statement (i) of Theorem A is reached and the crossing limit cycle in each

configuration of statement (i) it is hyperbolic. See Figures 2.1 —2.5.

2.3 Proof of the mains results

In this section we provide the proofs of Proposition 2.4 and Theorem A.
The proof of Proposition 2.4 is provide by the following examples, where we prove that

the upper bound provided in statement (i) of Theorem A is reached in each case.

Example 2.5 We consider PWLS (0-1) with the configuration (C",F") formed by the
linear differential systems (2-18) and (2-22), with A = -2, B=—-8/10, d =7/10, r =
—2/10, k = 1 and s = 0 then we obtain that

4 2
2 73 -2 . :
- _ + _
X (x,y)— 449 5 X+ @ ) X (xay)_ 26 O X_'_ _2_6
80 80 25 25
(2-11)
For this PWLS we have that closing equations (2-23) are
H 4 . Tt o
—1+cos (E) - 5(5 + 2yp) sin (ﬁ) =0,
1
14 ¢2/5(—cos (12) + (—— +yo) sin(fp)) =0,
5 (2-12)

Tt 1 Tt
—y0cos (Té) — £ (449 + 160y9) sin (1—8>

1
+get2/5 (25ypcos (1) + (26 — Sy ) sin (12)) = 0.

Taking into account that titp > 0 and that t1,t € (0,2®) it is possi-
ble verify computationally that the system (2-12) has two real solutions,
namely — (t},13,y}) = (4.796799..,3.418539..,5.564042..) and (t},13,53) =
(5.859455..,5.731792..,—0.819335..). Nevertheless the orbit of linear differential
system X starting at the point (x,y) = (0,y3) = (0,—0.819335..) and with flight
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time t% = 5.731792.. it is such that intersects the region ¥~ which cannot hap-
pen to obtain a crossing limit cycle of PWLS (2-11), therefore we have the unique
real solution that generates one crossing limit cycle 1'1 of the PWLS (2-11) is
(tll,tzl,y(l)) = (4.796799..,3.418539..,5.564042..), and that crossing limit cycle starts
at the point (O,y(l)) = (0,5.564042..), enters in the half-plane ¥~ and after a time
tl =4.796799.. reaches the discontinuity line ¥ at the point (0,y}) = (0,—10.564042..),
enters in the half-plane ¥ and after a time tz1 = 3.418539.. reaches the point (0, y(l)). See
Figure 2.1.

Now we analyze the stability of the crossing limit cycle I'1. We consider the
PWLS (2-11) and we analyze the flow of PWLS around of the crossing limit cycle
Iy which intersects the discontinuity straight line ¥ at the points yy = 5.564042.. and
y1 = —10.564042...

We consider a point Wy € X and within the region limited by the crossing limit
cycle Ty, this is, Wo = (0,wp) with —10.564042.. < wy < 5.564042... For example we
consider that wo =5, then the solution of linear differential system X~ in (2-11) starting
at the point Wy = (0,5) € L is

(1) 1+cos L 60 sin L ~(t) =5cos L + 1249 sin 7t
X = — —_— —_— _ — _— - PR
10) 7 10) "~ 10 56 10 )

and the flight time in the region ¥~ is

t_—E —Tt + arctan & +2r
7 3551 ’

then the intersection point with ¥ is Wi = (0,w;) = (0,y~ (7)), where y~(t~) = —10.
Now the solution of linear differential system X in (2-11) starting at the point Wy =
(0,—10) is

—t/5
5

¢ (=5cos () +51sin(t)), yH(t) = —%et/5(125cos (1) +38sin(r)),

the flight time in the region X is t* = 3.434483.. and the intersection point of this
orbit with the discontinuity straight line is the point Wy = (0,wp) = (0,y"(t1)) =
(0,5.258689..), then 5 = wy < wy = 5.258689. Therefore we obtain that the flow of
PWLS (2-11) spirals in the counterclockwise outward for points Wy = (0,wg) with
—10.564042.. < wg < 5.564042... Now we consider a point on ¥ and outside the region
limited by T'1, namely Zoy = (0,z0) with zo > yo. We consider Zy = (0,6) and similarly to
above case we determine the solution (x~(t),y~(t)) of linear differential system X~ in
(2-11) starting at the point Zo = (0,6) € ¥ and we get the flight time in the region ¥~,
namely T~ = 10/7(—n+ arctan (952/4575) +2n), and the intersection point of this orbit
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N

Figure 2.1: The crossing limit cycle of the discontinuous PWLS
(2-11) with configuration (C",F").

with¥ is Zy = (0,z1) = (0,y (T7)) = (0,—11). We determine the solution (x*(t),y" ())
of linear differential system Xt in (2-11) starting at the point Zy = (0,—11) € £ and
we get the flight time in the region ¥+, T = 3.407359.. and finally we obtain the
intersection point of this orbit with ¥, Z = (0,22) = (0,y™ (T ™)) = (0,5.799713..), then
6 = z9 > 20 = 5.799713... Therefore obtain that the flow of PWLS (2-11) spirals in the
counterclockwise inward for points Zy = (0,z9)with zo > yo. Therefore we can conclude

that the crossing limit cycle I'1 is a crossing limit cycle stable. 0

Example 2.6 We consider PWLS (0-1) with the configuration (C",S") formed by the
linear differential systems (2-18) and (2-26), withA=—7/2, B=—8/3, r=79/100, d =
—28/10, k =1 and s = 0, then we obtain the piecewise linear differential system formed
by

78 7 79 79
_ B 2 3 ) + _ 50 50
XM=V 6007 7 | Xt 6027 | X @N=] 37959 X+ 3759
800 2 800 10000 10000

(2-13)

For this PWLS it is possible verify computationally that the closing equations (2-27)
have two real solutions for t|,t, € (0,2m), namely (tll,tzl,y(l)) = (1.941361.., 3.063722..,
—0.838949..) and (17,3,y3) = (4.185356.., 3.063722.., —0.838949..). Nevertheless
we have that the orbit of linear differential system X~ started at point (0, y%) =
(0,—0.838949..) and with flight time t? = 4.185356.. it intersects the region ¥~ which
cannot happen to obtain a crossing limit cycle of PWLS (2-13), therefore we have that
the unique real solution that generates one crossing limit cycle of the PWLS (2-13) is
(t],13,v8)=(1.941361.., 3.063722.., —0.838949..), and that crossing limit cycle T starts
at the point (0,y}) = (0,—0.838949..), enters in the half-plane ¥~ and after a time
t] = 1.941361.. reaches the discontinuity line ¥ at the point (0,y}) = (0,—1.786050..),
enters in the half-plane ©* and after a time tzl = 3.063722.. reaches the point (0, y(l)).
Now we analyze the stability of the crossing limit cycle I'. We consider the
PWLS (2-13) and we analyze the flow of PWLS around of the crossing limit cycle I'
which intersects the discontinuity straight line ¥ at the points yo = —0.838949.. and
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y1 = —1.786050...

We consider a point Wy € X and within the region limited by the crossing limit
cycle T, this is, Wy = (0,wq) with —1.786050.. < wg < —0.838949... For example we
consider that wy = —9/10, then the solution of linear differential system X~ in (2-13)
starting at the point Wy = (0,—9/10) €  is

14¢ 11, /14t

x ()= —1+4cos =)~ 5gsin ?>,

3 14¢ 14¢
- — (= i 167sin [ —
y (1) 320 ( 96cos( 5 ) + 67s1n( 5 )) ,

and the flight time in the region ¥~ is

F—i — arctan @ + 27
14 663 ’

then the intersection point with X is Wy = (0,w;) = (0,y™ (7)), where y~ (t~) = —69/40.
Now the solution of linear differential system X in (2-13) starting at the point W =
(0,—69/40) is

e—21t/100 36—21),‘/100(_23091 —|—91€2t>

+ _ 1 - _1 2t + —
x" (1) +—400 ( 387 — 13e ), y'(t) 20000 ,

the flight time in the region X" is t* = 1.097023.. and the intersection point of this
orbit with the discontinuity straight line is the point Wo = (0,w;) = (0,yT(¢7)) =
(0,—1.326846..), then —9/10 = wo > wp = —1.326846... Therefore we obtain that the
flow of PWLS (2-13) spirals in the counterclockwise inward for points Wy = (0, wq) with
—1.786050.. < wy < —0.838949... Now we consider a point on ¥ and outside the region
limited by T, namely Zy = (0,z9) with zo > yo. We consider Zy = (0,—209/250) and
similarly to above case we determine the solution (x™ (t),y”(t)) of linear differential
system X~ in (2-13) starting at the point Zy = (0,—209/250) € £ and we get the
flight time in the region ¥, namely T~ = —1.939696.., and the intersection point of
this orbit with £ is Z; = (0,z1) = (0,y~(T~)) = (0,—1789/1000). We determine the
solution (x*(t),y" (t)) of linear differential system X in (2-11) starting at the point Z) =
(0,—1789/1000) € X and we get the flight time in the region ¥, T+ = 3.923945.. and
finally we obtain the intersection point of this orbit with ¥, Zy = (0,z2) = (0,y"(T™)) =
(0,—0.666883), then —209/250 = z9 > zo = —0.666883.. Therefore obtain that the flow
of PWLS (2-11) spirals in the counterclockwise outward for points Zy = (0,z0)with zo >
yo. Therefore we can conclude that the crossing limit cycle I is an unstable crossing limit

cycle. See Figure 2.2. O

Example 2.7 We consider PWLS (0-1) with the configuration (C",F") formed by the
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-2

Figure 2.2: The crossing limit cycle of the discontinuous PWLS
(2-13) system with configuration (C",S").

linear differential systems (2-29) and (2-30), withA = =3, B=—1, r=4/5, d = —4,
k=1 and s = 0, then we obtain the PWLS formed by

8 8

- -3 - 3 + 5 ! 5
X (x,y)= s ; X+ - X" (x,y) = a1 X+ il (2-14)

5 Y 2%

For this PWLS it is possible verify computationally that closing equations (2-31)
have four real solution for t),t; € (0,2%), namely (tll,tzl,y(l))=(0.299957.., 1.862980..,
5.736049..), (t7,13,y3)=(1.870753.., 1.862980.., 5.736049..), (£3,£3,y3)=(3.441550..,
1.862980.., 5.736049..), (t},t5,y8)=(5.012346.., 1.862980.., 5.736049..). Nevertheless
the orbit of the linear differential system X~ started at the point y6 and with flight
time t{ is such that intersects the region ¥ for i = 2,3,4 which cannot happen to ob-
tain a crossing limit cycle of PWLS (2-13), therefore we have that the unique real so-
lution that generates one crossing limit cycle I' of the PWLS (2-14) is (tll,tzl, y(l)) =
(0.299957..,1.862980..,5.736049..) which intersects £ in (0,y}) = (0,5.736049..) and
(0,y1) = (0,0.263950..). Analogously to above case (C",S") , it is possible verify numer-

ically that I is an unstable crossing limit cycle. See Figure 2.3.

6

5

-1.0 -0.5 0.5 1.0

1

Figure 2.3: The crossing limit cycle of the discontinuous PWLS
(2-14) with configuration (C*,F").



2.3 Proof of the mains results 37

Example 2.8 We consider PWLS (0-1) with the configuration (C¥,N") formed by the
linear differential systems (2-29) and (2-32), with A = -5, B=—18/10, r=13/10, d =
—3/2 and s = 0, we obtain the PWLS formed by

9 13 13
> 73 > 5 ! 5

X ()= 545 Xt 545 s Xy =1 6 X 60
= 5 — 5 — —
36 36 w00 1005 s,

For this PWLS it is possible verify computationally that closing equations
(2-33) have two real solutions with t,tp € (0,2%), namely (t{,1 ,y(l)) =
(0.608026..,1.109920..,3.186528..), (17,13,y3) = (4.796816..,1.109920..,3.186528..).
But the orbit of the linear differential system X~ intersect the region ¥+ when started at
the point (0,y3) = (0,3.186528..) with flight time t7 = 4.796816.. therefore this real solu-
tion cannot generates a crossing limit cycle of PWLS (2-15) and we only have one crossing
limit cycle T which intersects ¥ in (0,y}) = (0,3.186528..) and (0,y}) = (0,2.369026..)
with flight times zf]1 = 0.608026.. and t21 = 1.109920.. in the regions ¥~ and X, respec-
tively. Analogously to above cases, it is possible verify numerically that I is an unstable

crossing limit cycle. See Figure 2.4.

20

Figure 2.4: The crossing limit cycle of the discontinuous PWLS
(2-15) with configuration (C*,N").

Example 2.9 We consider PWLS (0-1) formed by the linear differential systems (2-29)
and (2-34), withA = —1/2, B=—1/10, r=17/10, d = —4/10 and s = 0, we obtain the
PWLS formed by

L1 1 7, 17

| 2 10 2 e | 3 5
X (x,y)— 41 1 X+ _ﬂ ) X (x,y)— 289 O X+ @
10 2 10 100 100

(2-16)
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-0.5 0.5 1.0

Figure 2.5: The crossing limit cycle of the discontinuous PWLS
(2-16) with configuration (C"iN").

For this PWLS it is possible verify computationally that closing equations (2-36)
have one real solution, namely (t1,t2,y0) = (2.877804..,1.249557..,7.595368..), then the
PWLS (2-16) has one crossing limit cycle T which intersects X in (0,7.595368..) and
(0,2.404631..). Analogously to above cases, it is possible verify numerically that T is an

unstable crossing limit cycle. See Figure 2.5.

In the proof of statement (i) of Theorem A we use the following lemma.

Lemma 2.10 We consider the functions

fo(t2) =sin(t2), fi(t2) =sinh(r12), fa(t2) =sinh(r2), f3(r2) =12
The following statements hold.

(a) The set of functions F' = {fo, fi} is an ECT-system on the intervals (0,27) \ {T}
for every r # 0;

(b) The set of functions F> = {f2, f1} is an ECT-system for every ty # 0 and r # 1;

(c) The set of functions F> = {fs, f1} is an ECT-system for every ty # 0 and r # 0.

Proof.
(a) Considering the functions fy and fi the Wronskian is
W (t;) = rcosh (rt)sin (t2) — cos (t) sinh (r12).

Since W(0) =0 and W'(t) = (1 + r?)sin(t,)sinh (rt2) does not vanish for any
t € (0,2n)\{n} and r # 0. Then W(t;) # 0 for t, € (0,2m)\ {n} and r # 0,
therefore by Proposition 1.9, statement (a) is proved.
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(b) The Wronskian of the functions f} and f> is
W(t2) = rcosh(rtp) sinh (t2) — cosh (z2) sinh (r12),

and we observed that W(0) = 0 and W’(;) = (—1+ r?)sinh (t,) sinh (rtp), then
W'(t;) does not vanish for every #, # 0 and r # 1. Therefore W (z;) # 0 for 1, # 0
and r # 1, then by Proposition 1.9, statement (b) is proved.

(c) The Wronskian of the functions f; and f3 is
W (t) = rtpcosh (rtp) — sinh (1),

and we observed that W(0) = 0 and W’ (t;) = r’t>sinh (rt;), we have that W’ (1)
does not vanish if #; # 0 and r # 0, then W (z,) # 0 for 1, # 0 and r # 0. Therefore

by Proposition 1.9, statement (c) is proved. O

In what follows we prove Theorem A.
Proof of statement (i) of Theorem A. We have that the equilibrium point of linear
differential system X ~ is a center, then using Proposition 2.2, we consider that the linear
differential system X ~ is in the canonical form (2-3) with C = 0. Then the equilibrium

point of linear differential system X~ is

Ab;+B A’b; +AB 2
b1+ bz_ by + bz—l—bld)' (2-17)

P_ = (x0,y0) = ( PR B

We separate the proof of statement (i) of Theorem A in two cases.
Case 1: P_ is a real singularity of X ~. We assume that P_ = (—k, —sk), for this we must
consider by = Ak + Bsk and by = —k(A? + d* + ABs) /B. Therefore, linear differential
system X~ is
A(x+k) + B(y+ sk)
X“(0y) = | (A24d%)(k+x)+AB(y+sk) | - (2-18)
B

When we have an equilibrium point a C” for the linear differential system X, by

hypothesis, we have two possible configurations for the equilibrium points of the PWLS
(0-1), namely, we can have the configurations (C",F") and (C",S").
We consider that linear differential system X is in the canonical form (2-1)

which has the equilibrium point

c —2cr+b(r2—[32)) (2-19)

P+:(x17y1):(_r2_52’ 2 _p2
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Therefore the equilibrium point P, is a real singularity of Xt if
b=—k(2r—s), c= —k(r* = B?); (2-20)
and Py is a virtual singularity of X T if
b=k(2r—s), c=k(r* —p?). (2-21)

Configuration (C”, F"): For the linear differential system X, we consider the condition
(2-20) with B =i and r # 0.

The linear differential system X in this case is

by = —y+2r(x—k)+ sk )
X (7)’)—< (14+2)(x— ) ) (2-22)

With those conditions the solution of system (2-18) starting at the point (x,y) = (0,y9) € X
* (Ak+ B(yo + sk)) sind
p ;
((A% 4+ d* + ABs)k + AByy) sin (dt)
Bd ’
and the solution of system (2-22) starting at the point (x,y) = (0,yp) € X is

x (t) =k(—1+cos(dt))+

y (1) = —sk+ (yo+sk)cos(dr) —

xT(t) =k—e"(kcos(t)+ ((r—s)k+yo)sin(t)),
yT(t) = sk+e"((yo—sk)cos (1) — (k+r((r—s)k+yo))sin (z)).

Considering that there exists #1,#; > 0 the finite times defined in Proposition 2.3.
We have that system (2-10) is equivalent to system

e1: kd(—1+cos(dt)))+ (Ak+ B(yo + sk))sin(dt;) =0,

er: k+e ™ (—kcos(n)+ ((r—s)k+yo)sin(rn)) =0,

A2 +d*>+ABs)k+AB d (2-23)
e3: 2sk— (yo+sk)cos(dt) + (A7 +d"+ sé;’ Yo) sin (di1)

+e "2 ((yg — sk)cos () + (k+r((r—s)k+yp))sin(t2)) = 0.

From the first equation we obtain

(—A2 4 d?)k* — 2ABk(yo + ks) — B?(yo + sk)?
(A% +d?)k? + 2ABk(yo + ks) + B> (yo + ks)?
2kd(Ak + B(yo +ks))
(A2 +d?)k? + 2ABk(yo + ks) + B2(yo + ks)?’

cos(dt)) =
(2-24)

sin(dt;) =

from equation e we get yo = —k(r—s—cot(f) + e csc(rp)). Substituting yo in equation
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e3 we have e3 = 2k(A/B—r+2s—csc(fp)sinh(rt)), and to determine the solutions for

this equation is equivalent to determine the solutions for the following equation

2k

B'—(t ((A—rB+2Bs)fo(t2) —Bfi(t2)) =0, with t, € (0,2n)\ {n}, (2-25)
sin (1)

and we can conclude that equation (2-25) has at most one real solution for #, €
(0,27) \ {}, because by statement (a) of Lemma 2.10 the set of functions F! = { fo, f1}
is an extended complete Chebyshev system for #, € (0,2x) \ {r} for every r # 0 and even
more the coefficients A — rB + 2Bs and B can be chosen arbitrarily. Therefore we have
proved that a PWLS (0-1) with the configuration (C”, F") formed by the linear differential
systems (2-18) and (2-22) has at most one crossing limit cycle. O
Configuration (C",S"): The equilibrium point P; of system X satisfies the condition
(2-20) with B =1 and |r| < 1. Therefore

—y+2r(x—k)+sk
Xtay=( = : (2-26)
(=147 (x—k)
The solution of system (2-26) starting at the point (x,y) = (0,y0) € X is
e*[
xt(t) = 5 <2ke’ + e ((—=1+r—s)k+yo) — e (k(14r—5) —I—yo)) )
—t
yh() = % <2etsk+e”(1 +r)(yo+ (r—1—s)k— e (r— 1) (yo + (1 —{—r—s)k)) .

Let #; and 1, be the finite times defined in Proposition 2.3. In this case we have that system

(2-10) is equivalent to system

e1: kd(—1+cos(dt)))+ (Ak+ B(yo — sk))sin(dt;) =0,
er: 2ke 24 ((r—1—s)k+yo) —e CH2(k(1+7r—s5)+y0)) =0,

5 ) . I
(A>+d -l—ABsch-I-ABYO)Sm(dZI) _|_§(2e_tzsk

+e "2 (1+r)(yo+ (r—1—s)k) —e G2 (r— 1) (yo + (1 4+ 7 — s)k)) =0.
(2-27)
Then the real solutions of system (2-27) generate crossing limit cycles of PWLS (0-1)
formed by the linear differential systems (2-18) and (2-26). Similar to Case (C", Fr), from

equation e; we obtain equations (2-24), from e; we get

e3: sk—+ (yo+sk)cos(dt) +

—142e2t @22 (—14r—5)+s
_1+€2t2

yo=—k

Y

then e3 = 2k(A/B — r+2s— csch(zy) sinh (rt;)). To determine the solutions for equation
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e3 1s equivalent to determine the solutions for the following equation

2k

b () ((A—rB+2sB) fo(t2) — Bfi(t2)) = 0, with t, # 0. (2-28)

By statement (b) of Lemma 2.10 the set of functions #2 = {f,f1} is an extended
complete Chebyshev system for t, # 0 and r # 1 and moreover the coefficients A —
rB+2sB and B can be chosen arbitrarily. Then we can conclude that equation (2-28)
has at most one real solution for #; # 0 and |r| < 1. Therefore PWLS (0-1) with the
configuration (C”,S") formed by the linear differential systems (2-18) and (2-26) has at
most one crossing limit cycle. 0
Case 2: P_ is a virtual singularity of X . We consider that the equilibrium point P_
in (2-17) is a center C", this is P_ = (k,sk), for this we must consider b} = —Ak —
Bks and by = k(A% +d? + ABs) /B. Therefore linear differential system X~ is

A(x—k)+B(y—ks)
X7(603) = | (A2 4 ) (—x+ k) +AB(—y+sk) | - (2-29)
B

When the equilibrium point P_ is a C” for the linear differential system X, then we

have three possible configurations for the equilibrium points (P_,P;) of the PWLS
(0-1), namely, we have the configurations (C*,F"), (C",N") and (C",iN"). Configuration
(CY,F¥): We consider that the configuration of the equilibrium points of the linear
differential systems X~ and Xt in (0-1) is (C", F"), then the equilibrium point P, satisfies
(2-21) with B =i and r # 0. Therefore

(2-30)

X' (xy) = (—y+2r(k+x) —ks) .

(1+72)(k+x)

The solutions of systems (2-29) and (2-30) starting at the point (x,y) = (0,yp) € X are

2 (£) = k(1 — cos (dr)) + (Byo — (A + Bs)k) sindt

d )

_ Bdks + Bd(yo — ks) cos (dt) + ((A? 4+ d? 4 ABs)k — AByy) sin (dt)
y (1) = B :
x1(t) = —k—e" (kcos (t) — (k(s —r) +yo)sin (1)),
vy (t) = —ks+ " ((yo + ks) cos (t) + (k+ r*k — r(yo + ks) ) sin (1)).

Let #; and 1, be the finite times defined in Proposition 2.3. Here we have that



2.3 Proof of the mains results 43

system (2-10) is equivalent to system

e1: kd(1—cos(dn))+ (—(A+bs)k+Byg)sin(dt;) =0,

er: —k+e ™ (kcos () + ((—r+s)k+yo)sin(r)) =0,

(
A2+ d% + ABs)k — AByy) sin (dt (2-31)
es: —st+(—yo+ks)cos(dtl)—(( ta szgd Yo) sin (dt1)

e (3o + ks) <05 (12) + (—k+ (3o + (~r+)k)) sin (12)) = 0.

Similar to case (C",F"), we obtain that e3 is equivalent to equation (2-25) then we can
conclude that PWLS (0-1) with the configuration (C”, F") formed by the linear differential
systems (2-29) and (2-30) has at most one crossing limit cycle. ]
We observe that in the previous cases the constant k does not influence the
number of solutions of system (2-10) and in the following cases the same thing happens,
therefore without loss of generality we can assume that k = 1, this is the singularities of
systems X~ and X" are in (—1,—s) or (1,s) , with s € R.
Configuration (C¥,N"): We consider that the configuration of the equilibrium points of
the linear differential systems X~ and X in (0-1) is (C,N"), then the equilibrium point
P, satisfies (2-21) with § = 1 and |r| > 1. Therefore the linear differential system X is

—y+2r(l+x)—s
XT(x,y) = yr2r(l+x) : (2-32)
(—1+7)(1+x)
The solution of system (2-32) starting at the point (x,y) = (0,y9) € X is
—t
xt@) = % (—Zet+e(2+’)t(1 +r—s—yo)+e(l —r+s+y0)> )
—t
yt(r) = % (—2ets+e(2+’)t(—l +r)(14+r—s—yo)+e"(1+r)(1 —r+s+y0)> :

Considering #; and #, the finite times defined in Proposition 2.3, we obtain that system

(2-10) is equivalent to system

e1: d(l—cos(dt))—(A+Bs—Byp)sin(dt;) =0,

er: —2e24e P14 r—5—yo)+e (1 —r+s+yy) =0,
. , G X )
e3: —s+(s—yo)cos(dr)—(A=+d +AB(s—yo))s1n(dt1)—7(—2e 25

+e P (1 4 1) (1 +r—s—yo)+e 2 (1+7)(1 —r+s—i—y0)) =0.
From equation e; we obtain that

—A? 4+ d? +2AB(—s+y0) — B*(s — y0)?
A2 +d? +2AB(s —yo) + B2(s — y0)?

cos(dty) =
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2d(A+B(s—yp))

in(dr)) =
sin (dy) A% +d% 4 2AB(s — yo) + B*(s —y0)?’

and from e; we get

—14-2e2F2 g @?2(—14r—5)+s

0= —1+e22 ’

then substituting in e3 we obtain that e3 is equivalent to equation (2-28), therefore we can
conclude that PWLS (0-1) with the configuration (C", N") formed by the linear differential
systems (2-29) and (2-32) has at most one crossing limit cycle. 0
Configuration (C",iN"): We consider that the configuration of the equilibrium points
of the linear differential systems X~ and X in (0-1) is (C",iN”). We consider that
equilibrium point P, satisfies (2-21) with § = 0 and r # 0. Then

(2-34)

X (xy) = (—y—l—Zr(l—i—x) —s) |

r?(1+x)

The solution of system (2-34) starting at the point (x,y) = (0,y0) € X is

xT(t)=—=1+e"(1—t(yo—r+s)), yt(t) = —s+e" (yo—rtyo+s+r(r—s)t),
(2-35)
Considering #; and #, the finite times defined in Proposition 2.3, we obtain that system

(2-10) is equivalent to system

e1: d(1—cos(dt;))+ (Byo— (A+Bs))sin(dt;) =0,
er: —l+e ™1 +n(yo—r+s)) =0,

e3: —2s+e " (yo+rtayo+ (s +r(—r+s)2))
+Bd(—y0 +s)cos (dt) — (—AByo + (A% +d* + ABs)) sin (dt )
Bd

(2-36)

=0.

From equation e; we obtain the expression (2.3) and from e, we get

—1+e+(r—s)t
Yo = t s

then

A inh (7t
e3:2(—]—3—|—r—2s+—sm (r2)>:()’

p)
and to determine the solutions for equation e3 is equivalent to determine the solutions for

the equation

&, (A= 1B=254)f3(12) = Bf1(12)) =0, with 12 0. (2-37)
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By statement (c¢) of Lemma 2.10 the set of functions F3 = {f3,f1} is an extended
complete Chebyshev system for #; # 0 and r # 0 and moreover the coefficients A —rB —
2sA and B can be chosen arbitrarily. Then we can conclude that equation (2-37) has at
most one real solution for 7, # 0 and r ## 0. Therefore the PWLS (0-1) with configuration
(C",iNV) formed by the linear differential systems (2-29) and (2-34) has at most one
crossing limit cycle. 0J
Moreover the upper bound provided in the above cases is reached, see the
examples in the proof of Proposition 2.4.
Proof of statement (ii) of Theorem A. Here we analyze the number of crossing limit
cycles of PWLS (0-1) when the equilibrium point of linear differential system X~ is a
real or virtual focus (F") or (F"). We consider that system X~ is in the canonical form
(2-3) with C # 0. Then the equilibrium point of system X~ is

Ab; +Bby —2b1C  A%by +ABby — 2Ab,C + b, C? +b1d2)

P-=(x0.y0) = ( Cdr BC? 4 Bd?

We separate the proof of statement (ii) of Theorem A in two cases, first we study
the case when P_ is a real focus and second we assume that P_ is a virtual focus. We
consider that linear differential system X is in canonical form (2-1) then the equilibrium
point is (2-19).

Case 1: P_ is a real focus of X~. We assume that P_ = (—1,—s), for this we must

consider that

A2 —2AC+C?*+d*+ABs—2BCs

by =A+Bs, by=-— B (2-38)
Then linear differential system X~ is
- A(x+1)+B(y+s)
X“(xy)=| (A24+2+d*)(x+1)—2Bc(y+s5) +A(=2c(x+1)+B(y+s))
B
(2-39)

The solution of linear differential system (2-39) starting at the point (x,y) = (0,y9) € L is

¢C!(d cos (dt) + (Byo +A — € + Bs) sin (dt))

x ()= -1+ - ’
y ()= _S+Z_(Z((_<B(A—C)yo+(d2+(A—C’)(A—C‘-l—Bs))sin(dz)) (2-40)
+(Bd(yo+5)cos (d1)))

When P_ is a real focus then we have two possible configurations for the equilibrium
points of the PWLS (0-1), namely we obtain the configurations (F",F") and (F",S").
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Configuration (F",F"): We assume that the equilibrium point P_ satisfies the conditions
(2-38) and the equilibrium point P; satisfies the conditions (2-20) with f =i, r # 0, then
we have the configuration (F",F").

In the following example we provide a PWLS having two crossing limit cycles.
We consider that A = 1/2, B=—1/2, C = —67/500, d = 123/100, r=2/5and s = 0

Yt

Figure 2.6: The two crossing limit cycles I'1 and I'y of the discon-
tinuous PWLS (2-41) with configuration (F",F").

then we obtain the PWLS formed by

1 ! ! LA 4

e — |2 2 2 o= | 3 5
YT d03s7 96 || dmeasy | X T 20 TEFL 2
62500 125 62500 25 ey

For this PWLS we have that system (2-10) is equivalent to system

1
—1+ me*67f1/500(615cos (1231, /100) 4 (317 — 250yy) sin (123¢; /100)) = 0,
2
14+ e22/5(—cos (1) + (§ —I—yo) sin (72)) =0,
e=671/59(_76875y, cos (12311 /100) + (—239357 + 39625y0) sin (1231 /100))
+3075¢22/3(25yg cos (1) 4 (29 + 10yg) sin (2)) = 0.
(2-42)

Which has two real solutions with #1,f, € (0,2n), namely (¢],21,y}) = (3.586636..,
4.260216.., 6.196201..) and (¢7,3,y3) = (3.614645.., 4.344295.., 6.078132..). There-
fore the PWLS (2-41) has two crossing limit cycles I'y and I, which intersect ¥ in
(0,y5) = (0,6.196201..) and (0,y}) = (0,y};(t])) = (0,—1.088003..) with flight times
t] = 3.586636.. and #1 = 4.260216.. in the regions £~ and X, respectively; and
(0,y3) = (0,6.078132..) and (0,y3) = (0,y},(t?)) = (0,—0.974222..) with flight times
tl2 = 3.614645.. and t% = 4.344295.. in the regions ¥~ and I, respectively. See Figure
2.6. OJ
Configuration (F",S"): If the equilibrium point P_ is a focus F” and the equilibrium
point P, satisfies the conditions (2-20) with f =1, |r| < 1, then we have the config-
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uration (F”,S"). In what follows we provide a PWLS having two crossing limit cycles.
Considering A = —2/5, B=—7/2, C=1/20, d = —1, r = 1/100 and s = 0, we obtain

Figure 2.7: The two crossing limit cycles I'1 and I'; of the discon-
tinuous PWLS (2-43) with configuration (F",S").

the PWLS formed by

ERE N ! !
- _ 5 2 5 + _ 50 50
X“)=1| 4450 3 | Xt ag0 | X &)=] 5999 X+ 9999

1400 10 1400 10000 10000/

For this PWLS we have that system (2-10) has two real solutions with t{,t, €
(0,27), namely (#{,23,y}) = (3.854989.., 2.065073.., 0.759545..) and (13,13,y3) =
( 5.114523.., 0.403781.., 0.1794388..). Therefore the PWLS (2-43) has two cross-
ing limit cycle I'y and I'; which intersect £ in (0,y4) = (0,0.759545..) and (0,y}) =
(0,—0.790192..); and (0,y3) = (0,0.1794388..) and (0,y7) = (0,—0.218905..), respec-
tively. See Figure 2.7. U
Case 2: P_ is virtual focus of X ~. We consider that P_ is a focus (F"), this is, P— = (1,s),

therefore

—A%2+2AC —C? —d* —ABs+2BCs
5 .

bl = —A—BS, b2 =
Then linear differential system X~ is

- Ax—1)+B(y—s)
X"(xy)=| AZx—2ACx+ C%x+d?x+ABy —2BCy— ((A—C)? +d* + B(A —2€)s)
B

(2-44)
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The solution of linear differential system (2-44) starting at the point (x,y) = (0,y9) € L is

€' (—d cos (dt) + (Byo — (A — C + Bs) sin (dt))
] d ’
eCt 5 5 5 _
y ()= s+ S ((BC-A+Chyo+ (@ + (A—C)A—C4Bs))sin(ar)) &™)
+(Bd(yo—s)cos(dt)))).

x (t)= 1+

When P_ is a focus (F") we have three possible configurations for the equilibrium point
of PWLS (0-1), namely we have the configurations (F",F"), (F',N") and (F",iN").
Configuration (F" F"): The equilibrium point P, is a focus F" and the equilibrium
point P, satisfies the condition (2-21) with B =i and r # 0, then we have the con-
figuration (FV,F"). We provide a PWLS with two crossing limit cycles. Considering
A=-7/10, B=—-1/2, C=-2,d=—1,r=6/10 and s = 0, we obtain the PWLS
formed by

71 7 6 6
_ | 10 2 10 e | 3 5
50 10 50 5 25

(2-46)

For this PWLS we have that system (2-10) has two real solution with 1,7, € (0,2m),
namely  (¢},3,y0) = (0.903052.., 2.593104.., 11.325957..) and (,13,53) =
(10.276244.., 1.538684..,3.086535..). Therefore the PWLS (2-43) has two crossing
limit cycle I'y and T, which intersect £ in (0,y}) = (0,11.325957..) and (0,y}) =
(0,—1.441285..); and (0,y3) = (0,3.086535..) and (0,y?) = (0,0.234677..), respectively.
See Figure 2.8. Therefore we have that a PWLS (0-1) with the configuration (F”,F") it

D

N

Figure 2.8: The two crossing limit cycles I'1 and I'y of the discon-
tinuous PWLS (2-46) with configuration (F",F").

has at least two crossing limit cycles. 0
Configuration (F",N"): The equilibrium point P_ is a focus F"* and the equilibrium point
P, satisfies the conditions (2-21) with § = 1 and |r| > 1, then we have the configuration

(FY,N"). We provide a PWLS with this configuration and with one crossing limit cycle.
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IfA=-3,B=-1/2,C=-3/10,d =1,r =2 and s = 0, we obtain the PWLS formed
by

1
- -3 - 3 . 4 -1 4
X (x,y)z 829 12 X+ 829 | » X (x,y): 3 0 X+ 3 . (2-47)
50 5 50

For this PWLS we have that system (2-10) has one real solution with #,t, € (0,2w),
namely (t1,t2,y0) = (2.073656.., 1.547693.., 10.752069..). Then the PWLS (2-47) has
one crossing limit cycle which intersects X in (0,yp) = (0,10.752069..) and (0,y;) =
(0,3.074636..). See Figure 2.9. Therefore we can conclude that a PWLS (0-1) with the

Figure 2.9: The crossing limit cycle of the discontinuous PWLS
(2-47) with configuration (F",N").

configuration (F¥,N") it has at least one crossing limit cycles. 0J
Configuration (F”,iN"): The equilibrium point P_ is a focus F" and the equilibrium
point P, satisfies the conditions (2-21) with 3 = 0 and r # 0, then we have the configura-
tion (F",iN"). Then considering #; and 7, as in Proposition 2.3 and from equations (2-35)

and (2-45), system (2-10) is equivalent to system

er: d+e(—dcos(di)+ (Byy—A-+C — Bs)sin(dt;)) =0,

er: —l+e ™ (1+n(yo—r+s)) =0,

e3: Bde " (yo+riyyo+ (s+r(—r+s)n)) — e (Bd(yo — s) cos (dty)
+(B(—A+C)yo+ (d*> + (A —C)(A —C+Bs)))sin(dt;)) — 2Bds = 0.

(2-48)

From equation e we get

_ A—C+Bs+dcot(dn) — de=C csc (dty)
= = ,

Yo
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and from e, we get

e y0—7'+Sr

w | —
Yo—r+s
1
th=— — 2-49
2 Yo —r s r ) ( )
then substituting yg and #, in e3 we obtain that
1 ~ - - -

e3 = 3 ((—A +C+ Br—2Bs) fo(t1) +dfi(t1) — rsz(tl)) =0. (2-50)

Here fo(t1) = 1, fi(t1) = cot(dt;) —eChiese (dty), and
1
BreCt
€t1+ = =
Bre € (—A+C+Br—2Bs—dcot(dt;))+dcsc(dr)
eCti(—A+C+Br—2Bs—dcot(dt)) +dcsc (dr)

hn) =

where W is the Lambert Function. When
t1 € (0,1/d) and n(t;) = €1 (—A+C + Br—2Bs—dcot(dt)) +dcsc (dt;) £0, (2-51)

we can conclude that equation (2-50) has at least two real solutions by Proposition 1.7.
Thus system (2-48) has at least two real solutions, that is, a PWLS with the configuration
(FY,iN") has at least two crossing limit cycles.

In what follows we provide a PWLS with configuration (F",iN") having two
crossing limit cycles. Considering A = —25/2, B = —13/10, C = —6/5, d = 13/10,
r =5 and s = 0, we have that condition (2-51) is not empty.

L enss 131 131 10m
=— 48 — 1 it} 1 it 2Ty
n(t) 70 (e 8 —13cot 10 +13csc 10 , 1€ |0, 3

107
It is possible verify that in the interval <O’F) the unique critical value is ¢} =

10
1.501574.., and it is a minimum value of the function n(#;) for #; € (O, 1—;) , moreover

10m

n(t}) = 2.278475.. > 0, therefore n(#;) > 0 for 1 € (0, B

). See Figure 2.10. With
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Figure 2.10: The graphic of the function M(t1) in the interval
(0,10m/13).

Figure 2.11: Two crossing limit cycles of the discontinuous PWLS
(2-52) with configuration (F",iN").

these parameters we obtain the PWLS formed by

25 13 25
-5 = 10 -1 10

_ . 2 10 2 + _

X 0=\ 660 101 |XT| ete9 | X WIN={ o X+<25)~
65 10 65 o5

For this PWLS we have that system (2-48) has two real solutions,
namely  (t,12,y0) = (1.096629.., 0.143589.., 12.314051..); and (¢},13,y3) =
(2.043521.., 0.588292..,35.501071..). Then the PWLS (2-52) has two cross-
ing limit cycles Ty and T, which intersect £ in (0,y)) = (0,12.314051..) and
(0,y}) = (0,2.476508..), (0,y3) = (0,35.501071..) and (0,y}) = (0,6.610102..), re-
spectively. See Figure 2.11. O
Proof of statement (iii) of Theorem A. In this case we analyze the maximum number
of crossing limit cycles of PWLS (0-1) when the equilibrium point of linear differential
system X~ is a real saddle (S”). We consider that system X~ is in the canonical form
(2-5), then

Ab| + Bby —2b,C _A2b1 +ABby — 2Ab,C + b, C? — b, d>
C2—d? ’ BC? — Bd?

P = (x0.70) = ( ) (2-53)

with 0 < C? < d? and B < 0. This equilibrium point is a §" = (—1,—s), if by = A +
Bs, by = —(A? —2AC+C? — d?> + ABs — 2BCs) /B. When system X~ is a S” we have that
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linear differential system X+ must be a saddle S”, then we consider that system X is in
the canonical form (2-1) and the equilibrium point P, satisfies (2-20) with =1, |r| < 1.
Therefore we obtain the configuration (S”,S"). In the following example we provide a
PWLS (0-1) such that the equilibrium points of the linear differential systems X ~ and X ©

have the configuration (S”,S") and it has one crossing limit cycle.

Figure 2.12: The crossing limit cycle of the discontinuous PWLS
(2-54) with configuration (S",S").

Considering the parameters A = —1, B= -5, C=4/5, d = —19/10, r = 6/50
and s = 0, we obtain the PWLS formed by

6 6
-1 -5 -1 5 25
Xf(xa)’): _3_7 2 X+ _3_7 ) X+(x,y): 616 X+ 616
500 5 500 T 625 625
(2-54)

For this PWLS we have that system (2-10) has one real solution, namely (t1,%2,y0) =
(0.754087.., 0.406189.., —0.039307..). Then the PWLS (2-54) has one crossing limit
cycle which intersects X in (0, yp) = (0,—0.039307..) and (0,y;) = (0,—0.434309..). See
Figure 2.12. O
Proof of statement (iv) of Theorem A. In this case we analyze the maximum number
of crossing limit cycles of PWLS (0-1) when the equilibrium point P_ is a virtual
diagonalizable node (N"). We consider that system X~ is in the canonical form (2-4),
then P_ is equal to (2-53) with 0 > C? > d* and B < 0. This equilibrium point is a NV if
by = —A—Bs, by = —(—A? +2AC — C? + d*> — ABs + 2BCs) / B. We consider that system
X is in the canonical form (2-1) and the equilibrium point P, can be a diagonalizable
node N" or an improper node iN”. Then we have two possible configurations (NV,N") and
(NY,iN").

Configuration (N',NV): We assume that P_ is a diagonalizable node N” and that P,
satisfies (2-21) with f = 1 and |r| > 1. Then we obtain the configuration (N",N").
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D

Figure 2.13: Tivo crossing limit cycles of the discontinuous PWLS
(2-55) with configuration (N”,N").

Considering the parameters A = —23/10, B= —1/2, C = —41/10, d = 7/2,
r=157/25 and s = 0, we obtain the PWLS formed by

23 1 23 114 114
~ 10 2 10 N 25 25
(x.y) 001 59| X |50 ] X @=1 564 . | 2624
50 10 10 625 62?2 55

For this PWLS we have that system (2-10) has two real solutions,
namely (¢},22,y)) = (0.796618.., 1.259611.., 12.011789..); and (t},13,y3) =
(0.205065.., 0.425140.., 5.805536..). Then the PWLS (2-55) has two crossing limit
cycles which intersect £ in (0,y}) = (0,12.011789..) and (0,y}) = (0,3.420218..); and
(0,y3) = (0,5.805536..) and (0,y}) = (0,3.906249..), respectively. See Figure 2.13.
Therefore we have that PWLS with the configuration (N¥,N") have at least two crossing
limit cycles. O
Configuration (N iN"): The equilibrium point P_ is a diagonalizable node N” and P
satisfies (2-21) with B = 0 and r # 0. Then we obtain the configuration (N",iN"). The
solution of system X~ starting in (0,yp) € X is

(1) = d + ¢ (—d cosh (dt) + (Byo — (A — C) + Bs)) sinh (dr)
- d )
y ()= S+%(Bd(yo—s)cosh(dt)+(B(_A+C)y0+(_dz+(A_é)

(A —C+ Bs)))sinh (dt)).

(2-56)
By (2-35) and (2-56) we obtain that system (2-10) is equivalent to system

er: d+eC(—dcosh(dt;) + (Byo— (A — C + Bs))sinh (dt;)) =0,
er: —l+e ™ (1+n(yo—r+s)) =0,
e3: —2Bds+Bde ™ (yo+riyo+ (s+r(—r+s)t)) — eCh (Bd(yo — s)cosh (dr)
+(B(—A+C)yo+ (—d?>+ (A—C)(A— C+ Bs))) sinh (dt1)) = 0.
(2-57)
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From equation ¢; we get yo = (A — C + Bs+d coth (dt;) —de~C"1csch(dy)) /B, and from
ey we get the expression (2-49) for 1, then substituting yo and 7, in e3 we obtain that

1

e3 = 3 ((—A—}-é—i—BF—ZBS)f()(l‘]) +df3(t1) —I’Bf4(l1)) =0,

where f5(t1) =1, f5(t1) = coth (dt;) — e "esch(dty ) and

- 1
)= =
faltr) Breth
Cl‘1+ 1 =
Bre  €"'(=A+C+Br—2Bs—dcoth(dt;))+dcsch(dt;)
eCt(—A+C + Br — 2Bs — d coth (dt;) ) + dcsch(dt; )
If

t1 € (0,00) and f(11) = <t (—A+C+Br—2Bs—dcoth(dt))) +dcsch(dt;) #0, (2-58)

by Proposition 1.7 we can conclude that a system (2-57) has at least two real solutions
therefore a PWLS with the configuration (N”,iN") has at least two crossing limit cycles.
In what follows we provide a PWLS with configuration (N, iN") and having two crossing
limit cycles.

Considering A = —23/10, B = —8/5, C = —24/5, d = 37/10, r = 3/5 and

s = 0, we have that

173 37 (3% 37 (37
~ — —24t1/5 = _~ coth _1 - h _1
nin) =e < 50 10° (10 AT T A

Substituting
e +e " 2
coth (x) = +e_x7 and csch(x) =

eX—e

ex_e X

in the equation f(#;) we obtain that

eS7t1/10(_370_|_126—17t1/2+358e—11t1/10)
50(1 —e371/5)

() = >0, for t; > 0.

Therefore the condition (2-58) is satisfied. See the graphic of this function in Figure 2.14.
Moreover we obtain the PWLS formed by

23 8 23 6 6
- _ 10 5 10 + 5 5
20 10 20 25 25 (2-59)

For this PWLS we have that system (2-57) has two real solutions, namely
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0.0012

0.0010}

0.0008

0.0006 1

0.0004

0.0002

2 4 6 8 10

Figure 2.14: The graphic of the function (2-58) for t; > 0.

(tl, 0,90 = (0.564675.., 5.217342.., 4.794330..); and (t3,13,y3)

(0.763740.., 6.119198.., 6.860880..). Then the PWLS (2-59) has two crossing limit
cycles which intersect £ in (0,y4) = (0,4.794330..) and (0,y}) = (0,0.783292..) and
(0,y3) = (0,6.860880..) and (0,y7) = (0,0.759263..), respectively. See Figure 2.15. [

-1 1 2 3

Figure 2.15: Two crossing limit cycles of the discontinuous PWLS
(2-59) with configuration (N”,iN").

Proof of statement (v) of Theorem A. In this case we analyze the maximum number of
crossing limit cycles of PWLS (0-1) when the equilibrium point of linear differential
system X~ is a virtual improper node (iN*). We consider that system X~ is in the

canonical form (2-4) with d = 0 and B < 0, then equilibrium point P_ is

Aby + Bby —2b,C _A2b1 +ABb, — 2AblC’+b1C“2)

P_ = (x0,Y0) = ( I 7 562

This equilibrium point is a virtual improper node iN” if P = (1,s), then b} = —A —
Bs, by = —(—A? +2AC — C? — ABs + 2BCs)/B. With these condition the solution of
system X ~ starting in (0,yg) € L is

x (1) =149 Btyg— (1+(A—C+Bs))),

() = Bs+ (A —C)2C't + BeC1(1— At +Ct) (yo — s) (2-60)
- : _

We consider that linear differential system X is an improper node iN", then we consider
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that system X T is in the canonical form (2-1) and the equilibrium point P, satisfies (2-21)
with B = 0 and r # 0. Therefore we obtain the configuration (iN",iN").
Now considering ¢; and t, as in Proposition 2.3 and by equations (2-60) and

(2-35), system (2-10) is equivalent to

er: 1 —I—eéll (Bt1y0 — (1 + (A —C‘—l—BS)H)) =0,

er: —l+e ™ (1+n(y—r+s)) =0,

e3: 2Bs—+(A—C)2eMt 4 BeC (1 — Aty +Cry) (yo — )
—Be "™ (yo +rtayo + (s +r(—r+s)t2)) = 0.

(2-61)

By the equation e, we get yo = (1 — e i 4 (A —C + Bs)t;)/Bt;, and from e, we obtain
the expression (2-49) for #,. Substituting these expressions in e3, we get

e3 = % ((—A+C+Br—2Bs)fo(t) + f5(t1) — Brfs(t1)) =0,
1—eCn

n

where fo(t1) = 1, f5(t1) = and

foltr) = !

BreCt
It C+ C =
Brtie 1+t (=14 (—A+C+Br—2Bs)h)

w = =
1+e“h (=14 (—A+C+Br—2Bs)t)

Therefore by Proposition 1.7 we can conclude that system (2-61) has at least two real

solutions for
t1 € (0,00) and 7i(t) = 1 + € (—1+ (—A+C+Br—2Bs)t;) #0. (2-62)

Due to symmetry we have that if (71,2,y0) is a real solution of system (2-61) then
(—t1,—tp,y1) also it is a real solution of system (2-61), where y; =y~ (t;) = y" (—12),
we observed that the real solutions (¢1,%,y0) and (—#1,—1,y;) of system (2-61) provide
the same crossing limit cycle of PWLS with the configuration (iN",iN"). Therefore a
PWLS with the configuration (iN",iN") has at least one crossing limit cycle.

In what follows we provide a example of a PWLS with the configuration
(iNV,iN") having one crossing limit cycle.

Considering A = —6, B= —14/5, C = —6/5, r = 11/10 and s = 0, we have that
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Figure 2.16: One crossing limit cycle of the discontinuous PWLS
(2-63) with configuration (iN",iN").

4
f(t) =1+e /> (—1+£t1) >0, for 1, > 0.

Therefore the condition (2-62) is satisfied.
Moreover we obtain the PWLS formed by

14 11

6 6 L 1

X~ (xy) = | X+ Xy = | 3 X+ 3

’ 288 126 288 | ’ 121 121

35 35 35 100 100
(2-63)
For this PWLS we have that system (2-57) has two real solutions, namely
(t1,02,y0) = (0.964798.., 0.448780.., 2.522296..) and (—t1,—t,y1) =

(—0.964798.., —0.448780.., 1.968154..), which provide one crossing limit cycle such
that intersects £ in (0,yo) = (0,2.522296..) and (0,y;) = (0,1.968154..). See Figure
2.16. U

2.4 Discussions and conclusions

In this chapter we studied the number of crossing limit cycles that the PWLS
(0-1) can have when the equilibrium points of linear differential systems X~ and X
are symmetric with respect to the line of discontinuity X. We observe that having that
symmetry to arise fourteen configurations for the singular points of X~ and X+ which
were denoted by (P_, Py ) depending of type and the position of the equilibrium points. In
particular in statement (i) of Theorem A we achieved to provide an upper bound for the
maximum number of crossing limit cycles for PWLS (0-1) when the linear differential
system X~ has an equilibrium point of type either real or virtual center and in Proposition

2.4 we proved that this upper bound is reached in each case.
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For the configurations of the equilibrium points of the linear differential system
X* of PWLS (0-1) considered in the statements (ii), (i), (iv) and (v) of Theorem A we
can only determine a lower bound for the maximum number of crossing limit cycles and
the main drawbacks to provide an upper bound were: first the difficulty of to determine
explicitly the time that an orbit expends in each region governed by each linear differential
system X* even when we can integrate the solution of every linear differential system
system; and second the lack of techniques to determine zeros of nonlinear equations. For
instance the case obtained in the configuration (FV,iN") where we needed to determine

the zeros of the equation

1 ~ ~ - ~
3= ((~A+C+Br—2Bs)fo(t) +dfi(t1) — rBf2(11)) = 0. (2-64)
With fo(t1) =1, fi(t1) = cot (dt;) —eClicse (dt1), and
~ 1
fa(t) = ~ P . We do not

Cri+— =
Bre 1 e (—A+C+Br—2Bs—dcot(dt;)) +dcsc(dr)

¢C (—A+C+Br—2Bs—dcot(dn)) +dcsc(dr)

w

get to verify that the family F = { fo. f1, fz} is an Extended Complete Chebyshev system
to know the maximum number of zeros that the equation (2-64) can have and for this
reason we use the Proposition 1.7 which only provides the a lower bound for the number
of zeros that any non-trivial linear combination of functions in ¥ can have and thus we
only obtain a lower bound for the maximum number of crossing limit cycles for the PWLS
(0-1) with the configuration (F”,iN"). Similarly it happens in cases considered in the
statements (if), (iii), (iv) and (v).



CHAPTER 3

Crossing limit cycles for a class of PWLC

separated by a conic

3.1 Introduction

These last years the study of the version of Hilbert’s 16th problem for PWLS
in the plane, has increased strongly and there are many papers studying the maximum
number of crossing limit cycles when the differential system is defined in two zones
separated by a straight line, in particular in [24, 27] it was proved that piecewise linear
differential centers (PWLC for short) separated by a straight line have no crossing limit
cycles, however recently in [20, 28] were studied planar discontinuous PWLC where the
curve of discontinuity is not a straight line, and it was shown that the number of crossing
limit cycles in these systems is non-zero. For this reason it is interesting to study the role
which plays the shape of the discontinuity curve in the number of crossing limit cycles
that planar discontinuous PWLC can have.

We remark that in general it is not easy to provide an explicit upper bound for
the maximum number of limit cycles in a class of differential systems, and such that this
bound is reached. Therefore in this chapter we study on the either upper or lower bounds
for the maximum number of crossing limit cycles of the planar discontinuous PWLC

which discontinuity curve ¥ is any conic. We denote by Rg the components of R?\ X.

3.1.1 Canonical form

In this chapter we consider that the PWLS are formed by linear differential sys-
tems of type centers, and we use the normal form for any arbitrary linear differential center

provided in the paper [27], since the proof is short we present it here for completeness.

Lemma 3.1 Through a linear change of variables and a rescaling of the independent
variable every center in R? can be written
4b? + ©?

x:—bx—4—y—|—d, y=ax+by+c, 3-1
a
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with a # 0 and ® > 0. This system has the first integral
H(x,y) = 4(ax+by)? + 8a(cx — dy) + y*o?. (3-2)
Proof. Consider an arbitrary linear differential system in the plane
X=Ax+By+d, y=ax+by+c,

and suppose that it has a center. Then the eigenvalues of this system are

A+b+/4aB+ (A—Db)?

Moo= 5

If this system has a center then A +b = 0 and 4aB + (A — b)?> = —®” for some ® > 0 and
aB < 0, this is, A = —b, B = —(4b*> + ®*)/(4a) and a > 0. And A » = +io. O
We remark that the normal form in Lemma 3.1 is independent of the change of coordi-
nates, so we can use this normal form in each region Rg.

We know that using an affine change of coordinates, any conic can be written in

one of following nine canonical forms:
e (p): x> +y*> =0 two complex straight lines intersecting at a real point;
e (CL): x>+ 1=0 two complex parallel straight lines;
e (CE): x> +y>+1=0 complex ellipse;
e (DL): x2 = 0 one double real straight line;
e (PL): x> — 1 =0 two real parallel straight lines;
e (LV): xy =0 two real straight lines intersecting at a real point;
e (E): x> +y*>—1=0 ellipse;
e (H): x> —y?> —1=0, hyperbola;
e (P): y—x* =0 parabola.

Here we do not consider conics of type (p), (CL) or (CE) because they do not
separate the plane in connected regions.

We observe that we have three options for limit cycles of discontinuous PWLC
separated by a conic X, first we have the crossing limit cycles such that intersect the
discontinuity curve in exactly two points, we study this case in Section 3.2, second we
have the limit cycles which intersect the discontinuity curve ¥ in three points such that
two points intersect the discontinuity curve transversely and the third point of intersection

is a tangency point of limit cycle with the discontinuity curve X, then these limit cycles are

not crossing limit cycles, therefore we do not consider them in this work, we study them in
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future works. And finally we have crossing limit cycles which intersect the discontinuity
curve X in four points, we study this case in Section 3.3. Finally in Sections 3.4 and 3.5
we verify that the crossing limit cycles having two intersection points with the conic X
can coexist with crossing limit cycles having four intersection points with X.

We denote by A(¥ the maximum number of crossing limit cycles of a PWLC
when the discontinuity curve is the conic X, with £ € {(DL),(PL),(LV),(E),(H),(P)}.
And the crossing limit cycles intersect the discontinuity curve X in m points, where
m € {2,4}.

3.1.2 Closing equations

We know that the problem of to determine crossing limit cycles in PWLS systems
itis a tedious problem because the main technique to determine periodic solutions in these
systems is the Poincare map which it is difficult to use because to determine explicitly
the time that an orbit expends in each region governed by each linear differential center
it is difficult, even when we can integrate the solution of every system in each region.
Therefore in [25] it was provided an alternative way to the Poincaré map for analyzing the
limit cycles of planar PWLS using the first integrals of different planar linear differential
systems in each region and studying the closing equations of PWLS.

If we consider that the PWLS (1-1) is formed by two linear differential systems,
X! and X2, and Hj(x,y) and Hy(x,y) are the first integrals of linear differential systems.
The closing equations of PWLS (1-1) with two points on X are:

Hi(x1,y1) = Hi(x2,y2),

(3-3)
Hy(x1,y1) = Ha(x2,y2),

where (x1,y1), (x2,y2) € £. We observe that if there is a crossing periodic orbit of PWLS
(1-1) which intersects the discontinuity curve X in the two points (X1,¥;) and (%2,>), the
point (¥1,¥1,%2,72) must be a real solution of system (3-3). Therefore in order to study
the number A% of PWLS (1-1), we must determine the real solutions (x1,y1,x2,y2) of
system (3-3).

By the Implicit Function Theorem, each equation in (3-3) defines a differentiable
function ¢ (x1,y;) and 02(x1,y1), respectively in such a way that T = ¢; o ¢, is the
Poincaré map of PWLS (1-1).

In order to study the number 57\[4Z of PWLS (1-1), with (x;,y;) € X the intersection
points of the crossing limit cycle and X, for i = 1,2,3,4. We must determine the real

solutions (x1,y1,X2,Y2,X3,Y3,X4,y4) of system
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Hy(x1,y1) = Hi(x2,y2),
Hy(x2,y2) = Ha(x3,3), (3-4)
Hy(x3,y3) = H1(x4,)4),
Hy(x4,y4) = Ha(x1,y1).

It is possible to define the closing equations analogously when the PWLS (1-1) is formed
by three or more linear differential systems.

3.2 Crossing limit cycles intersecting the discontinuity

curve X in two points

The goal in this section is to study the maximum number of crossing limit cycles
of PWLS formed by linear differential centers and separated by any conic which only
intersect the discontinuity curve in two points, this is, .‘7\[% For this we must study the real
solutions of system (3-3).

The problem of to determine Az with £ € {(DL),(PL),(LV),(P),(E)} was
studied in the papers [24, 27, 28, 20]. More precisely, in [24, 27] it was proved that
the discontinuous PWLC separated by one straight line have no crossing limit cycles with
two points on X. And we observe that to determine the numbers N%LV), N%PL) and N%DL),
it is equivalent to determine the number of crossing limit cycles with two points on the
discontinuity curve for PWLC separated by a single straight line. Therefore it is possible
to conclude that N%LV) = %PL) = %DL) =0.

In the paper [28] the authors considered discontinuous PWLC separated by the
parabola y = x* and proved that they have at most three crossing limit cycles that intersect
Y in two points, i.e., N%P) = 3.

With regard to the discontinuous PWLC separated by an ellipse, in [20] the
authors shown that the class of planar discontinuous PWLC separated by the circle S!
has at most two crossing limit cycles that intersect S! in two points, this is N%E) =2.
Moreover, in [20] the authors provided a PWLC which reach the upper bound of 2

crossing limit cycles, see Example 3.2.

Example 3.2 We consider the discontinuous PWLS in R? separated by the ellipse (E) and

both linear differential centers are defined as follows:
X=—2x—2y—V2—-1, y=4x+2y+v?2,

in the unbounded region limited by the ellipse (E), and in the bounded region with
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boundary the ellipse (E) we have the linear differential center

) 5 1 1 i 1
X=x—-y+ +3 y=x—y——.

4 n e V2

This discontinuous PWLC has exactly two crossing limit cycles, see Figure 3.1.

Figure 3.1: The two limit cycles of the discontinuous PWLC of
Example 3.2.

We summarize the above results in the following theorem.

Theorem 3.3 Consider a planar discontinuous PWLC where the discontinuity curve X is
such that, X € {(DL),(PL),(LV),(P),(E)}. The following statements holds.

(a) The numbers N%LV), %PL), Q\C%DL) are equals to zero;
(b) The number N%P) is three;

(c) The number N%E) is two.

We observe that in the cases considered in Theorem 3.3, there is no a result
determining the maximum number of crossing limit cycles for discontinuous PWLC when
¥ is a hyperbola (H), this is, the number N%H). This is the main result in this section.

For the systems of the class ¥z we have the following regions in the plane

RL = {(x,y) €eR?:x*—y* > 1,x> 0},
Ry = {(xy) eR? 127 —y* <1}, (3-5)
Ry = {(x,y) eR?:x*—y? > 1,x < 0}.

And we have that the PWLC in the family #y are formed by three linear differential
centers, namely one in each region R.,, i = 1,2,3. Nevertheless a crossing limit cycle
which intersects the hyperbola x> —y?> = 1 in only two different points p = (x;,y1) and

q = (x2,y2) it is formed by parts of orbits of only two linear differential centers, namely
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either the linear differential centers in R}{ and R%{ or the linear differential centers in the
regions R?{ and RIZ_I, then without lost of generality we consider that the crossing limit
cycles are formed by parts of orbits of linear differential systems in the regions R}{ and
R?,. In order to have crossing limit cycles that intersect (H) in the points p = (x1,y;) and

q = (x2,y2), these points must satisfy the closing equations given in (3-3), this is

Hi(x1,y1) = Hi(x2,y2),
Hy(x2,y2) = Ha(x1,y1), (3-6)
2 2 1 )
X1—yi= L,
x% y% 1.

3.2.1 Statement of the main results

Theorem B Let Fy be the family of planar discontinuous PWLC where X is a hyperbola
(H). Then the maximum number of crossing limit cycles that intersect X in two points is

two, this is, N%H) = 2. Moreover this upper bound is reached.
Theorem B is proved in Section 3.2.2.

Proposition 3.4 If the parameters b,c,d and ® of the linear differential center in the
region R%{ satisfy that b= c =d = 0 and ® = 2. Then the PWLC in Fyg have no crossing

limit cycles.

Proposition 3.5 There are PWLC in Fy having exactly one crossing limit cycle that

intersects X in two points, see Figure 3.2.

Proposition 3.6 The upper bound for the maximum number of crossing limit cycles
provided in Theorem B is reached. See Figure 3.3.

3.2.2 Proof of the main results

Proof of Proposition 3.4. We consider a discontinuous PWLC formed by two linear
differential centers as in Lemma 3.1, such that the linear differential center in the region

R%I satisfies that b = ¢ = d = 0 and ® = 2, this is the linear differential center in R%, I
i=-y,  y=x (3-7)

We have that the orbits of this linear center intersect the hyperbola (H) in two or in
four points, when it intersects (H) in exactly two points these are (£1,0), which are
points of tangency between the hyperbola and the solution curves of the center (3-7),

then it is impossible that there are crossing periodic orbits independent of the linear
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differential center that can be considered in the region R }L, So the orbits which can produce
a crossing limit cycle intersect the hyperbola in four points and clearly these orbits cannot
be crossing limit cycles with exactly two points on the discontinuity curve (H). 0
Proof of Proposition 3.5. In the region R}{ we consider the arbitrary linear differential
center (3-1) which has first integral (3-2). In the region Rlzq we consider the arbitrary

linear differential center

4B+ Q?

D ) — Ax+ B -
1A y+D, y=Ax+By+C, (3-8)

X = —Bx
with A # 0 and Q > 0. Which has the first integral
Hy(x,y) = 4(Ax + By)* + 8A(Cx — Dy) +y*Q*. (3-9)

It is possible to do a rescaling of time in the two above systems and to assume
without loss of generality that a = A = 1. For to build the example of a PWLC in ¥y
formed by the linear differential centers (3-1) and (3-8) with one crossing limit cycle, we
will impose the existence of a periodic solution and we will determine the parameters for
each linear differential center (3-1) and (3-8) with the established conditions.

In order to have a periodic solution of the PWLC formed by the linear differential
centers (3-1) and (3-8) that intersect (H) in the points p = (x1,y1) and ¢ = (x2,y>), these
points must satisfy the closing equations given in (3-6), that is,

er: 8cx; —8cxy —8dy; +4(x; + by1)2 +8dy, —4(x2 + by2)2 —l—y%oo2 —y%(x)2 =0,
er: —8Cxy +8Cxz+8Dy; —4(x1 + By1)? — 8Dyy +4(x2 + Byz)? —y1Q? +y3Q? = 0,
e3: x% —y% =1,
e4: x% —y% =1.
(3-10)
We assume that there is a real solution of system (3-10), namely ¢' =
(x1,y1,%2,y2) = (1,0,4/5,2), then the equations e3 and e4 are satisfied and by equation e

we get the following expression for the parameter d

1
d=7 <4+4\/§b+4b2—2c+2\/§c+w2>,

and the equation e, we obtain the following expression for the parameter D:

1
p=, <4+4\/§B—|—4B2—2C+2\/§C+QZ>.

Now we fix the remaining parameters, namely we consider that b =0;B =0;¢c =
—2;C = -3/2;0 = 10;Q = 1, with these condition we obtain a PWLC such that in the
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region R}, it has the linear differential center
x=27—-v5-25y, y=-2+ux, (3-11)

this linear differential center has the first integral Hj(x,y) = 4(—4 + x)x + 4y(—54 +
25+ 25y). In the region Rlz_l we obtain the linear differential center
3v5
':2____ V — — — 3‘12
x i g YTty (3-12)
which has the first integral H>(x,y) = 4(—3 4 x)x + y(—16 + 61/5 4 y). With these linear

differential centers the closing equations (3-10) are equivalent to system

4(—4x) +x3 +2(=27+V/5)y1 +25y3 +4xy — x5 + S54ys
—2+/5y, —25y3) =0,

—12x) +4x3 +2(=8+3V5)y; +y? + 12x)
—4x% + 16y, — 6\/§y2 —y% =0,
-y =1,

(3-13)

x%—ygzl.

-2

Figure 3.2: The crossing limit cycle of the discontinuous PWLC
formed by the centers (3-11) and (3-12).

Taking into account that we are only interested in the solutions (p,q) =
(x1,y1,X2,y2) satisfying x;xp > 0 and p # g, this discontinuous PWLC formed by the lin-
ear differential centers (3-11) and (3-12) has one crossing limit cycle, because the unique
real solution with those conditions (p,q) is p = (1,0) and g = (1/5,2).

The first linear differential system (3-11) has the solution

x1(t) =2—cos(5t) — = (—=27++/5)sin (5t),

yi(t) = —% sin (%) (SCOS (%) + (=27 ++/5)sin (%)) , (3-14)

N | =
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satisfying the initial conditions x;(0) = 1 and y;(0) = 0. The linear differential system
(3-12) has the solution
t

0() = % (3+(~3+25)cos (5) —3(—2+/3)sin (%)) ,

v2(t) =8—3v5+3(—2+/5)cos (%) +(=3+2+/5)sin (%) 1)
satisfying the initial conditions x(0) = /5 and y,(0) = 2. The time that the solution
(x1(t),y1) contained in R}, needs to reach the point ¢ = (1/5,2) is #; = 0.658816... The
flying time of the solution (x2(¢),y2(t)) in the region R, is t, = 7.210481... Drawing the
orbits (x1(¢),y1(¢)) and (x2(),y2(¢)) with the times #; and 7,, respectively, we obtain the
crossing limit cycle of Figure 3.2. [

The examples illustrated throughout of this work are similarly constructed.

Proof of Proposition 3.6. In the region R}q we consider the linear differential center

289 —305v/6 + \/ 3(85057 — 9248+/6) +321/3x — 169y

x - )
5= —(289v/2 —32/3)(1 + /2 ++/3) + 768x — 321/3y
B 768 ’

which has the first integral

Hi(x,y) =384x% +x ((32\@ - 289\/§> (1 +1/2+ \/3) - 3N§y>
+y <9Sy . \/ 3 <85057 _ 9248\/6) +305v/6— 289> .

In the region R we have the linear differential center

x:é<—3+8\/§+\/§—\/5>— -3, y:l(—l—S\/E—\/g)+x+)§), (3-17)

X
2 8

this system has the first integral

Hy(x,y) :4x2—x(1 +5\/§+\/§—4y> +y<3—8\/§—\/§+\/8+2y>.

The discontinuous PWLC formed by the linear differential centers (3-16) and (3-17) has
two crossing limit cycles, because the unique real solutions (p,q) of system (3-6) are
(1 .0,v/2, 1) and (\/E, —1,V/3, \/§> , therefore the intersection points of the two crossing

limit cycles with the hyperbola are the pairs (1,0), (\/Z 1) and (\/Z —1), <\/§, \/§>
See these two crossing limit cycles in Figure 3.3.
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Figure 3.3: The two limit cycles of the discontinuous PWLC formed
by the centers (3-16) and (3-17).

With this example we get to prove that the upper bound provided in Theorem B is
reached. U
Proof of Theorem B. In the region R}q we consider the arbitrary linear differential center
(3-1) which has first integral (3-2). In the region R%{ we consider the arbitrary linear
differential center (3-8) which has the first integral (3-9).

It is possible to do a rescaling of time in the two above systems. Suppose T = at
in R}I and s = At in R%{. These two rescaling change the velocity in which the orbits of
systems (3-1) and (3-8) travel, nevertheless they do not change the orbits, therefore they
will not change the crossing limit cycles that the discontinuous PWLC may have. After
these rescalings of the time we can assume without loss of generality that a = A =1,
and the dot in system (3-1) (resp. (3-8)) denotes derivative with respect to the new time T
(resp. s).

We assume that the discontinuous PWLC formed by the two linear differential
centers (3-1) and (3-8) has at least three crossing periodic solutions. For this we must
impose that the system of equations (3-6) has three pairs of points as solution, namely

(pi,qi), i =1,2,3, since these solutions provide crossing periodic solutions. We consider
pi = (coshr,sinhr;) and g; = (coshs;,sinhs;), for i =1,2,3. (3-18)

These points are the points where the three crossing periodic solutions intersect the
hyperbola (H). Now we consider that the point (pj,q;) satisfies system (3-6) and with
this condition we obtain the following expression
1
d :8(sinhr1 sinhsy) (4cosh2 ri —4cosh’s; + 8coshry (c+bsinhry)

— 8coshs (c+bsinhsy) + (4b* + ) (sinh® r; —sinh?s))

and D has the same expression that d changing (b,c,®) by (B,C,Q).



3.2 Crossing limit cycles intersecting the discontinuity curve ¥ in two points 69

We assume that the point (p2, g2 ) satisfies system (3-6) and we get the expression
B —1
~ 8(sinh(ry — rp) +sinh(ry —s1) — sinh(r; —s7) + sinh(s; — s7))
(4cosh? 1 +4bsinh(2s1) — 4cosh® i — 4bsinh(2r1)) + (sinhry — sinhsy) (4cosh?
— 4cosh? s, + 8bcoshr, sinh ) — 8bcosh sy sinh sy + (4[92 + 0)2) (sinhr, — sinhsy)

((sinhrp — sinhsy)

(—sinhry + sinhry — sinhs; + sinhsy))),

and C has the same expression that ¢ changing (b, ®) by (B, Q).
Finally we are going to impose that the point (p3,q3) satisfies system (3-6) and
we get an expression for ?. In this case ®> = K /L, where the expression of K is

- - - - —5-3
4((1+b2)csch<r] rz%z-s1 S2> inh(r32S3> (cosh(rl 2 r3—;s1 52 S3)

(rl—rz—r;;—l—sl 357 — 853 (rl—r2—3r3+s1—sz—s;5>
2

(3r1+r2—r3+s1+sz—S3)
cosh 5

—cosh

—3nr —r3+s1 — 85— 53
—cosh

Jre

(" )-
+C0Sh(r1+3r2—r3+s1+sz—s3)
( )

( )

osh ri4+ry—r3+3s1+52— 53
2
+ cosh r1+r2—r3+s1+3S2—S3 )—i—bZ(co (Srl—r2+r3;—s1—sz+S3)
_ cosh r1—r2+3r3+s1—sz+83 ) Zb(sinh(rl—7‘2—}’3—;S1—52—3S3)

: ri—ry—r3+s1—352— 53 : 2ri—rp+2r3+51 —s2+53
—sinh —sinh

2 2
sinh (m —r3) +2cosh (2r1 +2r2_r32+51 —f—sz—ss) sinh <r1 ;rz)

cosh <2r1 —r2+2r32—|—s1 -5 —|—s3> sinh (%) + 2sinh (rz;m)

cosh (Fl —27’2—2r32+S1 — 852 —S3) 4 2cosh (”1 +r—r3 +22(Sl +52) —53)

_ _ D5y — _
sinh (S] 2S2>—2005h(r] r2+r32—|— il s2+S3> sinh (S] 2S3)>

_ g1 — _
+2(1+b2)sinh(r1 ERRER! S2+S3)sinh(slzs3))

2

and the expression of L is
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ri—rn4+si—s2\ . r3 —s3
h h
CSC ( 2 > Sin < 2

—|—COSh(r1_r2_r3+S1_

2

—3rp—r3+s;—5—53

)( (rl—rz—r3+s1—sz—3S3)
—cosh >

ri—ry—3r3+s1 —85)— 83
—cosh

2
3r1+r2—r3+s1+sz—S3

)
(e
(r1+3r2—r3;S1+S2—S3)
( )
( )

ri+ra—r3+s1+3s2—s3
2
ri—ry+3r3+s; —sy+s3

r1—’”2+7’3+2S1—52

+ 53

(r1+r2—r3+3s1+sz—S3)
h<3r1—r2+r3+S1—S2+S3)

and the expression of Q7 is the same than the expression of ®” changing b by B.

Now we replace d,c,®” in the expression of the first integral Hy(x,y) and we

have

Hl (xﬂy) = 4(x2 _y2> "‘h(xyy,’”l,”2,7”3751732753)[97 (3_19)
and analogously we have

Hy(x,y) = 4(x* =3%) +h(x,y,r1,72,73,51,52,53)B. (3-20)

Now we are going to analyze if the discontinuous PWLC formed by (3-1) and
(3-8) has more crossing periodic solutions than the three supposed in (3-18). Taking into

account (3-19) and (3-20) the closing equations (3-6) becomes

h(x1,y1,71,72,73,51,52,83) = h(X2,Y2,71,12,73,51,52,53),
xF-yi= 1, (3-21)
2 2

That is, we must solve a system with three equations and four unknowns xp,y1,Xx2,y2
variables. We know that in (3-18) we have at least the three solutions, so system (3-21)
has a continuum of solutions which produce a continuum of crossing periodic solutions, so
such systems cannot have crossing limit cycles. Since in Proposition 3.6, we have proved
that there are systems in #y with two crossing limit cycles, it follows that the maximum
number of crossing limit cycles that intersect X in two points is two. This upper bound is

reached as it was proved in Proposition 3.6 and this completes the proof of Theorem B. [J
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The study of upper bound for the maximum number of crossing limit cycles with
two points on the discontinuity curve ¥ for PWLC formed by linear differential centers
when X is any conic it is completed with the above two Theorems 3.3 and B.

In the following section we study the number of crossing limit cycles for PWLC
formed by linear differential centers and separated by any conic which intersect the

discontinuity curve in four points.

3.3 Crossing limit cycles intersecting the discontinuity

curve X in four points

In this section we study the number of crossing limit cycles for PWLC and
separated by any conic which intersect the discontinuity curve in four points, this is,
we determine the numbers A’%. We do not consider the case where the discontinuity
curve is the conic (DL), because first in [24, 27] it was proved that discontinuous PWLC
separated by a straight line have no crossing limit cycles and second because the crossing
limit cycles of these discontinuous PWLC cannot have four points on the discontinuity

curve.

3.3.1 Statements of the main results

In the following theorems we determine the maximum number of crossing limit
cycles for planar discontinuous PWLC with four points on discontinuity curve, 9\[‘% where
the plane is divided by the curve of discontinuity X € {(PL),(LV),(P),(E),(H)}.

Theorem C Let Fy be the family of planar discontinuous PWLC with ¥ €
{(PL),(P),(E),(H)}. Then the number N3 is equal to one. Moreover this upper bound

is reached.

In the paper [27] it was proved Theorem C for the family #p;, for a particular linear center

between the two parallel straight lines. In Section 3.3.2 we prove it for any linear center.

Proposition 3.7 The upper bound provided in Theorem C is reached for each family Fx
withX € {(PL),(P),(E),(H)}. See Figures 3.4-3.7.

When the discontinuity curve X is of the type (LV), then we have the following

regions in the plane:

(x,y) €R?:x>0 andy > 0},
(x,y) ER?*:x<0andy >0},
R}, = {(x,y)eR*:x<0andy <0},
(x,y) €ER?:x>0andy < 0}.

(3-22)
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Moreover, L =T Ul'; U’y UL, where I} = {(x,y) e R?:x=0,y >0}, T ={(x,y) €
R2:x=0,y<0},I'T ={(x,y) €R?:y=0,x>0}and [; = {(x,y) e R?:y=0,x<0}.
In this case we have two types of crossing limit cycles, namely crossing limit cycles of
type 1 which intersect only two branches of X in exactly two points in each branch, and

crossing limit cycles of type 2 which intersect in a unique point each branch of the set X.

Theorem D Let Fry be the family of planar discontinuous PWLC formed by four linear
centers and with ¥ of the type (LV). The following statements holds.

(i) The maximum number of crossing limit cycles type 1 is one. Moreover this upper

bound is reached.

(ii) The maximum number of crossing limit cycles type 2 is at least four. See Figure 3.13
Theorem D is proved in Section 3.3.2.

Proposition 3.8 The upper bound for the maximum number of crossing limit cycles of
type 1 provided in statement (i) of Theorem D is reached. See Figure 3.8.

Proposition 3.9 Consider the family of planar discontinuous piecewise linear differential

centers Fry. Then the following statement hold.

(a) There are systems in Fry with exactly one crossing limit cycle of type 2, see Figure
3.9.

(b) There are systems in Fry with exactly two crossing limit cycles of type 2, see Figure
3.10.

(c) There are systems in Fry with exactly three crossing limit cycles of type 2, see
Figure 3.11.

3.3.2 Proof of the main results

In this subsection we provide the proofs of Propositions 3.7, 3.8 and 3.9 and
Theorems C and D.
Proof of Proposition 3.7 for the family Fp;. We consider the discontinuous PWLC

. 3 X 5 X 1 i +y in Rl
r=————— — — = — X — 1

6 2 16" T 2’ PL

67 x 29 43 y o >
i A7 s Z R 3-23
X 500 5 IOOy’ y 1000 +x+57 m Kpy, ( )
7 x 13 .1 Y . 3
X:_____y7 y:_+x+_7 m RPL‘

7 3
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These systems have the first integrals

Hi (x,y) = 16x° 4+ y(6+ 5y) +2x(1 + 8y),

2 1
Ha(x,y) =4 (4% ) 37+ 32 (—43+ 134y),
8 14 4
Hy(x,y) = ox = 2y +07 + 5 (Bx+y)%,

respectively. Then the discontinuous PWLC formed by the linear differential centers (3-

N

Figure 3.4: The crossing limit cycle of the discontinuous PWLC (3-
23) with three centers separated by the conic (PL).

23) has one crossing limit cycle that intersects (PL) in four points, because the unique
real solution (y1,y2,y3,y4) with y; > y> and y3 > y4 of system (3-46) is the point
(y1,y2,v3,y4) = (3/2,—27/10,5/2,—1/2). See the crossing limit cycle of this system
in Figure 3.4. This completes the proof of Proposition 3.7 for the family #p;. 0
Proof of Proposition 3.7 for the family Fp. We consider the discontinuous PWLC formed

by the following linear differential centers

. 831 17 . 587 . 1
X = 1—28+x Ey, y—ﬁ—kx y, n Rp, (3-24)
. 21145 x5 o127 y

_ X2 — 2y in R%. 3-25
=176 "6 18” V=1 T T M RP (3-25)

These linear differential centers have the first integrals

Hi(x,y) = 64x% +x(587 — 128y) + y(—831 + 68y),

I "o
Ha(x,y) = 53(3048x—21145y)+4<x—6> 2,

respectively. The discontinuous PWLC formed by the linear differential centers (3-24)
and (3-25) has one crossing limit cycle, because the unique real solution (p1, p2, p3, pa) of
system (3-52) is p; = (6,36), p» = (—5,25), p3 =(—3/2,9/4),and ps = (2,4). See the
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Figure 3.5: The crossing limit cycle of the discontinuous PWLC
formed by (3-24) and (3-25) separated by the conic (P).

crossing limit cycle of this PWLC in Figure 3.5. This completes the proof of Proposition
3.7 for the family Fp. O
Proof of Proposition 3.7 for the family Fg. Consider the discontinuous PWLC in the

Figure 3.6: The crossing limit cycle of the discontinuous PWLC
formed by the centers (3-26) and (3-27) separated by
the conic (E).

family ¥ formed by the following two linear differential centers

—107-89v2 5 345 —~71+89v2 5 .
v = _— Y = e R -2
1024 16" 2560 7 024 YT Rk (3-20)
1 1
=g X2y, y=gFtxty, in RZ. (3-27)

These linear differential centers have the first integrals

Hi(x,y) = 512x% + (=71 +89v2 + 320y) +y(107 +89v'2 4 690y),
H>(x,y) = x4 2x2 4+ y+4xy +4y?,

respectively. Then the discontinuous PWLC formed by the linear differential cen-
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ters (3-26) and (3-27) has one crossing limit cycle, because the unique real solution

(pl,P27P37P4) OfSyStem (3'53) iSPl = (170)7 P2 = (_\/5/27 1/\/§> y P3 = (—1,0),211'1(1

ps=(0,—1). See the crossing limit cycle of this system in Figure 3.6. This completes the

proof of Proposition 3.7 for the family #g.

Proof of Proposition 3.7 for the family Fy. We consider the discontinuous PWLC in the

family ¥y formed by the following linear differential centers

—355+64y/10+80v21  x 29 , y oo
— —=— ), y:1+x+—, mn RH7
64(6+v/21) 2 16 2
C _K x 101 Kyt +y 0 R2
X =1 10 100)’7 ( \/_) y=BK2TX 1071 H>
3 337(—=3+2v3) 3 45 3 3 .
¢ = (—11+2V3 —Zx—— = ——x+ = R3,.
x 4( +2/3) + a5 e Y ¥+ 5y in Ry
(3-28)
Where
1
K = (27300
200/81 — 124/35(—20v/2 4+ 26+/3 — 14+/5 +7/7 — 133/15 +2+/70)

—627904/2 + 8750/3 — 31356+/5 + 15678+/7 + 25004/30 — 2730/35
—600v/42 -+ 6279+/70 — 420~/ 105)

K> =

1

400

(—20v/2+26v/3 — 145+ 7V — 13V15+2/70) (3200 800v2

15226+/3 — 1846+/5 +403+/7 — 26131/15 4-240+/35 + 80@)) .

These linear

H,; (xvy) =

HZ(xvy) =

Hi(x,y) =

respectively.

p1 = (V10,—

See the crossing limit cycle of this system in Figure 3.7. This completes the proof of

differential centers have first integrals

(355 — 64V10 — 80v21)y +2(6 + v21) (16x(2 +x) + 16xy +29y?),
1

2001/27 — 4v/35(—20v/2 4 26v/3 — 14y/5 +7v/7 — 13y/15 +2/70)

2
+ (x—l— 1y_0> +(31/27 —4/35(200 — 8002 + 5226+/3 — 1846V/5

+403V/7 — 2613+/15 + 240v/35 + 801/70)x — 2(8750 + 9100+/3
— 209306 4 2500v/10 — 600v/14 — 10452v/15 + 5226+/21 — 420V/35

~910v/105 +2093\/210)y)> :

1
4 4+ 12x(—1+y) + Ey(2640—480\f3+ 1011V/5 — 674V/15 +450y),

(?

The unique real solution (p1, p2, p3, pa) that satisfies (3-58) in this case is

3), p2=(-5/2,/21/4), p3 = (=4,V15) and ps = (=7/2,—/45/4).
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Figure 3.7: The crossing limit cycle of the discontinuous PWLC
(3-28) with discontinuity curve the conic (H).

Proposition 3.7 for the family .
Proof of Proposition 3.8 We consider the following discontinuous PWLC

. 23177 11 557 _ 1837 mn .
xzm—mx—my, y:—m—i—x—kmy,mRLV,
477 x 53 . y .
TR T y=ltxts " Ry
x=-y—B, y=x+a, in R,
x:2—§—%y, y=—2+x+§, in RY, .

(3-29)

In the region Riv we can consider any linear differential center, because the crossing limit

cycle will be formed by parts of the orbits of the centers of the regions RiV,R%V and Riv.

The centers in (3-29) have the first integrals

Figure 3.8: The crossing limit cycle of type 1 of the discontinuous
PWLC (3-29) separated by the conic (LV).

= (x+ )+ (+B)>,

(x,)

Hy(x,y) = 4x? +4x(2+y)+ %y(—9 +2y),
(x,y)
( ):4(—4+x)x+4(—4+x)y+17y2,
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in RZV, i=1,2,3,4, respectively. Then for the discontinuous PWLC (3-29) system (3-62)

becomes

—14696x; + 4500x3 + (23177 — 5570y2)y2 = 0,
1 =22)(=9+2y1+2y2) = 0, (3-30)

14696x| — 4500x7 + y1(—2317745570y;) = 0,

(x1 —x2)(—=4+x1+x2) = 0.

Taking into account that the solutions (x1,x2,y1,y2) must satisfy x; < x and y; < y, we
have that the unique solution of system (3-30) is the point (x1,x2,y1,y2) = (1,3,1/2,4).
See the crossing limit cycle of type 1 of the PWLC (3-29) in Figure 3.8. This completes the
proof of Proposition 3.8. ]
Proof of statement (a) of Proposition 3.9 In the region Riv we consider the linear
differential center

i=——=_ XY y=1+x+2, (3-31)

this system has the first integral Hj (x,y) = 2(2x> +2x(2 +y) + y(134)). In the region
R?,, we have the linear differential center

. . y
= T = Z 3-32
YT 73600 3 900" T2y (592)
which has the first integral Ha(x,y) = 4x? 4+ 4x(9 +2y) /3 + y(851 4 362y) /450. In the
region sz we have the linear differential center

43 x 5 1 y

(= ——+-—— = ——+x—= 3-33
i YTy (5-33)
which has the first integral Hz (x,y) = 4x*> — 3x(2+y) 4+ y(—43 4 5y) /4. And in the region
R}, we have the linear differential center
137 x 25 3 y

(= ——+ - — — y=—4+x—= 3-34
oty YTy (5-34)
which has the first integral Hy(x,y) = 4x(3 +x) — (137 4 24x)y/9 4 25y% /36.

In order to have a crossing limit cycle of type 2, which intersects the discontinuity
conic (LV) in four different points p; = (x1,0), g1 = (0,y1), p2 = (x2,0) and g2 = (0,y2),
with x1,y; > 0 and xp,y> < 0, these points must satisfy the closing equations

€l iHl(xl,O)_Hl(O»)ﬂ) :Oa
:Hp (0 —H 0)=0
e2: H(0,y1) — Hz(x2,0) =0, (3-35)
e3 : H3(x2,0) — H3(0,y2) =0,
eq : Hy(0,y2) — Hy(x1,0) =0
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Considering the four above linear differential centers (3-31), (3-32), (3-33) and (3-34)
and their respective first integrals H;(x,y), i = 1,2,3,4, we have the following equivalent

system

4x1(2+x1) —2y1(13 —|—y1) = 0,

1
—4x,(3 —vy1(851 +361 =0
1 +X2)+450y1( +361y;) ,

| (3-36)
4(xp — 1)xp + 1(43 —5y)y, =0,

1
—4xy(x;+3) + %yz(—548 +25y;) =0,

the unique real solution (p1,q1, p2,q2) of (3-36) is p; = (3,0), g1 = (0,2), p2 =(—=7/2,0)

Figure 3.9: The crossing limit cycle of type 2 of the discontinuous

PWLC formed by the linear centers (3-31), (3-32), (3-
33) and (3-34) separated by (LV).

and ¢, = (0, —4), therefore the PWLC formed by the linear differential centers (3-31), (3-
32), (3-33) and (3-34) has exactly one crossing limit cycle of type 2. See the crossing limit
cycle of this system in Figure 3.9. This completes the proof of statement (a) of Proposition
3.9. 0J
Proof of statement (b) of Proposition 3.9 In the region RiV we consider the linear
differential center

25 x y 11 y

x:_§+§+§’ y=7—x—§, (3—37)

which has the first integral Hy (x,y) = 4x? +4x(—11+y) +y(—25+2y). In the region R?,,

we consider the linear differential center

, 251 109 . 293
X=—100 " " 100" V= 200+x+y, (3-38)

this system has the first integral H(x,y) = 200x* +y (251 4 218y) +x (—586 +400y) . In
the region RI%V we have the linear differential center
5 x 5 23 y

S R S T 3.3
=o6ti 160 YT Ty (3-39)



3.3 Crossing limit cycles intersecting the discontinuity curve ¥ in four points 79

this system has the first integral H3(x,y) = 4x +x(23/3 — 2y) + 5y (—1+3y) /12. In the
region Riv we have the linear differential center
73 X 29 31 y

S T e ARV S L TRV 3-40
800 T 10 4000 YT a0 100 (3-40)

this system has the first integral Hy(x,y) = 400x% — 20x (31 +4y) + y (73 +29y). This
discontinuous PWLC formed by the linear differential centers (3-37), (3-38),(3-39)
and (3-40) has two crossing limit cycles of type 2, because the unique real solutions
(P4}, Py, q), withi =1,2 of system (3-35) are p| = (3/2,0), ¢} = (0,3), p} = (=5/2,0)
and g} = (0,—2) and p? = (2,0),4% = (0,9/2), p5 = (—4,0) and ¢3 = (0,—5). See these
two crossing limit cycles in Figure 3.10. This completes the proof of statement (b) of

Proposition 3.9. U

Figure 3.10: The two crossing limit cycle of type 2 of the discon-
tinuous PWLC formed by the linear centers (3-37),
(3-38), (3-39) and (3-40) separated by (LV).

Proof of statement (c) of Proposition 3.9 In the region R}, we consider the linear

differential center

813 x 300 1207 y
813 x j o 1207 Y 3-41
T3 2 03" YT 70 YT G4

which has the first integral Hj (x,y) = 4x” +x (—4828 /365 + 4y) +24y(—271+50y) /803.

In the region R%V we have the linear differential center

210061 11 15760 . 63667 11

S L L LA R LIV L 4
*=35055 100 11011 YT 20020 7Y 10” (3-42)

this system has the first integral Ha(x,y) = 110110x> + x(700337 — 242242y) +
4y(—210061 4 39400y). In the region Riv we have the linear differential center
79831 7 3875 . 421379 7

L _ 1 385 i 3-43
¥ ="38004 100 4863 Y T 194520 YT 10” (3-43)
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this system has the first integral H(x,y) = 97260x> + 5y(79831 4 15500y) + 7x(60197 +
19452y). In the region Riv we have the linear differential center

15513 2 5700 . 330343 2

= 7280570 T T 5

728057 57 28057

(3-44)

this system has the first integral Hy(x,y) = 140285x> + 30y(5171 +950y) — x(330343 +
112228y). This discontinuous PWLC formed by the linear differential centers (3-41), (3-
42), (3-43) and (3-44) has three crossing limit cycles of type 2, because the unique real so-
lutions (p, ¢}, pb,q5), with i = 1,2,3 of system (3-35) are p} = (9/5,0), ¢} = (0,3), p =
(=7/2,0) and ¢} = (0,-43/10); p? = (2,0), ¢ = (0,33/10), p3 = (—39/10,0) and
g5 = (0,—47/10); and p} = (17/10,0), ¢; = (0,289/100), p3 = (—33/10,0) and ¢3 =
(0,—411/100). See these three crossing limit cycles of type 2 in Figure 3.11. This com-
pletes the proof of statement (c) of Proposition 3.9. O

Figure 3.11: The three crossing limit cycle of type 2 of the dis-
continuous PWLC formed by the centers (3-41), (3-
42),(3-43) and (3-44) separated by (LV).

In what follows we prove Theorem C.
Proof of Theorem C for the family Fp;. When the discontinuity curve X is of the type

(PL), we have following three regions in the plane:

{
Ry, ={(x,y)eR?: -1 <x< 1},
Ry, ={(x,y) eR?:x> 1},

We consider a planar discontinuous PWLC separated by two parallel straight lines and
formed by three arbitrary linear centers. By Lemma 3.1, we have that these linear centers

can be as follows
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4b* + w?
x:—bx—4;y+d, y=ax+by+c, in R}DL,
a
4B + Q?
x:—Bx—%HD, y=Ax+By+C, in R}, (3-45)
487 + 22 .
xz—Bx—%y+57 y=ox+PBy+y, in Rp.

These linear centers have the first integrals

Hy(x,y) = 4(ax+by)* +8a(cx — dy) + y* o0,
Hy(x,y) = 4(Ax + By)* + 8A(Cx — Dy) +y*Q?,
H;(x,y) = 4(ox+ By)* + 8ou(yr — 8y) + %A%,

respectively.

We are going to analyze if the discontinuous PWLC (3-45) has crossing periodic
solutions. Since the orbits in each region R, , for i = 1,2, 3, are ellipses or pieces of one
ellipse, we have that if there is a crossing limit cycle this must intersect each straight line
x = %1 in exactly two points, namely (1,y1),(1,y2) and (—1,y3),(—1,y4), with y; > y;
and y3 > y4. Therefore we must study the solutions of the closing equations (3-4), this is,

Hi(1,y2) = H3(1,y1),
Hy(1,y1) = Hx(—1,y3),
Hi(—1,y3) = Hi(—1,y4),
Hy(—1,y4) = Ha(1,y2),

or equivalently, we have the system

—(y1 —y2) (8B — 88+ (4B* +A%) (y1 + 2

( )

16C —8D(y; —y3) +8B(y1 +y3) + (4B% + §22)(y2 —y% (3-46)
(y3 —y4)(—8b—8d + (4b* + %) (y3 +y4)
) i

)=
)=
)=
—16C +8D(y2 —y4) —8B(y2 +ya) — (4B + Q%) (y3 —y3) =

o oo o

By hypothesis y; > y> and y3 > y4 and therefore system (3-46) is equivalently to the

system
—d&+hL(y1+ym)= 0,
n—8 (1 — y3)+Y2(y1+y3)+12(Y% y3) = 0,
(3-47)
—Y1—01+4(y3+ys) = O,
—N+8&(y2—ya) — (2 +ys) —L(3—y7) = 0,

where v, = 8b,y> = 8B,y; = 8,8, = 84,8, = 8D, 8; = 83,l; = 4b> + >, [, = 4B +
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Q2 13 =4B>+A?andn = 16C. As I; # 0 and I3 # 0, we can isolated y; and y4 of the first

and the third equations of system (3-47), respectively. Then, we obtain

_By2+v3— 83 . —hys+v1+9

yi= Is I

Now replacing these expressions of y; and y,4 in the second and fourth equations

of (3-47), we have the system of two equations

L(B(y2—y3)+y3)(l3(y2+y3) +w3) +B(M+ (3 —y2) 12+ (2 +3)82) — Yay3)
5 ’

Ly =0y (2bys+ 2+ 82) — B+ (2 —y3) (b (2 +y3) +72) — (2 +3)82)
_ ;

E| =

E;

Doing the Groebner basis of the two polynomials £ and E; with respect to the variables

y2 and y3, we obtain the equations
mo+miys+my; =0, ko-+kiys+kayr =0, (3-43)
with
mo 2@ (BB (i (Y2 +82) + 1211 — yays)) — HLE (BT (1 — 6128, +83)
+4h Ly (2Lm + i (Y2 +62))Ws — 51%‘4’%‘1’%) +2L51(—Ry; (12 +82)

+ 2L YT ys — 2090 w3) + T (20 + yi (12 + 82)) w3

+5 (Y1 +0hys)* (yr — Lys)?)
4by (—201y1 +11y3)) (201362 — L (3y1 — [1y3))

mp) =

B ’
- _Ab(L(By + Ly —204137)) (L(Byr — vz —2111282))
— ; :
ko B3y (2 + &)yt +17y3))
Pl ’
b — 21(Ly1 — (2 +82))

I8 ’
ky =2(l3y2 — bhys),

where Y| =7 +81,\|12 =" — &, and Y3 =173 —9s.

Then by Bézout’s Theorem 1.11 in this case, we have that system (3-48) has at
most two solutions. Moreover, from these two solutions (y},y}) and (y3,y3) of (3-48), we
will have two solutions of (3-47) which are of the form (y},y},y3,y}) and (y3,53,%3,¥7).
but analyzing system (3-47) we have that if (y},y},y1,y}) is a solution, then (y3,y},y},¥})
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is another solution. Finally due to the fact that y; > y, and y3 > y4, at most one of these
two solutions will be satisfactory. Therefore we have proved that the planar discontinuous
PWLC of the family #p;, can have at most one crossing limit cycle.

In Proposition 3.7 we verify that this upper bound is reached, this is, we verify
that there is a discontinuous PWLC that belongs to the family #p;, and it has exactly one
crossing limit cycle.

This completes the proof of Theorem C for the family ¥py. U
Proof of Theorem C for the family Tp. If the discontinuity curve X is of the type (P), we

have following two regions in the plane:

RL= {(x,y) e R?:x* <y},
Ry= {(xy) €R2:x2 >y},

We consider a planar discontinuous PWLC formed by two linear arbitrary centers. By
Lemma 3.1 these PWLC can be as follows

4b* + o’
x:—bx—+y+d, y=ax—+by+c, ianlJ,
“ (3-49)
. 4p* + o’ . N
X=—Px——F —r+9, y=ox+By+y, in Rp.
These linear differential centers have the first integrals
Hi(x,y) = 4(ax+by)? +8a(cx — dy) + y*o?,
(x,y) = 4(ax+by)” +8a(cx —dy) +y (3.50)

Hy(x,y) = 4(0ux+ By)? + 8ou(yx — 8y) +y2Q?,

respectively. After two rescaling of time as in the proof Theorem B we can assume without
loss of generality thata = ot = 1.

In order that the PWLC (3-49) has crossing limit cycles with four point on (P).
We must study the solutions of the system:

e1: Hy(x1,x3) — Hy(x2,x3) =0,
e2 1 Ha(x2,23) — Ho(x3,%3) = 0, (3-51)
e3 : Hy(x3,x3) — H (x4,x7) = 0,
es : Ha(x4,x3) — Ha(x1,x3) =0,

or equivalently
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e1: 4x3(1+bx1)? —4x3(1 +bx2)? + 8x1(c —dxy) + 8xa(dxy —¢) + (x] —x3)w* = 0,
€21 4x3(1+ Bx2)? + 8x2 (Y — 8x2)? — 4x3 (14 Bx3)? +8x3(dxz —7) + (x5 —x)Q = 0,
e3: 433 (1 +bxz)? — 4xq(1 4+ bxg)? +8x3(c —dx3) +8xa(dxs —c) + (x§ —xPhw? = 0

eq : 4x3(1+ Bxg)? + 8x1 (8x1 —y) — 4xd (14 By )2 + 8xa(y— 8x4) + (xf —x])Q2 = 0.
(3-52)
We assume that the discontinuous PWLC (3-49) has two crossing periodic solutions.

Y

For this we must have that system of equations (3-52) has two real solutions, namely
(p1,p2,p3,p4) and (q1,492,93,94), where p; = (k;,k?) and q; = (L;,L?), withi = 1,2,3,4.
These points are the points where the two crossing periodic solution intersect discontinu-
ity curve (P).

If the point (p1, p2, p3, p4) satisfies system (3-52), from equation e of (3-52) we
obtain the following expression

_ Bct4(ki +ko) (1 +b(ki +k2)) +4b(ki +k3) + (ki + ka) (kT +K3) 1y

d :
8(k1 —I—kz)

by the equation e, of (3-52) we get the expression

_ 8y+a(kyt+k3) (14 Blka +K3)) +4B(K +K3) + (ko +ka) (k3 +K3)Da

o
8(k2+k3) ’

from equation e3 of (3-52) we obtain the expression

kit ko 2 2 ((kf+k%)l]
- ki—k3) | ————+1+(1+b(k +k
‘ 2(k1+k2—k3—k4)(k3—k4)((4 3) 4 ( (k1 +k2))
K+ k3
+b-1 2>+2bk3—k3+k4_k41)
e ) T2 =)+ (k)

and from equation e4 of (3-52) we obtain the expression

1
8(k1 —ky — k3 —l—k4)

+13)+ (ko +k3) (ki 1o + kG (8B + kal2))

(8B(k1 + ka)ka — L (K3 + K3 — k3) (ko + k) (ki +ka) — 2(k3 + koks

’Y:

here we consider /| = 4b*> + ®* and [, = 4%+ Q2.
We assume that the point (q1,92,¢3,q4) satisfies system (3-52), then we can

obtain the remaining parameters of discontinuous PWLC (3-49).
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From equation e of (3-52) we obtain w?> = S/T, where

g _—4(L1— L)
ki +ko —k3 —ky4
(ks +ka — Ly — Lo) — (k3 + kska + k3 ) (bka +2) +bL3 + (LT + L1 Ly + L3) (bLy +2))
+ ko (bky +2) (k3 + kg — Ly — Ly) + ko ((bLy +2) (LT + L1 Ly + L3) — (K3 + kaks + k3)
(bka +2) — bk3) +bkoL3 + (Lo + L1 ) (bk3 + (ks +ka) (ka — L1 ) (b(ka + L) +2) + &3
(bky+2) ) = L3 (ks +ka) ((bL1 +2) = bL2) ),

((bky + (bka +2)) (k3 +ka — Ly — Lo)kT + ki (—bk3 + ko (bky +2)

and
 Li-L
kit ko —kz—ky
(LT +1L3) — (k3 +ka) (k3 +K3)) + (ks +ka) (L1 + Lo) (k3 + k3 — LT — L3)) ,

(k5 + Kk + k1 k3 + k3) (k3 + ka — L1 — Lo) + (ki + ko) (L1 + Lo)

by the equation e; of (3-52) we obtain Q> =V /W, where
S )
ki —ky — k3 + ka
+(ks — Lo) (ks — ka + L) + L3 (ka — Lo) — L3) + Bk (—k3 — k3ks + ko (kG — K3)
—I3 +kskz + (Lo + L3) (—kj + L3+ L3)) + Bka (—ka + Lo + L3) — k3 (Bks +2)
(ks — Ly — L3) — Bka (K5 (ks — Lo — L3) — k3 + (Lo + L3) (L3 + 13)) — 2ks (L3 — kg
+k3(ka — Ly —L3) + LoLs + L3) — (ks — ka) ((BK3 + k3 (Bka +2)) (ks — Lo — L3)
+B(La+L3) (k3 + L5+ L3) + 2 (—ka(La + L3) + L5 + Lo L3 + L3) ) )

(k1 (Bky + (Bka +2)) (ko + k3 — Ly — L3) — 2k1 (k3 + ko (k3 — k4)

and
L,—L;
“ki—ky —k3 +ky4
+ k3ki+ (Lo +Ls) (—k3 + L3+ L3)) + Lo (ko +k3) (k3 +&3) — k3) — ka(ka +k3)
(k3 +k3 —k3) + L3 (K3 + kaks + kok3 — L3 (ko + k3 — ka) + 3 — k3) — (ko + k3 — ka)
(L3 +LL3+13)),

4

(k3 (ko + k3 — Loy — L3) (k1 +ka) + ki (ko (k3 — k3) — k3 — kaks — k3

from equations e3 and e4 we get that b = 3 = 0. This implies that the linear differential

systems in R}, and in R3 are of the form

y=x,

which is a contradiction because by hypothesis each of the linear differential systems

considered is a center. Therefore we have proved that the maximum number of crossing
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limit cycles of the discontinuous PWLC in #p is one.

In Proposition 3.7 we verify that this upper bound is reached. That is, that there
are PWLC in the family #p having one crossing limit cycle.

This completes the proof of Theorem C for the family #p. U
Proof of Theorem C for the family Fr. When the discontinuity curve X is of the type (E),

we have following two regions in the plane:

RL= {(x,y) eR?:x2+y* < 1},
RZ= {(x,y) eR*:x*+y? > 1}.

By Lemma 3.1 a PWLC of family #g can be consider as (3-49) where the first integrals
are given in (3-50).

Now we are going to study the conditions in order that a PWLC in the family ¥g
has crossing limit cycles intersecting the discontinuity curve (E) in exactly four points.
Taking into account the first integrals (3-50) a PWLC in ¥ has crossing limit cycles if
there are points (x;,y;) for i = 1,2,3,4 satisfying the equations

er s Hy(x1,y1) — Hi(x2,y2) = 0,
ex: Ha(x2,y2) — Ha(x3,y3) = 0,
e3: Hi(x3,y3) —Hi(xa,y4) = 0,
ey : Hy(xq,y4) —Ha(x1,y1) = 0,
Eq :x%—ky%—l = 0,
Ey:x3+y5—1= 0,
Ey:x3+y3—1= 0,
E4:xi+yi—1: 0

considering /; = 4b> + ®” and I, = 4B + Q2?, we have the equivalent system

el : 4(x% —x%) + 8(bx1y1 —bxoyr +c(x1 —x2) —dy1 + dy2) +1 (y% —y%) =0,
&2 402 —33) +8xa(y+ Bya) — Bu3(y+ Bys) + (12 —y3) (b (y2 +y3) — 88) =0,
e3: 4(x3 —x3) + 8(bxsys — bxays +c(x3 —x4) — dys +dys) + L(y3—y3) =0
eq: 88(y1 —ya)+ 8xa(Y+PBya) — 4(xf —x3) — 8x1(Y+By1) + (i —y7) =0,

E1=0,E,=0,E3=0, Es =0.
(3-53)

Where we consider without generality a = ot = 1 as in the proof Theorem B.

Y

We assume that this PWLC has at least two crossing periodic solutions. For this
we have that system (3-53) has two pairs of solutions, (p1,p2, p3,pa) and (q1,492,93,94)
with p; # pj, and q; # g;, for i # jand i, j = 1,2,3,4. Since these solution points are on
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the circle (E), then we can consider them in the following way

pi= (ki,?»i), with k; = cos (Si), A; = sin (Si) and ¢g; = (mi,n,-), with m; = cos (ti),
n; =sin(t;), with s;,¢ € [0,2m), for i=1,2,3,4.
(3-54)
Substituting the first solution (pi,p2,p3,p4) With p; as in (3-54) in (3-53) we can
determine the parameters d, 9, ¢,y of the PWLC (3-49), and we get

(8c(ki —ka) +4(ki — ko +bA —bAg) (ki +ka +b(M +D2)) + (A —A5)@?)

8(A1 —N2) ’
43— 4%+ 8ka (Mo +Y) — Bks(MaB+Y) + (A3 — A3y
N 8(A2 —A3) ’
_ 1 _ 2 2
¢ ~ 8((k3 —ka) (M —A2) — (k1 —ka) (A3 — Aa)) (40 =R (ks —ks = 2bhaks + 2bksls)

+ (7\,3 — 7\.4)(4(/(% — k%) + Sb(klkl — kz?»z) + (7\.1 — 7\,2)(7\.1 4+ A — A3 — 14) ll)) ,
1

Y78 (ko) (2 —23) + (ka— ka) (b1 — M)

+ (7\.2 — 7»3)(4](% — 4]@% + 8k B — 8]{47\,4B —+ (k] — 7\,4)(7\,1 - — A3+ 7&4) lz)) .

d =

)

(4(M — M) (k3 — K5 + 2k3h3B — 2ko2)

Analogously, substituting the second solution (¢1,¢2,¢3,g4) with g; as in (3-54)
in (3-53) we get remaining parameters ®,Q, b, 3. Substituting k;, A;, m;,n; as was done in
(3-54) we obtain that b = B = 0. Therefore we get that the PWLC is formed by linear
differential center x = —y, y = x, in the regions RIE and R%. This is a contradiction
because with this linear differential center is not possible to generate crossing limit cycles.
Then we proved that the maximum number of crossing limits cycles for PWLC in g is
one.

In Proposition 3.7 we prove that the maximum number provided in Theorem C
is reached, that is, there are PWLC in #g such that have one crossing limit cycle with four
points on (E).

This completes the proof of Theorem C for the family ¥g. 0
Proof of Theorem C for the family Fy. If the discontinuity curve X is of the type (H) we

have following three regions in the plane given in (3-5):

RL= {(x,y) e R?>:x*—y> > 1,x >0},
R= {(xy)eR: Py <1},
Ry = {(x,y) eR?:x*—y* > 1,x<0}.

We consider a planar discontinuous PWLC formed by three linear arbitrary
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centers. By Lemma 3.1 these linear differential centers can be as follows

4b% + ?

X=—bix— 4 y+di, y=aix+byy+ci, in R},
ai
4b% + w3
X=—byx— %y—l—dz, y=ax+bryy+cy, in R%I, (3-55)
a
4b% + 0?
x:—ng—%y—kdg, y=a3x+b3y+c3, in R?{.
as

These linear differential centers have the first integrals

Hy(x,y) = 4(a1x+b1y)> +8aj (c1x — d1y) +y20)%,
Hy(x,y) = 4(axx+ boy)* + 8az (cox — doy) + y* 033, (3-56)
H3(x,y) = 4(asx+ bsy)? + 8az(c3x — dzy) + y* @3,

respectively.

In order to have a crossing limit cycle, which intersects the discontinuity curve
(H) in four different points p; = (x;,y;), i = 1,2,3,4, these points must satisfy the
following equations

er : Hy(x1,y1) —Hi(x2,y2) = 0,
ex: Hy(x2,2) — Ha(x3,y3) = 0,
e3: H3(x3,y3) — H3(x4,y4) = O,
es  Hy(x4,y4) —Ha(x1,y1) = O, (3-57)
Eq :x%—y%—l = 0,
E; ‘x%—y%—l = 0,
E; :x%—y%—l = 0,
E4 :xﬁ—yﬁ—l = 0,
equivalently, we have
e1 1 4(x} —x3) +8(c1(x1 —x2) —diy1 +bixiyi +diy2 — bixayz) + (v —¥3)L =0,
€21 4(x3 —x3) +8(ca (2 —x3) — daya + boxays + days — boxzys) + (3 —y3) . =0,
e3: 4(x3 —x7) +8(c3(x3 —x4) — d3y3 + b3xsys + dsys — baxays) + (3 —y3)ls =0,
e4 1 4(x3 —x7) + 8(ca(xa — x1) — days — baxyy1 + day1 + baxays) + (yﬁ —y)h =0,

where [; = 4b? + @?, fori = 1,2,3.

Here we are taking without generality a; = a» = a3 = 1 as in the proofs of the
previous theorems.

We assume that the discontinuous PWLC formed by the three linear differential
centers in (3-55) has at least two crossing periodic solutions. For this we must impose
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that the system of equations (3-58) has two real solution, namely (p1, p2, p3,pa) and
(q1,92,93,494). Since these solutions provide crossing periodic solutions and these points
are the points where the crossing periodic solutions intersect the hyperbola (H) we can

consider

pi = (ki,A;) = (cosh(r;),sinh(r;)) and ¢q; = (m;,n;) = (cosh(s;),sinh(s;)),

: . (3-59)
with r;,s5; ¢ R for i =1,2,3,4.

Now we assume that the point (py, p2, p3, pa) with p; = (kj,A;), i = 1,2,3,4 satisfies

system (3-58), and then we obtain the following expressions

1
d; =3 (ci(ki—kiv1) +4(ki —kiv1+bi(Ai —Niv1)) (ki + ki1 +bi(hi +Aiv1))

(Ai —Ais1)

fori=1,2,3, and

1
8((k2 —k3) (A1 —Aa) — (k1 —ka) (A2 — A3))
(k4 — 7\1) + (?\,2 — 7»3)(4(]{% — kﬁ) + 8b2(k17&1 — k47u4) =+ (kl — 7\4)
(k] - — A3 +7\,4) lz)) .

(4(K3 4 2b2ksAs — k3 — 2b2kads)

C) =

We assume that the point (g1, ¢2,¢3,94) with ¢; as in (3-59) satisfies system (3-
58). By the first equation in (3-58) we get that

1
(0 =) —m2) — )y =)
+ 4(k1 —ky —l—bl(?xl — 7\.2))(/(1 +ky+ by (7\.1 —i—}uz))(nl —nz)
M—A

®f (1 —n2) — (nf —m)11)) .

M —A2)(—4(m3 —m3) — 8bymn,

+8b1mony + (M +1A2)

By the second equation of (3-58) we obtain that 0)% = K /S where

4
o) (2 —7)— (k) O )
—A3) (kT +D53(M — Aa) (M — A2 — A3 +Aa) — k3)W2 +ka (W2 — b3 (Ao + A3 — np — n3)
Y1 +2b2(—ha -+ mony — m3nz)) + ki (=2 + b3 (Ao + A3 — no — n3) Wy +2b2 (Mg
—many +m3n3))) +ka (M — Aa) (W2 — b5 (M +Aa — 2 — n3) 1) — (k5 — k3w

by (Mo (—Aas — (ki — ka)W1) + Aa((m2 — ka)na + (ks — m3)n3 ) (Ao

K =

15— k5) (M — Aa)wo — (ki —ka)y1) + (A2
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+ (ki — m)my + (m3 — k1)n3))) + k3 (ha — M) wa + (& — k)i + b3 (M — Aa)
(M +Ag —no —n3) Y1 + 262 (A3 (—Aayo — (k1 — ka) Y1) + Aa(many — kayy —m3an3z)+

M (A3 + kg — mony +m3n3)),
1

= MAaws +AsAwa + (ki — ka) (A3ny — Asn3
(ky —ka)(Ap —A3) — (kz—k3)(k1—x4)<34q’2 3AgY2 + (k1 — ka)(A3n2 — A3n3)

1 —
+ (k3 — ka) (Mgna — Manz) + A7 (k2 = k3) w1 — (A2 — Aa)W2) + A3 (hawa + (ki — ka)y)
((k4 — k1)7\. (k2 — k3)7u2)n3 -+ (k]?ug, — k47L3 — k27L4 + k37u4)n% + k] ((7\% — 7\.%)\]!2

— (ky — k)1 (n2 +13)) + A (AJwa + (ki — k)1 (n2 +13)))),

by the third equation we get that

—1

A3 —A4)(4(m —m3) +8b _

8(7L4W4—7»3W2+(k3—k4)q;1))((( 3 — Aa) (4(my —m3) + 8b3(mang —man3)

_|_4(k3_k4+b3(7“3_7“4))(k3+k4+173(7»3+7u4))\p1
Az —Ag

Cc3 =

+ (A3 + 7\4)0)%“!1 —

(n3 —n3)1)),

where Y1 =ny—n3,Yp=my—m3,Y3 =n3 —ny and Yy = m3 — my.

Finally by the fourth equation in (3-58) we have that b, = 0. With these
expressions for dp, ¢y, and b, we obtain that the linear differential system in the region
R%, isx =y, y=ux, which is a linear differential system type saddle. This is a contradiction
because we are working with centers in each region R;i for i = 1,2,3. Therefore we have
proved that the maximum number of crossing limit cycles for systems in ¥y is one.

In Proposition 3.7 we prove that there are PWLC in 4y such that have one
crossing limit cycle.

This completes the proof of Theorem C for the family #g. 0J

In what follows we prove Theorem D.

Proof of statement (i) of Theorem D. We consider a planar discontinuous PWLC with
four zones separated by (LV) and formed by four arbitrary linear centers in each region
Riv. By Lemma 3.1 this PWLC can be as follows

4b% + of _
X——b1X—ZT1)7+d1, y=aix+byy+cy, in Riv,
1
4b? + 2 ,
X= —bzx—%)%dz, y=axx+byy+cz, in R,
2 (3-60)
2 .2
4b3 + o3 ) . 3
xz—bsx—Terda, y=a3x+bzy+c3, in Ry,
3
b2 + o3 .
X = —byx— Za 1y +dy, y=asx+bsy+cs, in Rfy,
4
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with @; # 0 and ®; > 0 for i = 1,2,3,4. The regions RZV fori =1,2,3,4 are defined just
before the statement of Theorem D in (3-22). These linear differential centers have the

first integrals Hy,H,, H3z and Hy respectively, where
H;(x,y) = 4(apx + biy)* + 8a;(cix — diy) +y*@?, fori =1,2,3,4. (3-61)

If the discontinuous PWLC (3-60) has two crossing limit cycles of type 1, these two

crossing limit cycles should be some of Figure 3.12. We observe that the cases of Figures

(.

(a) ( (€) (d)

Figure 3.12: Possible cases of two crossing limit cycles of type 1 of
discontinuous PWLC (3-60).

3.12(b), 3.12(c) and 3.12(d) are not possible because in these cases the pieces of the
ellipses of linear differential centers in the regions R}y, R}, and R, respectively would
not be nested which contradicts that the linear differential systems in each of these regions
are linear centers. Therefore if the discontinuous PWLC (3-60) has two crossing limit
cycles of type 1 these could be as in Figure 3.12(a).

Now we going to study the conditions in order that the PWLC (3-60) has crossing
limit cycles of type 1 and we will show that the maximum number of crossing limits
cycles of type 1 is one. Without loss of generality we assume that the crossing limit
cycles intersect the branches I'f” and I’y in the points (0,y;),(0,y2) and (x1,0), (x2,0),
respectively, where 0 < y; <y, and 0 < x; < x7. Then taking into account the first integrals

(3-61) for each linear center, these points must satisfy the following equations

Hi(x2,0) = H,(0,2),
H(0,y2) = Hz(0,y1),
Hi(0,y1) = Hi(x1,0),
Hy(x1,0) = Hy(x2,0),
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equivalently we have

4a3x3 +8ay (cixa +diys) — y3l =
—(1 —y2)(—8axda + (y1 +y2)2) =
—4a%x% —8aj(cix; +diyr) —|—y%ll =
dag(x) —x2)(2¢ca +as(x) +x2)) =

(3-62)

o oo o

where I} = 4b} + 0%, = 4b3 + @3 and | = (asc) — ajcs).
Moreover, by hypothesis x| < x» and y; < y», then from the second and the fourth

equations of (3-62), we have

_ 8axdy — Ly, . B 2cq4 + agx;

Y1 A a

Substituting these expressions of y; and x; in the first and third equations of (3-62) we

obtain the two equations

40%(2C4 + asx )2 —8ajas(2cicq + agc1x) — asdyyn) — aﬁy%h

E, =
1 ai
11 (y2lr — 8ardy)? 8ard,d
E; :4a%x%— 1()’2 2 12 4 2> —8ay (dlyz— azl 192 —C1XI) .
5 2

Doing the Groebner basis of the two polynomials E and E; with respect to the variables

x1 and y, we get the two equations
O+ 0y +02y5 =0,  Bo+Pixi+Pay2 =0, (3-63)
where

+ (8a2d2(am2d1 I

<a164n2(—2a4c1 +ajcy) 16a%aid§ll(a2dzll —2a1d 111p)
o =4 +

2 4
ay l;

1
+ azdz(Za%aﬁdlz _ n211 ))) 1—2) ,
2

8ard
(03] :%
12

— 2ayjaacicaly l% —+ a%(—4aid% —+ Cilllz)) ,

(—32a3a3b1d5 (2b1 + 00F) — da3a3d; 01 + 8ararazdidol b + azetl3 G

4a%d%l% 8a1a2d1d211)

Oy =2ajascical) — 0%042;11 + 6142; (—C%ll + 46’%01% + 2 I
5 2

_aiem 4a%a4d%ll B dajarasdidr

Bo =

aq l% 12 ’
araqdrl;

Bi =—am, Br = ajaad; — ;
2
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The Bézout’s Theorem 1.11 applied to system (3-63) says that this system has
at most two isolated solutions. Therefore system (3-62) has two solutions which are of
the form (x1,x},y1,v1) and (x?,x3,y3,¥3), but it is possible to prove that if (x1,x2,y1,y2)
is a solution of system (3-62), then (x2,x1,y2,y1) is also a solution of this system. Since
we must have that x; < x» and y; < yj, then system (3-62) has a unique solution, and
therefore the discontinuous PWLC (3-60) that belongs to the family ¥y can have at most
one crossing limit cycle of type 1 intersecting Ffr and F;r .

In Proposition 3.8 we verify that this upper bound is reached. That is, that there
are PWLC in the family #7y having one crossing limit cycle of type 1. This completes
the proof of statement (i) of Theorem D. O
Proof of statement (ii) of Theorem D. We consider the following discontinuous PWLC

19763 13 427 9751 13 1
T 19980 25" 999 V= 6660 T F a5 M Ry
78049 1397 682 .
— m—i—x— my, y= ﬁ—i_ -, in Rjy, o)
108179 4 1367 2137 4 .
= 38400 5 1920 YT ea0 T
5539 2 9] 343 2
x:—m—ng—m% y:_m+x_§y7 n Ry,

The linear differential centers in (3-64) have the first integrals

Hy(x,y) = 15x(—9751 43330x) + (—98815 + 51948x)y + 21350y,

5456 y(—78049 4 13970y)
— Ay2 _
Hy(x,y) = 4x “( 205 0 ) 2460 ’
(108179 + 13670y)
Hz(x,y) = 42 + 80(2137+512y)—|— 1800 ,

Hy(x,y) = 4110x* + y(5539 4 910y) — 3x(3743 + 1096y),

in sz, i=1,2,3,4, respectively. This discontinuous PWLC has four crossing limit cycles
of type 2, because the unique real solutions ( p’i,q’i, pé,qé), with i = 1,2,3,4 of system
(3-35) are pl = (3/2,0), ¢} = (0,29/10), p} = (—17/5,0) and ¢} = (0,—4); p? =
(1 529206..,0), g7 = (0,2.905859..), p3 = (—3.411537..,0) and g5 = (0, —4.020269..);

= (17/10,0), ql (0,3), p3 =(—71/20,0) and g3 = (0, —21/5) and p} = (19/10,0),
q1 (0,16/5), p3 = (—19/5,0) and g3 = (0,—9/2). See these four crossing limit cycles
of type 2 in Figure 3.13. This completes the proof of statement (ii) of Theorem D. 0

In Theorem C and Proposition 3.7 we get to provided the maximum number of
crossing limit cycles which is reached for PWLC when the discontinuity curve is a conic
of the type either (PL),(P),(E) or (H). We observed that when the discontinuity curve
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Figure 3.13: The four crossing limit cycles of type 2 of the discon-
tinuous PWLC (3-64).

is of the conic (LV) we obtain two types of crossing limits with four point on (LV), and
in Theorem D and Proposition 3.8 we get proved that the maximum number of crossing
limit of type 1 is one and this upper bound is reached. With regard to the crossing limit
cycles of type 2 we get to provided a lower bound for the maximum number, illustrated
in Proposition 3.9 which is equal to four.

Now we study the case where the PWLC have crossing limit cycles that intersect

the discontinuity curve in two and four points simultaneously.

3.4 Crossing limit cycles with four and with two points

on the discontinuity curve X simultaneously

In this section we study the maximum number of crossing limit cycles of planar
discontinuous PWLC that intersect the discontinuity curve X in two and in four points

simultaneously.

3.4.1 Statement of the main results

We do not consider planar discontinuous PWLC with discontinuity curve a
conic of type (DL), (PL) and (LV) because as in the proof of Theorem 3.3 they do not
have crossing limit cycles that intersect the discontinuity curve in two points. Then we
study the maximum number of crossing limit cycles with two and with four points in X

simultaneously by the families ¥p, Fr and ¥y.

Theorem E The following statements hold.

(a) The planar discontinuous PWLC that belong to the family fp, can have simultane-
ous one crossing limit cycle that intersects (P) in two points and one crossing limit

cycle that intersects (P) in four points.
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(b) The planar discontinuous PWLC that belong to the family Fg, can have simultane-
ous one crossing limit cycle that intersects (E) in two points and one crossing limit

cycle that intersects (E) in four points.

(c¢) The planar discontinuous PWLC that belong to the family Fy, can have simultane-
ous one crossing limit cycle that intersects (H) in two points and one crossing limit

cycle that intersects (H) in four points.
Theorem E is proved in Section 3.4.2.

Proposition 3.10 The upper bounds for the maximum number of crossing limit cycles

provided in Theorem E are reached. See Figures 3.14,3.15 and 3.16.

3.4.2 Proof of the main results

In this subsection we prove the Proposition 3.10 and Theorem E.
Proof of Proposition 3.10 for the family Fp. We verify that the upper bound provided in
statement (a) of Theorem E is reached, that is there are systems in Fp with one crossing
limit cycle with four points on (P) and one crossing limit cycle with two points on (P)

simultaneously. We consider the discontinuous PWLC formed by the linear centers

Figure 3.14: The two crossing limit cycles of the discontinuous
PWLC formed by the centers (3-65) and (3-66).

1225 x 310 103 -

_ = X o _ P Y R 3-65

Y= 009 T ;e YT gty MR (3-65)
6411 x 85 3359 y o,

ool X9 o 2> Y inR2. ]

Y= 1a4 8 g9 YT T Tty Rp (3-66)

These linear differential centers have the first integrals

Hi(x,y) = 229x% 4 10y(—245 4 31y) — x(206 4 229y),

3359
Hy(x,y) = 4x* +x (_W +y) + 1;_8(_6411 +680y),
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respectively. The wunique real solution of systems (3-52) and (3-72) is
(x1,%x2,X3,X4,X5,%6) = ( 3, —2,—3/2, 1,2,12/5), therefore we have one crossing
limit cycle that intersects (P) in the points (3,9), (—2,4), (—=3/2,9/2) and (1,1), and one
crossing limit cycle that intersects (P) in the points (2,4) and (12/5,144/25). See these
crossing limit cycles in Figure 3.14.
This completes the proof of Proposition 3.10 for the family #p. OJ

Proof of Proposition 3.10 for the family Fr. We verify that the upper bound provided in
statement (b) of Theorem E is reached, that is there are systems in #z with one crossing
limit cycle with four points on (E) and one crossing limit cycle with two points on (E)

simultaneously. We consider the discontinuous PWLC in ¥z formed by the linear centers

(—6+3V2+V6+(6—4v2—6v3)x+8(—1+V2+2V3)y

4(—3+2v2+3V3) ’

o —4+3f+2x/_+fJr Y

2(—6+4v2+6V/3) 2’

 18-93v2+4/3+33v6—230(1 4+ v/3)x+4(335— 2\/_+261\/_+20\/_)
920(1 ++/3)

y_x+%<9+34\f 67v/3 — 41v/6 — 230y> in R2. (3-68)

in R}, (3-67)

The unique real solution of systems (3-53) and (3-73) in this case is (p1, p2, p3, P4, Ps, P6)

15

Figure 3.15: The two limit cycles of the discontinuous PWLC
formed by the centers (3-67) and (3-68).

with p; = (cos(m/2),sin(n/2)), p» = (cos(m),sin(w)), p3 = (cos(3n/2),sin(31/2)),
ps = (cos(—mn/3), sin(—mn/3)), ps = (cos(m/4),sin(n/4)) and pg = (cos(0),sin(0)).
See these crossing limit cycles in Figure 3.15.

This completes the proof of Proposition 3.10 for the family #. U
Proof of Proposition 3.10 for the family Fy. We verify that the upper bound provided
in statement (c) of Theorem E is reached. We consider the PWLC formed by the linear
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centers

—1215 —5761/2 +256/7 +1124/13 — 384\/_

X=— LIy
192(2v/7 + V13 — /23 4+41/30 2 16
y:Kl—x—%, in R, (3-69)
_ 1125+ 432V14 + 18926 4+ 207v30+ 160V105 +70v195  x
6(87 4 108+/14 + 541/26 4 164/30 +40+/105 4+-201/195) 2 2
 855V2+3516V7+1797V13+315V15+6441/210+329+/390 ) R
Y 6(87 + 108v/14 + 54+/26 + 161/30 +40+/105 +201/195) 2’ i
(3-70)
9 73 3 45 3 3. 4
(=—2+ — Iy —— = —= - R3,. 71
X 8\/_ AT y ) TX+5y m Ry (3-71)
Where
675 2
K = — 64+/7 —28+/13 288 7(23—4¢%)
48( 1+2,/ +4/= )
4 1 195
+945,/— ? 5@/ +144,/ +192,/ 0 +96,/ — % )
S1 51 S1 S1
K — (42-54v2-336v7
? 42+48\/ﬁ+24\/_+9\/_+24\/10 +12/195

—174+/13 + 4814 — 24+/15 + 24+/26 + 9v/30 + 24+/105 + 124/195
—681/210 —351/390) ,

with s; = 23 +4+/30. The unique real solution of systems (3-57) and (3-74) in this case is
(P1.P2, 3, Pas Ps, pe) With pr = (3, —V/8), p2 = (4,v/15), p3 = (—=3,V8), ps = (—1,0),
= (7/6,—+/13/6) and ps = (4/3,/7/3). See these crossing limit cycles in Figure
3.16.
This completes the proof of Proposition 3.10 for the family 5. U
In what follows we prove Theorem E.
Proof of statement (a) of Theorem E In this case we use the notations given in the proof
of Theorem C for the family #p, then we consider the planar discontinuous PWLC (3-49)
and the first integrals (3-50). In order that the discontinuous PWLC (3-49) has crossing
limit cycles with four points, namely (x1,x7), (x2,%3), (x3,x3), (x4,x7) and one crossing

limit cycle with two points, namely (xs,xg), (x6,x%) on (P), we must study the solutions
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Figure 3.16: The two limit cycles of the discontinuous PWLC
formed by the centers (3-69), (3-70) and (3-71).
(x1,x2,X3,X4,Xs5,%6) Of system (3-51) and the equations

es IH]()C5,X§)—H1<X6,X%) 0,

€ : Hz(x6,x%) —H2<XS7X§) =0,

or equivalently systems (3-52) and

es : 4x2(1 4 bxs)? + 8xs(c —dxs) —4x2(1+ bxe)? + 8x6(dxs — ¢) + (2 —x2)@? =0,

€6 4x2(1+x6PB)> — 4x2(1 +x5B)% + 8xs5(x58 —¥) + 8x6 (Y — x68) + (x¢ —x2)Q% = 0.
(3-72)
We assume that systems (3-52) and (3-72) have two real solutions where each real solution
provides one crossing limit cycle with four points on (P) and one crossing limit cycle whit
two points on (P), but by Theorem C we have that discontinuous PWLC (3-49) has at most
1 crossing limit cycle with four points on (P), therefore if we have two real solutions of
systems (3-52) and (3-72) they are of the form (xy,xp,x3,x4,X5,X6) = (k1,k2,k3,k4,ks,ke)

and (X1 ,XZ,X3,X4,X5,X6) = (kl,kz,k3,k4,7\,5,7\,6), with k5,7\.5,7\,6 e Rfori= 1,2,3,4,5,6.
If the point (ki,ka,k3,ka,ks,ke) satisfies systems (3-52) and (3-72), by the
equations e, ez, e3 and e4 of (3-52) we obtain expressions for the parameters d, d,c and Y
as in the proof of Theorem C, by the equation e5 of system (3-72) we obtain an expression
for ®” = §/T with S and T as in the proof of Theorem C changing L and L, by ks and kg,
respectively. By equation eq of system (3-72) we obtain Q> = V /W where the expression
for V and W are the same expressions that in the proof of Theorem C changing L3 by ks.
We assume that the point (ki,kz,k3,ka,As,A¢) satisfies systems (3-52) and (3-72), then
we have e; = ep = e3 = e4 = 0 and by the equations e5 and eg of system (3-72) we obtain
b =B =0. As in the proof of Theorem C we can conclude that the two linear centers in (3-
49) became x = 1/2, y = x, which is a contradiction. So systems (3-52) and (3-72) have
at most one solution and therefore planar discontinuous PWLC in #p have at most one
crossing limit cycle with four point on (P) and one crossing limit cycle with two points

on (P) simultaneously.
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In Proposition 3.10 we prove that this upper bound is reached, this is there are
systems in Fp with one crossing limit cycle with four points on (P) and one crossing limit
cycle with two points on (P) simultaneously.

This completes the proof of statement (a) of Theorem E. U
Proof of statement (b) of Theorem E In this case we consider the notations of the proof of
Theorem C for the family #g and therefore we consider the planar discontinuous PWLC
(3-49) and the first integrals (3-50). In order that the discontinuous PWLC (3-49) has
crossing limit cycles with four points on (E), namely (x1,y1), (x2,¥2), (x3,¥3), (x4,y4) and
one crossing limit cycle with two points on (E), namely (xs,ys), (xg,Ve), we must study

the solutions (p1, p2, p3, pa, Ps, Pe) of systems (3-53) and (3-73)

es: 4(x2 —x2)+8(c(xs — x6) — dys + bxsys +dye — bxeye) + (v —y2)l1 = 0,
e : 4(x% — x3) + 8(Bxgys — Pxsys + 58 — xsy+x6Y— y6d) + (vg —y2) b = 0,
Es :x%-l—y%—l: 0,
Eg:x+yt—1= 0.

(3-73)

We assume that systems (3-53) and (3-73) have two real solutions where each real solution
provides one crossing limit cycle with four points on (E) and one crossing limit cycle with
two points on (E), like in Theorem C we proved that discontinuous PWLC (3-49) has at
most 1 crossing limit cycle with four points on (E), then we have that if there are two
real solutions of systems (3-53) and (3-73) they are of the form (p1, p2, p3, pa, Ps, ps) and
(P1,Pp2,P3,P4,95,96), With p; and g; as (3-54) fori =1,2,3,4,5,6 and j = 5,6.

Substituting the first solution (py,p2, p3, pa, ps, pe) in systems (3-53) and (3-
73) we obtain from the equations ey, e2,e3 and e4 of (3-53) the same expressions than
in the proof of Theorem C for d, 9, c,7y, and by the equations e5 and eg of system (3-73)
we obtain the same expressions than in the proof of Theorem C for ® and € changing
(m1,n1) by (ks,As) and (my,n;) by (ke,As), respectively. We assume that the point
(p1,P2,P3,P4,95,q6) satisfies systems (3-53) and (3-73), then we have e] = ep = e3 =
e4 = 0 and by the equations es5 and eg of system (3-73) we obtain b = 3 = 0. As in the
proof of Theorem C we obtain that both linear centers in (3-49) become X = —y, y = x,
in contradiction that they have limit cycles. So we can conclude that systems (3-53) and
(3-73) have at most one solution and therefore planar discontinuous PWLC in #¢ have at
most one crossing limit cycle with four points on (E) and one crossing limit cycle with
two points on (E) simultaneously.

In Proposition 3.10 we prove that the upper bound provided in statement (b)
of Theorem E is reached, that is there are PWLC in #g such that have one crossing
limit cycle with four points on (E) and one crossing limit cycle with two points on (E)

simultaneously.
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This completes the proof of statement (b) of Theorem E. 0J
Proof of statement (c) of Theorem E Here we consider the notations of the proof of
Theorem C for the family ¥, and therefore we consider the planar discontinuous PWLC
(3-55) and the first integrals (3-56). In order that the discontinuous PWLC (3-55) has
crossing limit cycles with four points on (H), namely (x1,y1), (x2,¥2), (x3,y3), (x4,y4) and
one crossing limit cycle with two points on (H), namely (xs,ys), (x6,V6), we must study

the solutions (p1, p2, p3, pa, s, Pe) of systems (3-58) and (3-74)

es: 4(x2 —x2) +8(ca(xs — x6) — days + baxsys + daye — baxeye) + (v —y&) | =

0,
e : 4(x2 — x2) +8(b1x6ys — b1xsys +ysdy — xsc1 +x6c1 —Yod1) + (2 —y3)h = 0,
Es: x% —y% —1=0

Es :x%—y%—l = 0.
(3-74)

We assume that systems (3-58) and (3-74) have two real solutions where each real solution

)

provides one crossing limit cycle with four points on (H) and one crossing limit cycle
with two points on (H). By Theorem C the discontinuous PWLC (3-55) has at most
1 crossing limit cycle with four points on (H), then we have that if there are two real
solutions of systems (3-58) and (3-74) they are of the form (py, p2, p3, pa, ps, ps) and
(P1,p2,D3,P4,95,96), With p; and g; as (3-59) fori =1,2,3,4,5,6 and j = 5,6.

Considering the first solution (py, p2, p3, pa, ps, pe) of systems (3-58) and (3-74)
we obtain the same expressions that in the proof of Theorem C for dy,d;,d3,c2,c1,
changing (my,n;) by (ks,As) and (my,ns) by (ke, A¢), respectively.

Now we assume that the point (py, p2, p3, P4,4s,qe) satisfies systems (3-58) and
(3-74), then we have e = e¢; = e3 = e4 = 0, and by the equation es of system (3-74)
we obtain by = 0 and with this the linear system in the region R? becomes a saddle
which is a contradiction, because we are working with linear centers in each regions
Rj'q for i = 1,2,3. Therefore the discontinuous PWLC (3-55) has at most one crossing
limit cycle with four points on (H) and one crossing limit cycle with two points on (H)
simultaneously.

In Proposition 3.10 we prove that the upper bound provided in statement (c)
of Theorem E is reached, that is there are PWLC in ¥y such that have one crossing
limit cycle with four points on (H) and one crossing limit cycle with two points on (H)
simultaneously.

This completes the proof of statement (c) of Theorem E. U

In this section we get provide the upper bounds for the maximum number of
crossing limit cycles with two and with four points on X can have the PWLC in the
families ¥p, Fg and Fy simultaneously. Moreover in Proposition 3.10 we proved that

these upper bounds are reached.
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In this section we do not consider the planar discontinuous PWLC in the family
Frv, because they do not have crossing limit cycles that intersect the discontinuity curve
(LV) in two points. However in this family there are two types of crossing limit cycles

like it was defined in Section 3.3. Then we study the family #;y in the following section.

3.5 Crossing limit cycles of types 1 and 2 simultaneously

for planar discontinuous PWLC in ¥y

In this case we study the maximum number of crossing limit cycles of types 1

and 2 that planar discontinuous PWLC in the family #;y can have simultaneously.

Theorem F There are planar discontinuous PWLC that belong to the family Fry such
that have one crossing limit cycle of type 1 and three crossing limit cycle of type 2

simultaneously.

Proof. In order to have a crossing limit cycle of type 1 and one crossing limit cycle of
type 2, simultaneously, we must study the real solutions (pi,q1,p2,92,P3,93,P4,44),
of systems (3-62) and (3-35) respectively, where p; = (x;,0) and ¢; = (0,y;), with
X1,X2,%3,Y1,Y2,¥3 > 0 and x4, y4 <O0.

Figure 3.17: One crossing limit cycle of type 1 and three crossing
limit cycles of type 2 of the discontinuous PWLC
formed by the linear centers (3-75), (3-76), (3-77) and
(3-78) separated by (LV).

In the region R}, we consider the linear differential center

193 x 58 149 y
=3 e YT T Ty (3-75)
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this system has the first integral Hy (x,y) = 201x? 4+ x(134y — 447) + 3y(58y — 193)). In
the region R%v we have the linear differential center
9 «x 1 y

X=5—5—2, y=—gtxt3

575 (3-76)

which has the first integral Hy (x,y) = 2x(2x — 1) +4y(x — 9) + 8y*. In the region R3,, we
have the linear differential center

3 3
%= 1.068079.. + §x —1.448022.y, y=—3.860171..4+x— %y, (3-77)

which has the first integral Hi(x,y) = x*> + x(—7.720342.. — 0.866025..y) +
y(—2.136159.. + 1.448022..y). And in the region R}, we have the linear differential

center

. 51831 —-595v16909 x 6775—119/16909
= 5 y

Y
35912 + 2 + 17956 ’

y=-2+x-3, (78

which has the first integral Hy(x,y) = 17956x% — 17956x(4 + y) + y(—51831 +
5951/16909 + (—6775+119y/16909)y). The unique real solutions for systems (3-62) and
(3-35) are (p1,91,P2,92,P3,93, P4,q4) with p1 = (1,0), g1 = (0,1/2), p2 = (3,0), g2 =
(0,4), p3=(5,0), g3 = (0,6), pa= (—4,0) and g4 = (0,—5); (P1,41,P2,92,13,m3,14,m4)
with I3 = ((149 4+ 31/16909)/134,0), m3 = (0,5), Iy = (=2,0) and my = (0,-3);
and (p1,q1,P2,92,A3,M3,A1,N4), where Az = ( 4.319114..,0), nz = ( 0,53/10),
Ay = ( —2.672755..,0) and mq = ( 0,—3.703965..). See these crossing limit cycles of
types 1 and 2 in Figure 3.17. 0
In this case we use the same ideas of the proof of statement (ii) of Theorem D and that
case we only get a lower bound for the maximum number of crossing limit cycles of type
2, then in this case the configuration (1,3) of crossing limit cycles, this is 1-crossing limit
cycle of type 1 and 3-crossing limit cycles of type 2, is a lower bound of the maximum
number of crossing limit cycles of types 1 and 2 that can have the PWLC in the family

Frv simultaneously.

3.6 Discussions and conclusions

In this chapter we study on the upper bounds for the maximum number of
crossing limit cycles with either two or four points on the discontinuity curve X, when X
is any conic, this is, the numbers A, m = 2,4 and X € {(DL), (PL),(LV),(H)(P),(E)}.

With regard to case m = 2 in the papers [24, 27, 28, 20] it was determined the
number A% for £ € {(DL),(PL),(LV),(P),(E)}, see Theorem 3.3. We completed this
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study with Theorem B since we proved that the number 57\[%, is equal to two and moreover
we verify that this upper bound is reached. Therefore, with Theorems 3.3 and B the study
on the numbers 9\[% for any conic it is completed.

When m = 4, we have two cases. First we proved that 9\[‘{ for ¥ €
{(PL),(P),(E),(H)} it is equal to one, and moreover we proved that this upper bound
it is reached in each case. Secondly for the family #;y we observed that there are two
types of crossing limit cycles which we denote crossing limits cycles of types 1 and 2. In
statement (i) of Theorem D we proved that the maximum number of crossing limit cycles
of type 1 for PWLC in 4jy it is one, and moreover we proved that this upper bound it
is reached. In statement (ii) of Theorem D we only got a lower bound for the maximum
number of crossing limit cycles of type 2 for a planar discontinuous PWLC with four
zones separated by (LV) and formed by four arbitrary linear centers in each region Riv’
as (3-60). In this case we must determine the real solutions (xj,y;,x2,y2) that satisfy the

closing equations

er : Hi(x1,0) —Hi(0,y1) =0,
:Hy(0 —H 0)=0
e2: Hy(0,y1) — Ha(x2,0) = 0, (3-79)
e3 1 H3(x2,0) — H3(0,y2) = 0,
eq 1 Hy(0,y2) — Hy(x1,0) =0
Which are equivalent to system
e :4x1(2c1 +x1) —y1(—8d; +)’1(4b% ‘H’J%)) =0,
e 1 4x2(202 +x2) — y1(—8dz +y1 (4b3 + @3)) =0, (3-80)
e3:4x2(2c3+x2) — yo(—8d3 + y2 (4b3 4+ @3)) =0,
es : 4x1(2c4 +x1) — y2(—8ds +y2(4b3 + ©3)) =0

Due to the total of parameters and unknown variables it is difficult to apply the usual
techniques such as Grobner basis, resultant theory or Bezout inequality. Therefore we
only get to provide a lower bound for the maximum number in this case.

In Section 3.4 we analyze the possibility of having crossing limit cycles with two
and four points simultaneously on the discontinuity curve, in Theorem E we provided the
number of crossing limit cycles with two and four points on the discontinuity curve X that
the PWLC in the families ¥p, Fg and ¥y can have simultaneously. And in Proposition
3.10 we proved that the upper bound provided in Theorem E it is reached in each case.

Finally in Theorem F in Section 3.5 we provided a lower bound for the maximum
number of crossing limit cycles of types 1 and 2 that the PWLC in the family #;y can
have simultaneously.

We observed that the numbers A¥, m = 2,4 for a PWLC when the discontinuity
curve is the conic X, with £ € {(DL),(PL),(LV),(E),(H),(P)} it change depending

the shape of the discontinuity curve, then as it was already analyzed what happens if
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Y e {(DL),(PL),(LV),(E),(H),(P)}, in the following chapter we study the numbers A%

when X is a reducible cubic curve.



CHAPTER 4

Crossing limit cycles for PWLC separated by a

reducible cubic curve

4.1 Introduction

In Chapter 3 was studied the maximum number of crossing limit cycles for
PWLC separated by any conic. The objective of this chapter is to study the existence
of crossing limit cycles of the discontinuous PWLC in R? separated by a reducible cubic
curve formed either by a circle and a straight line, or by a parabola and a straight line.

We observe that we have three options for crossing limit cycles of discontinuous
PWLC separated by such reducible cubic curves here considered. First we have the
crossing limit cycles which intersect in two points of the discontinuity curve. In [24]
was proved that the class of linear differential centers separated by a straight line have
no crossing limit cycles, then we can consider that those two intersection points on
the discontinuity curve are on the circle or on the parabola and these two options were
considered in the Section 3.2 of Chapter 3. Second the crossing limit cycles intersect the
discontinuity curve in exactly four points, here we consider that at least one of the four
points is on the straight line, because the case which the four points are only on the circle
or on the parabola was studied in Section 3.3 of Chapter 3. Finally we have the crossing
limit cycles such that intersect the discontinuity curve in six points, which we could study
in future works.

In this work we only study the crossing limit cycles with four points on discon-
tinuity curve and we have two cases, first when the discontinuity curve is formed by a
circle and a straight line and second when the discontinuity curve is formed by a parabola
and a straight line.

In Section 4.2 we consider the PWLC formed by linear differential centers

separated by the cubic

Ye={(xy) eR*: (x—k)(* +y* —1) =0, ke R, k> 0}.
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And in Section 4.3 we consider the PWLC formed by linear differential centers separated
by the cubic
% ={(x,y) € R?: (y—k)(y—x*) =0, ke R}.

We denote by N%k and N%k the number of crossing limit cycles with four points
on the discontinuity curve of a PWLC when the discontinuity curve is the reducible cubic
either Xy or ¥y, respectively.

4.2 Crossing limit cycles intersecting the discontinuity

curve X

Let J5 , be the family of PWLC separated by X with k > 1. Let 7z, be the
family of PWLC separated by ¥ with k = 1. For k > 1 we have the following regions in
the plane

Riﬁ —{(x,y) eR?: ¥ +y* < 1},
R%H ={(x,y) e R*:x* +y* > 1 and x < k},
R%w ={(x,y) €R?: x> 4+y* > 1 and x > k}.

And finally let #5 _ be the family of PWLC separated by X; with 0 < k < 1. Here we
have the following regions in the plane

Rék, ={(x,y) € R?:x*+y* <1, and x > k},
R%k ={(x,y) € R? 1x2+y2 > 1, and x > k},
R%k_ ={(x,y) € R*:x* +y* > 1 and x < k},
RE  ={(x,y) eR*:x*+y*> < land x < k}.

In the family ¥y, _, we have three types of crossing limit cycles. First crossing limit cycles
such that are formed by parts of orbits of the four linear differential centers considered,
namely crossing limit cycles of type 1, see Figure 4.3, second we have crossing limit
cycles which intersect the regions Rlzk_, R%k_ and R%k_ or crossing limit cycles that
intersect the regions Réki ’Rér and R;ki, namely crossing limit cycles of type 2% or
crossing limit cycles of type 27, respectively, see Figure 4.4. Without loss of generality
we only study the crossing limit cycles of type 2" because the analysis for the crossing
limit cycles of type 2™ is the same, moreover we observe that these two cases can not
occur simultaneously, because the orbits of linear differential system in the region ngf

would not be nested. And finally we have the crossing limit cycles such that are formed by
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parts of orbits of the three linear differential centers in the regions Riki, R%r and R%r’
or crossing limit cycles formed by parts of orbits of the three linear differential centers
in the regions R%k_ , R%ki and R‘{k_ , namely crossing limit cycles of type 3" and crossing
limit cycles of type 37, respectively, see Figure 4.5. Without loss of generality in Theorem
G we study the crossing limit cycles of type 3" because the study by the crossing limit
cycles of type 37 is the same. We observe that these types of crossing limit cycles can not
appear simultaneously, because the orbits of linear differential system in the region R%ki
would not be nested.

Then in the following Theorem we provide examples of PWLC in Fy,_ with
crossing limit cycles of types 1, 2 and 3 separately and PWLC in 7z, such that have

simultaneously crossing limit cycles of types 1 and 2" or of types 1 and 3%,

4.2.1 Statement of the main result

Theorem G The following statements hold.

(i) There are PWLC in the families J5, ., and ¥z, formed by three linear differential

centers that have four crossing limit cycles, see Figures 4.1 and 4.2, respectively.

(ii) There are PWLC in J, _, that have five crossing limit cycles of type 1, see Figure
4.3.

(iti) There are PWLC in F, _, that have four crossing limit cycles of type 2%, see Figure
4.4.

(iv) There are PWLC in Jx, _, that have three crossing limit cycles of type 37, see Figure
4.5.

Theorem G is proved in Section 4.5.1.

4.3 Crossing limit cycles intersecting the discontinuity

curve X

Let Tikf be the family of PWLC separated by ¥, with k < 0. In this case, we

have following three regions in the plane

RL ={(x,y) eR*:y> "},
k
RZ = (x,y)€R2:y<x2andy>k},

R: ={(x,y) eR*:y<x*andy < k}.
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Let F5, be the family of PWLC separated by ¥ with k = 0. When the disconti-

nuity curve is ¥y we have following four regions in the plane

Réo ={(x,y) eR?:y>x*},

R%O ={(x,y) € R>:y<x’andy>0, x< 0},
R%O ={(x,y) e R?:y < x*and y < 0},

R%O ={(x,y) €eR?:y<x*andy >0, x > 0}.

Here we have two types of crossing limit cycles, first crossing limit cycles formed by parts
of orbits of the four linear differential centers considered, namely crossing limits cycles
of type 4, see Figure 4.7. Second crossing limit cycles of type 5, see Figure 4.8, which
intersect only three regions, in this case we have two options, first we have the case where
the crossing limit cycles are formed by parts of orbits of the linear differential centers in
the regions Rlio,R%0 and R%O and second the crossing limit cycles that intersect only the
three regions R%O, R%O and R%O, without loss of generality we can consider the first case
because the study by the second is the same. Here we observe that it is not possible to
have crossing limit cycles of type 5 that satisfy those two cases simultaneously, because
the orbits of linear differential system in the region R%O would not be nested. Therefore
in the following Theorem we study the PWLC in 5, which have crossing limit cycles of
types 4 and 5, respectively.

Let ﬂ-'ik+ be the family of PWLC separated by £; with k > 0, in this case we have
the following five regions in the plane

Rék —{(x,y) eR*:y<x®andy >k, x > Vk},
R%H ={(x,y) € R?:y>x*andy> k},
R%k+ ={(x,y) eR*:y<x®and y >k, x < —Vk},
R4ik+ —{(x,y) eR*:y<x*and y < k},

(x,)

X,y €R2:x2<y<k}.

Here we have six types of crossing limit cycles. First we have crossing limit cycles such
that are formed by parts of orbits of the four linear differential centers in the regions Rli L
k
R} ¥ R} , and R§ ,» or crossing limit cycles formed by parts of orbits of the four linear
k k k
differential centers in the regions RZ ,R3 ,R* andR) , namely crossing limit cycles
S4B T £+
of type 6 and crossing limit cycles of type 6™, respectively, see Figure 4.17. In Theorem
H we study the crossing limit cycles of type 6 because the study for the case of crossing

limit cycles of type 6™ is the same. Second we have crossing limit cycles type 7, see Figure
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4.10, which intersect the three regions RZ2 , R2 and R} . Third we have the crossing
£ TR £
limit cycles of type 8, see Figure 4.11, which intersect the regions R, ,RZ ,R: and
R% L And finally we have the crossing limit cycles such that are formed by parts of orbits
k
of the three linear differential centers in the regions RL ,RZ and R , or crossing limit
£ 08 o
cycles formed by parts of orbits of the three linear differential centers in the regions R% L
k
R% . and Rg L namely crossing limit cycles of type 9 and crossing limit cycles of type
k k
97, respectively, see Figure 4.12. Without loss of generality in Theorem H we study the
crossing limit cycles of type 9" because the study by the crossing limit cycles of type 9~
is the same.
We observe that there are no crossing limit cycles that intersect the five regions

RL, fori=1,2,3,4,5.

4.3.1 Statement of the main result

Theorem H The following statements hold.
(i) There are PWLC in "Fik* that have four crossing limit cycles with four points on £y,
see Figure 4.6.

(ii) There are PWLC in Fs, that have four crossing limit cycles of type 4, see Figure
4.7.

(iii) There are PWLC in Jg, that have three crossing limit cycles of type 5, see Figure
4.8.

(iv) There are PWLC in }-ik+ that have five crossing limit cycles of type 67, see Figure
4.9,

(v) There are PWLC in Ti,ﬁ that have three crossing limit cycles of type 7, see Figure
4.10.

(vi) There are PWLC in Tiﬁ that have four crossing limit cycles of type 8, see Figure
4.11.

(vii) There are PWLC in Tiﬁ that have three crossing limit cycles of type 9", see Figure
4.12.

Theorem H is proved in Section 4.5.1.

4.4 Simultaneity

The next results provide lower bounds for the maximum number of crossing limit

cycles that can appear simultaneously in each family, ¥, , Tik, with k € R.
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First we analyze the family ¥5,, kK € R. We observe that in Tgk . and ¥y, only
there are crossing limit cycles of one type, respectively. Then we study the family ¥y
which has three types of crossing limit cycles, namely crossing limit cycles of types 1,27
and 3". In order to obtain PWLC in the family Fs, which have simultaneously two
types of crossing limit cycles we observe that we would have three possible combinations
between the three different crossing limit cycles types nevertheless we observe that the
crossing limit cycles of types 2" and 3™ can not appear simultaneously, because the orbits
of linear differential system in the region Réki would not be nested. For this same reason
there are no PWLC in J5,_ with three types of crossing limit cycles simultaneously. Then
we have that PWLC with crossing limit cycles of types 1 and 2™ are analyzed in statement
(i) of Theorem I and PWLC with crossing limit cycles of types 1 and 3" are analyzed in
statement (ii) of Theorem I.

In the family ,‘Fik, with k € R, we observe that in the family ,’F;:H only there are
crossing limit cycles of one type. In the family ¥5 we have two types of crossing limit
cycles, namely crossing limit cycles of types 4 and 5. In statement (iii) we analyze the
PWLC in Tio which have crossing limit cycles of types 4 and 5 simultaneously.

In the family Ti/ﬁ we have six different crossing limit cycles types, namely
types 67,67,7,8,9" and 9~. Then we would have fifteen possible combinations of pairs
of crossing limit cycles, we will analyze each one. PWLC with crossing limit cycles of
types 67 and 6~ are analyzed in statement (iv) of Theorem. The study for PWLC with
crossing limit cycles of types 67 and 7, or 6 and 8, or 6" and 9" is the same for PWLC
with crossing limit cycles of types 6~ and 7, or 6~ and 8, or 6~ and 9, respectively, and
they are in statements (v), (vi) and (vii) of Theorem I, respectively. The crossing limit
cycles of types 6 and 97 can not appear simultaneously because the orientation of these
crossing limit cycles in region R‘i‘k+ would not be well defined, similarly happens with
the crossing limit cycles of types 67 and 9~. PWLC with crossing limit cycles of types
7 and 8 are analyzed in statement (viii) of Theorem I. It is not possible to have crossing
limit cycles of type 7 and 9%, or 7 and 9~ simultaneously, because the orbits of linear
differential system in the region R%ﬁ would not be nested. PWLC with crossing limit
cycles of types 8 and 97 are analyzed in statement (ix) of Theorem I, the case where
appear crossing limit cycles of types 8 and 97, simultaneously is the same. Finally we
observe that it is not possible to have simultaneously crossing limit cycles of types 9"
and 97, because the orbits of linear differential system in the region R%H would not be
nested.

We observe that we would have twenty possible combinations of triplets between
the six different crossing limit cycles types above, but we have fourteen combinations that
include couples 6" and 9~, 6~ and 9%, 7 and 9=, or 9" and 9~ and as it was said before

these combinations are not possible. Therefore we have six options, first we observed that
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crossing limit cycles of types 61,6~ and 7, or 67, 6~ and 8 can not appear simultaneously
because the orientation of these crossing limit cycles in region R% . would not be well
defined. Second we have that there are PWLC with crossing limit cycles of types 6*, 7
and 8, this case is in statement (x) of Theorem I, the case where appear crossing limit
cycles of types 67, 7 and 8 is the same. Finally we have the PWLC with crossing limit
cycles of types 67, 8 and 97, this case is in statement (xi) of Theorem I and the case
where appear crossing limit cycles of types 67, 7 and 9™ is the same. By the previous
analysis we observed that it is not possible to have PWLC in T)iﬁ with four, five or six

types of crossing limit cycles simultaneously.

4.4.1 Statement of the main result

Theorem I The following statements hold.

(i) There are PWLC in Fy, _, that have four crossing limit cycles of type 1 and two
crossing limit cycles of type 27, see Figure 4.13.

(ii) There are PWLC in Jx,_, that have four crossing limit cycles of type 1 and one
crossing limit cycle of type 37, see Figure 4.14.

(iti) There are PWLC in J5 that have simultaneously four crossing limit cycles of type
4 and two crossing limit cycles of type 5, see Figure 4.16.

(iv) There are PWLC in TEH that have simultaneously four crossing limit cycles of type
6" and four crossing limit cycles of type 6=, see Figure 4.17.

(v) There are PWLC in TEH that have simultaneously four crossing limit cycles of type
6™ and two crossing limit cycles of type 7, see Figure 4.18.

(vi) There are PWLC in -‘Fiﬁ that have simultaneously three crossing limit cycles of
type 61 and four crossing limit cycle of type 8, see Figure 4.19.

(vii) There are PWLC in fiﬁ that have simultaneously four crossing limit cycles of type
6" and two crossing limit cycles of type 9T, see Figure 4.20.

(viii) There are PWLC in TEH that have simultaneously three crossing limit cycles of

type T and four crossing limit cycle of type 8, see Figure 4.21.

(ix) There are PWLC in }—iﬁ that have simultaneously four crossing limit cycles of type
8 and two crossing limit cycles of type 97, see Figure 4.22.

(x) There are PWLC in 5[21& that have simultaneously two crossing limit cycles of type
67, two crossing limit cycles of type T and four crossing limit cycles of type 8, see
Figure 4.23.
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(xi) There are PWLC in ?ik+ that have simultaneously four crossing limit cycles of type
67, three crossing limit cycles of type 8 and two crossing limit cycles of type 9T,
see Figure 4.24.

Theorem I is proved in Section 4.5.1.

By the numerical computations made for the families ¥y, fik with £k € R and
the illustrated examples of Theorems G, H and I/ we propose the following problem.
Open problem The numbers N%k and 9\[%/{ provided in Theorems G, H and I for the
families ¥y, fik with k € R are the maximum numbers of crossing limit cycles in each

Sfamily.

4.5 Proof of the main results of this chapter

In this section we provide the proofs of Theorems G, H and Theorem I.

4.5.1 Proof of Theorem G

Proof of statement (i) for the family Js, . of Theorem G. By Lemma 3.1 we can consider
the following PWLC

. 4b? + w? _ ,
x:—blx—%y_kdl, y=x+b1y+ci, 1nR£k+,

4b3 + 03
x:—bzx—%yﬂlz, y=x+byy+ca, inRgﬁ, 4-1)
‘ 4b3 + w3 , _
x:—ng—%y—}—d?” y:x+b3y—|—63, mR%H.

And the linear differential centers in (4-1) have the first integrals
Hi(x,y) = 4(x+by)?> +8(cix — diy) +y*0?, with i =1,2,3,

respectively. In order to have a crossing limit cycle, which intersects X+ in four different

points p; = (k,y1), p2 = (x2,y2), p3 = (x3,y3) and ps = (k,y4), with ps, p3 € S!, where
S'={(x,y) : ¥* +y* = 1}. These points must satisfy the closing equations (3-4)

er : Hy(k, y1) — Ha(x2,y2) =0,
ez : Hy(x2,y2) — Hi(x3,y3) =0,
e3: Hy(x3,y3) — Hy( k,ys) =0, 4-2)
éeyq . H3(k, y4) —H3( k,y1) = 0,
GH+y=1,
x%+y§ =1
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For to build the example, we will impose the existence of periodic solutions and
we will determine the parameters in (4-1) with the established conditions. First
we fix the constant kK = 2 and we assume that there is a real solution, namely
q' = (1,2}, vh,xd, 31, 9)) = (3,cos (n/2),sin (n/2),cos (—n/3),sin (—7/3),—5/2), then
by equations e; with i = 1,2,3,4 in (4-2) we have the parameters

2
()
dy =1+4by(342b)+cr+—2;

2
1
dy :—E(—2+\/§)(—4+4b1(2\/§+b1)—16c1+0)%);
70 — 8+/3 +4by (10— 5v/3 +31by — 44/3b2) + (31 — 4v/3) w3
¢ = >
8(—8++/3)

1
dy = E(4b3(8 +b3) +®3),

respectively. Now by the equation e4 we have

1

=—-(1-2

then we suppose that the point ¢> = (y,x3,y3,%3,¥3,¥3) = (16/5,cos (31/5),sin (31/5),
cos (—2m/5),sin(—2m/5),—27/10) is also a real solution of system (4-2), then by the

equations e, ez and e3 in (4-2) we obtain the following parameters

2
0 =-— J/(—635+25V3+675V/5

\/3894 — 5233422515+ 504/2(5+/5)

—75V154754/2(5+/5) +5(1468 + 341/3 4+ 100v/5 — 50/15 +51/2(5+/5)
(—68 ++/3 —8v/5+/15))by + (—3894 4 5231/3 +25+/5(70 — 9/3)

-50,/2(5+ V5))83):

1
(—24+V3)y/ = (5+V5)(—4+8V3b +4b% +0?)
o - 2 () L s Ay
8(—1++5-24/2(5+5)

by =3.119845..,

respectively. Now we fix the points x, = cos (41/7), y» = sin (47/7) and by equation eg

)’3:—\/ l_xga

we have
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then by the equations e, e, and e3 we have

yi = 3.144465..;
o = —9.702226..\/0.042492.. +0.031501..5; —0.042492..b%;
x3 = 0.365470..,

respectively. These conditions generate the real solution ¢* = (3.144465.., cos (41/7),
sin (4m/7), 0.365470.., —0.930823..,—2.644465..). We build a fourth solution fixing
the points xo, = —0.018219..; yo» = 0.999834..; therefore by the equations e;,e, and
e3 we obtain y; = 3.012016..; x3 = 0.489429..; by = 0.608380.., respectively. With
these conditions we have the real solution q4 = (3.012016.., —0.018219.., 0.999834..,
0.489429.., —0.872042.., —2.512016..). With these four real solutions we determined all
the parameters that appear in system (4-2), even more in this particular case the parameters
b3,c3, w3 € R, then we fix them, b3 = 1; ¢3 = 1/4; @3 = 1. Therefore we obtain the
PWLC formed by the following linear differential centers

x=0.977474.. — 0.608380..x — 1.451017..y, y= —3.008357..+x40.608380..y;

Xx=09.710162.. —3.119845..x — 10.075224..y, y = —20.799821.. +x+43.119845..y;

. 37 5 o1 e
X=——x—- =—4x
16 ek Y=y Y,
(4-3)
in the regions Réz R%z and R%z, respectively.

The linear differential centers in (4-3) have the first integrals

Hy(x,y) =x> + x(—6.016714.. + 1.216760..y) + y(—1.954949.. + 1.451017...y),
Ho(x,y) =x* 4+ x(—41.599643.. + 6.239690..y) + y(—19.420324.. + 10.075224..y),

37
H3(x,y) =2x+ 4x* — Ey + 8xy+ 5y2,

respectively.

Figure 4.1: Four crossing limit cycles of the discontinuous PWLC
(4-3). These limit cycles are traveled in counterclock-
wise.
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In this case system (4-2) is equivalent to system

79.199286.. +x3 +6.940944..y; — 10.075224..y3 — 19.420324..y, + 10.075224..y3
+x2(—41.599643.. +6.239690..y,) = 0,
x5 —x3 —1.954949..y, +1.451017..y3 + x2(—6.016714.. + 1.216760..y,)
+x3(6.016714.. — 1.216760..y3) + 1.954949..y3 — 1.451017..y3) =0,
79.199286.. +x3 — 19.420324..y3 + 10.075224..y3
+x3(—41.599643.. + 6.239690..y3) + 6.940944..y, — 10.075224..y7 = 0,

5
(y1 —ya) (_E +5y1 +5y4) =0,

x%—l—y% =1, x%—ky% =1.
(4-4)

Taking into account that the solutions q = (yil,xé, yé,xé, yé, yi) of system (4-4) must
satisfy yi < yi1 we have that the unique reals solutions are the points ¢',4¢%,¢> and ¢*
which provide four crossing limit cycles of the PWLC (4-3). See these crossing limit
cycles in Figure 4.1.

This completes the proof of statement (i) for the family J5,. of Theorem G. [
Proof of statement (i) for the family s, of Theorem G. Following the steps illustrated
in the previous case we obtain a discontinuous PWLC which is formed by the following

linear differential centers in each region. First in the region Rél we have

3 3
% =2.185588.. — —x—6.201094..y, y=—6.726549.. +x+

20 0 @Y

This linear differential center has the first integral Hj(x,y) = x> +x(—13.453098..+
3y/10) +y(—4.371176.. + 6.201094..y). In the region R%l we consider the linear dif-

ferential center

x=—0.263120.. — 0.874044..x — 4.914345..y, y=—23.305757.. +x+0.874044..y,
(4-6)
which has the first integral Ha(x,y) = x> + x(—46.611514.. 4+ 1.748088..y) +
v(0.526241.. 4+ 4.914345..y). And in the region R%1 we have the linear differential
center
:%—x—Zy, y:%+x—|—y, 4-7)
which has the first integral H3(x,y) = 2x +4x? — 21y/2 + 8xy + 5y°.
In order to have a crossing limit cycle, which intersects X in four different points
p1=(1,y1), p2 = (x2,52), p3 = (x3,3) and pg = (1,y4), with py, p3 € S', these points
must satisfy the closing equations given in (4-2). Then for the PWLC formed by the

X
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Figure 4.2: Four crossing limit cycles of the discontinuous PWLC
formed by (4-5), (4-6) and (4-7) and separated by ¥,.
These limit cycles are traveled in counterclockwise.

centers (4-5), (4-6) and (4-7) we have that system (4-2) is equivalent to system

45.611514.. +x3 —2.274330..y; —4.914345..y7 4+ 0.526241..y,
+4.914345..y3 +x2(—46.611514.. + 1.748088..y,) = 0,

3
X3 —x3+x (—13.453098.. + Eyz) —4.371176..y;
3
+6.201094..y3 +x3 (13.453098.. - E”) +4.371176..y3 — 6.201094..y35 = 0,

45.611514.. +x3 +0.526241..y3 +4.914345..2 + x3(—46.611514..
+1.748088..y3) — 2.274330..y4 — 4.914345..y% = 0,

5
(y1 —ya) (—5 + 5y +5y4) =0,

x%+y% =1, x%—l—y% =1,

(4-8)

Therefore the unique real solutions ¢' = (¥, x5, y5,x5,y5,y}) for system (4-8) that satisfy

the condition y}, <y}, are the points ¢! = (3, cos (/2), sin (n/2), cos (—7/3), sin (—7/3),

—~5/2); ¢* = (17/5, cos(3n/5), sin(31/5),cos (—27/5), sin(—2%/5), —29/10); ¢* =

(3.294676.., cos (41/7), sin(41/7), 0.362651.., —0.931924.., —2.794676..) and ¢* =

(1.287554.., 0.814865.., 0.579649.., 0.966364.., —0.257177.., —0.787554), which gen-

erated four crossing limit cycles. See these crossing limit cycles of the PWLC formed by
(4-5), (4-6) and (4-7) in Figure 4.2.

This completes the proof of statement (i) for the family #x, of Theorem G. [

Proof of statement (ii) of Theorem G. We consider the PWLC such that in the region

Rlzk_ it has the linear differential center

% =0.309248.. — 0.237408..x — 0.439335..y, = —0.478770..+x +0.237408..,
(4-9)
this system has the first integral Hj(x,y) = x*> + x(—0.957540.. + 0.474817..y) +
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(—0.618496.. 4+ 0.439335..y)y. In the region R%/r we have the linear differential center

x = 0.396090.. — 0.335276..x — 0.180370..y, y=—0.861570.. +x+0.335276..y,
(4-10)
which has the first integral H(x,y) = x*> + x(—1.723140.. + 0.670553..y) +
(—0.792181..40.180370..y)y. In the region ngi we have the linear differential center

X =0.242967..40.112091..x — 0.194871..y, y=0.375114.. +x—0.112091..y,
(4-11)
this system has the first integral Hj(x,y) = x* + x(0.750229.. — 0.224182..y) +
(—0.485935.. 4+ 0.194871..y)y. And in the region Rér we have the linear differen-

tial center
x=0.394133..4+0.278957..x—0.25146..y, y=0.516804..+x—0.278957..y, (4-12)

which has the first integral Hy(x,y) = x> +x(1.033609.. —0.557914..y) + (—0.788267.. +
0.251469..y)y.

In order to have a crossing limit cycle of type 1, which intersects the discontinuity
curve X in four different points p; = (k,y1), p2 = (x2,¥2), p3 = (k,y3) and ps = (x4,y4),
with ps, p4 € S!, then these points must satisfy the system

H(k, y1) = Hi(x2,y2),
= H2<k7 )’3)=

H3<x4ay4)7
(

4-13
kay1>7 ( )

Kty;= 1
1

Y

Considering k = 0 and the previous PWLC, system (4-13) is equivalent to system

x5 +0.618497..y; —0.439336..y7 + x2(—0.957541.. +-0.474817..y,)
—0.618497..y, +0.439336..y5 = 0,

4x3 —3.168726..y7 +0.721481..y5 + x2(—6.892562.. +2.682214..y,)
+3.168726..y3 —0.721481..y3 =0,

x7 +0.485936..y3 — 0.194871..y5 + x4(0.750229.. — 0.224183..y4) (4-14)

—0.485936..y4 +0.194871..y5 = 0,

4x7 +3.153071..y1 — 1.005879..y3 + x4(4.134439.. — 2.231658..y4)
—3.153071..y4 + 1.005879..y3 = 0,
G+yi=1, x3+yi=1
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Therefore discontinuous PWLC formed by the linear differential centers (4-9), (4-10),

Figure 4.3: Five crossing limit cycles of type 1 of the discontinuous
PWLC formed by the centers (4-9), (4-10), (4-11) and
(4-12). These limit cycles are traveled in counterclock-
wise.

(4-11) and (4-12) has five crossing limit cycles of type 1, because system (4-14) has
five real solutions g = (y/,x5,y5,y%,x,y}), for i = 1,2,3,4,5 that satisfy the conditions
—1 <yl <1<yl x,>0and xi <0. Where ¢! = (1/3, cos(n/4), sin(n/4), 5/2,
cos (5m/6), sin(51/6)); ¢*> = (2/5, cos(27n/10), sin(271/10), 12/5, cos(817/100),
sin (817t/100)); ¢*> = (1/5, cos (r/5), sin(x/5), 27/10, cos (897/100), sin (897/100));
q* = (1/10, cos(3m/20), sin(37/20), 57/20, cos(197/20), sin(19%/20)) and ¢° =
(0.157052.., 0.843891.., 0.536513.., 2.764619.., —0.962848.., 0.270041..). See these
five crossing limit cycles of type 1 in Figure 4.3.

This completes the proof of statement (ii) of Theorem G. O
Proof of statement (iii) of Theorem G. We consider the discontinuous PWLC formed by

the following linear differential centers

x = —0.045605..40.048166..x —0.671455..y, y = —0.418364.. +x—0.048166..y;

. X . y
— 0.058276.. 4+ —— —0.178664.. _ o Y.
x=10.058276 +100 0.178664..y, y 0.763833.. +x 100°
L_ 901 x ool R

50000 50 2500 Y70 50

(4-15)
in the regions Rlzk_’ R%k_ and R4Zk_, respectively. The linear differential centers in (4-15)

have the first integrals

Hy(x,y) = x> + x(—0.836729.. — 0.096332..y) + (0.091210.. + 0.671455..y)y,

Ho(x,y) =22 +x (—1.527667.. _ 5y_0> 4 (—0.116553.. +0.178664..y)y,

901y(—1+ 10y)

4
H =4+ —x(5

25
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respectively. In order to have a crossing limit cycle of type 27, which intersects X in four

different points p = (x1,y1), p2 = (k,y2), p3 = (k,y3) and ps = (x4,y4), with py, ps € S
and 0 < k < 1, these points must satisfy the system

Hi(xi,y1) = Hi(k,y2),
Hy( k,y2) = Ha(k,y3),
H(k,y3) = Hi(xs,y4), (4-16)
Hy(x4,y4) = Ho(x1,y1),
N+yi= 1,
+yi= 1,

Then for the PWLC (4-15) we have that system (4-16) becomes

432 +x1(—3.346917.. — 0.385331..y; ) +y1(0.364840.. + 2.685822..y;)

+(—0.364840.. —2.685822..y1)y2 = 0,
901 901

(yz _}’3) (_ﬁ + @()’2 +)’3)> =0,
—4xi +y3(0.364840.. +2.685822..y3) +x4(3.346917.. 4+ 0.385331..y4)

+(—0.364840.. —2.685822..y4)ys =0, (17)
2
—4ﬁ+4ﬁ+ﬂq<erman“+§§m)+40«%2mm—07pmy;ygm

2
+w4(—6rm6n”—§§m)+«—0«mm4”+07M6$Lmbq:o,

x%"i—y% =1, xﬁ—l—yi =1,

where k = 0. Therefore the unique real solutions g' = (x},y%,y5,y%,x},}) for sys-

)
A

Figure 4.4: Four crossing limit cycles of type 2% of the discontin-
uous PWLC (4-15). These limit cycles are traveled in
counterclockwise.

tem (4-17) that satisfy the conditions —1 < yé < yé < 1 x’i >0 and xfl >0 are

the points ¢! = (cos(2m/5), sin(2n/5), 8/10, —7/10, cos(—37n/10), sin(—371/10));
g = (cos(m/3), sin(m/3), 17/25, —29/50, cos(—x/10), sin(—x/10)); ¢° =
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(cos(41m/100), sin(41w/100), 0.819235.., —0.719235.., 0.541860.., —0.840468..)
and ¢* = (0.256532.., 0.966535.., 0.833667.., —0.733667.., 0.508672.., —0.860960..).
These four real solutions generated four crossing limit cycles of type 2. See these
crossing limit cycles of the PWLC (4-15) in Figure 4.4.

This completes the proof of statement (iii) of Theorem G. 0J
Proof of statement (iv) of Theorem G. We consider the following discontinuous PWLC
formed by the linear differential centers

x=1.018312..+ %x—f— 9.463668..y, y=—5.008011.. —x — %y;
x=0.712799.. - 0.278320..x — 0.250791..y, y = —1.026464..+x+0.278320..y;
g2 x 17 PRNE S

1280 8 64 8 8

(4-18)
in the regions Riki , R%/r and R%k_ , respectively. The linear differential centers in (4-18)

have the first integrals

51
Hi(x,y) =42 +x <40.064090.. + ?y) +y(8.146500... + 37.854675..y),

Hy(x,y) =x* +x(—2.052928.. + 0.556641..y) + (—1.425599.. + 0.250791..y)y,

17
H3(x,y) =x+4x* —xy+ @y(—57 + 10y).

respectively. In order to have a crossing limit cycle of type 3%, which intersects the

Figure 4.5: Three crossing limit cycles of type 3" of the discontin-
uous PWLC (4-18). These limit cycles are traveled in
counterclockwise.

discontinuity curve X; in four different points p; = (k,y1), p2 = (x2,y2), p3 = (k,y3)
and py = (x4,y4) with 0 < k < 1 and ps, p4 € S!, these points must satisfy the system
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Hz(xl,yl) = H2(k; }’2);
Hy(k, y2) = H3(k, y3),
Hy(k, y3) = Ha(x4,y4), (4-19)
Hy(x4,y4) = Hi(x1,y1),
N+y= 1,
g+yi= 1,

Considering k = 0, system (4-19) is equivalent to system

4x3 4 y1(—5.702397.. 4 1.003165..y1) +x1(—8.211712.. + 2.226564..y)
+5.702397..y, — 1.003165..y5 =0,
(v2 = y3)(=57+10y2 + 10y3) = 0,
X%+ (1.425599.. — 0.250791..y3)y3 + x4(—2.052928.. + 0.556641..y4)
—1.425599..y4+0.250791..yF =0,  (4-20)

Eyl) +y1(2.036625.. +9.463668..y1)

51
X —x3+x (10.016022..+
51
+x4 (— 10.016022.. — %m) +(—2.036625.. — 9.463668..y4)ys = 0,

x%—I—y%: I, xi—I—y‘ZL: I.

Therefore discontinuous PWLC (4-18) has three crossing limit cycles of type 37, be-
cause system (4-20) has three real solutions g = (x’i, y’i, yé, yé,xi, yﬁl), for i =1,2,3
that satisfy the conditions 0 < xi < x} and 1 <y, < y,. Where ¢! = (cos(n/5),
sin (1/5), 43/10, 7/5 cos(2r/5), sin(21/5)); ¢*> = (cos(16x/125), sin(167/125),
447/100, 123/100, cos (91/50), cos (91/50)) and ¢* = (cos (177/100), sin (177/100),
4.366812.., 1.333187.., 0.242211.., 0.970223..). See these three crossing limit cycles of
type 3" in Figure 4.5.

This completes the proof of statement (iv) of Theorem G. 0J

4.5.2 Proof of Theorem H

Proof of statement (i) of Theorem H. We consider the following PWLC formed by the

linear differential centers

111 111
X =0.236087..40.003662..x —0.009243..y, y= —0.402647..4+x—0.003662..y;
X 9 Y
¢ =1+ —-—0.102500.. )= —— —=
X +5 0.102500..y, y 20+x S

4-21)
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2

in the regions RL , R
IR

and R% , respectively. The linear differential centers in (4-21)
—
have the first integrals

111
Hi(x,y) =x*+x (—297.803314.. - Ey) +7(249.289008.. + 6.045715..y),
Ha(x,y) = x* +x(—0.805295.. — 0.007324..y) + (—0.472175.. 4 0.009243..y)y,

2
Hi(x,y) =x* +x (—— — —y) + (—240.102500..y)y,

respectively.

S50 100 A0

Figure 4.6: Four crossing limit cycles of the discontinuous PWLC
(4-21). These limit cycles are traveled in counterclock-
wise.

For PWLC in the family Tf:kf we have crossing limit cycles which intersect the
discontinuity curve £ in four different points p1 = (x1,x3), p2 = (x2,%3), p3 = (x3,k) and
pa = (x4,k) with k < 0, if these points satisfy the system

Hl(xlﬁx%) = H1<x27x%)a
Hz(Xz,x%) = H(x3,k), (4-22)
H3(x3, k) = H3z(x4,k),
H(x4, k) Hz(xl,x%).

Then for the PWLC (4-21) and £, considering k = —1, system (4-22) becomes

x1(—1191.213259.. +x (1001.156032... -+ x; (—44425 +24.182863..x1)))
F2(1191.213259... 4 x5 (—1001.156032.. + (—44425 — 24.182863..x2) x2)) = 0,

—1.925675.. + x3(—3.221182.. +x(2.111297.. 4+ (—0.029297..
+0.036973..x2)x2)) + (3.191885.. —4x3)x3 = 0,

1
()C3 —X4) <—§ +x3 +X4> =0,

1.925675.. +x1(3.221182.. +x; (—2.111297.. + (0.029297..

—0.036973..x1)x1)) +x4(—3.191885.. 4 4xy) = 0.
(4-23)
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Taking into account that the solutions (xj,x,x3,x4) must satisfy x, < x; and x3 < x4,
system (4-23) has four real solutions ¢’ = (x’i,xé,xg,xfl), with i = 1,2,3,4. Namely,
q' = (3, =2, =3/2, 2); ¢*> = (457/100, —3.753677.., —3.116713.., 3.616713..);
> = (5.820000.., —5.115260.., —4.592690.., 5.092690..) and ¢* = ( 41.045251..,
—40.667957.., —162.945374.., 163.445374..). Which provide four crossing limit cycles
of the PWLC (4-21). See these four crossing limit cycles in Figure 4.6.

Here we observe that there is a duality between the crossing limit cycles that
intersect the discontinuity curve ¥_; and the crossing limit cycles that intersect the
discontinuity curve ¥, for the family fzk . studied in statement (i) of Theorem G, where
we also got four crossing limit cycles, see Figures 4.1 and 4.6.

This completes the proof of statement (i) of Theorem H. U
Proof of statement (ii) of Theorem H. We consider the following PWLC

11 4 4 4 |
x:E+§x—§y, y_l—l—x—gy,lnRiO,
17317 6l 3 5
=0 0" YT a0 T e R o
1 25 1 ; 424
i=cdx— oy y=-—z+tx—y inRg,

133 x 7 . 543 Yy . o4
:¥+1_0_Ey’ y= E+x E’mRio'

The linear differential centers in (4-24) have the first integrals

Hi(x,y) = (2—|—x)—(11—|—8x)y—|—4y2,

)
) = 150x% + 17(— 4+y)y+ 15x(—61+ 6y),
)
)

x,y) = 4x? — 2x(1 +4y) + = (16+75y)

12

(x,y
H(x,y
(x,y
( 90x2 + 9x(543 — 2y) + Ty(—95 +2y),

=z

X,y

respectively.
In order to have a crossing limit cycle of type 4, which intersects the discontinuity
curve ¥ in four different points p; = (xl,xl) p2= (xz,xz) p3 = (x3,0) and pg = (x4,0),

these points must satisfy system

H, (xlvx%) = H (xz,x%),
HZ(XZ,X%) = H2(X3,0), (4.25)
H3(x3, 0) H3(x4,0),
Hy(x4, 0) = Ha(x1,x3)
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Considering the PWLC (4-24) system (4-25) becomes
(x1 —XZ)(—l +x1 —I—Xz)(—S —|—2(—1 —|—x1)x1 —|—2(—1 —l—Xz)xz) =0,
2x2(—915+x2(82 4+ x2(90+ 17x2))) + 30(61 — 10x3)x3 = 0,
1
4(X3 —X4) (—5 +Xx3 —|—x4) =0,
2x1(—4887 +x1(575+2(9 — Tx1)x1)) + 18x4(543 + 10x4) = 0.

(4-26)

In this case we have that the solutions ¢’ = (x’i,xé,xé,xi) must satisfy xé <0< x’i and
x < 0 < x, then we have four real solutions qg' = (3, =2, =3/2.2); ¢* = (4, =3, -2,
5/2); ¢* = (5, —4, 27/10, 16/5) and ¢* = (10.440607..,—9.440607.., —19.555603..,
20.055606..) of system (4-26), which provide four crossing limit cycles of type 4 of the
PWLC (4-24). See these four crossing limit cycles in Figure 4.7.

Here we observe that there is a duality between the crossing limit cycles of type
4 that intersect the discontinuity curve ¥ and the crossing limit cycles that intersect the
discontinuity curve Xy for the family 5, studied in statement (i) of Theorem G, where
we also got four crossing limit cycles, see Figures 4.2 and 4.7.

This completes the proof of statement (ii) of Theorem H. 0J

Figure 4.7: Four crossing limit cycles of type 4 of the discontin-
uous PWLC (4-24). These limit cycles are traveled in
counterclockwise.

Proof of statement (iii) of Theorem H. In this case we consider the following PWLC

formed by the linear differential centers

2 2
)'c:O.100318..—§x+0.161744..y 5;:0,260062“_)5_1_5%
1 13 ) 31 et
x=1—-x—— = 4 x+vy;
47 YT T30 Y
x=—0.399222..+0.378090..x — 0.144616..y, y = —1.020635.. +x—0.378090..y,

(4-27)
in the regions R]io’ R%O and R%O’ respectively. The linear differential centers in (4-27)
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have the first integrals

4
Hi(x,y) = x> +x (—0.520124.. . gy) +(0.200636..+0.161744..y)y,
124
H3(X7y) = _Fx_8y+9y2+4(x+y)27
Ha(x,y) = 4(x — 0.378090..y)2 + 8(—1.020635..x +0.399222..) + 0.006657..,%,

respectively. In order to have a crossing limit cycle of type 5, which intersects the
discontinuity curve ¥ in four different points p; = (xl,x%), Py = (xz,x%), p3 = (x3,0)
and ps = (x4,0), with 0 < xp < x7 and 0 < x3 < x4, these points must satisfy system

I
T

(x2,%3),
Hy(x3,0),
H3(x4,0),

(x1,x

X1, %)

1{X2,
3

(4-28)

=

4

Considering the PWLC (4-27) system (4-28) becomes

)

Figure 4.8: Three crossing limit cycles of type 5 of the discontin-
uous PWLC (4-27). These limit cycles are traveled in
counterclockwise.

—2.080498..x| +4.802546..x% —3.199999. .3 +0.646977..x*
+x2(2.080498.. — 4.802546..x; + 3.199999. x2 — 0.646977..x3) = 0,

x2(—2591625737556 + x, (2283329836763 + 50x; (— 19201143493
+3672147700x7))) — 324x3(—7998844869 + 3918560960x3) = 0,

31
4(x3 —x4) (—E +x3 +X4) =0,

x1(2591625737556 + x1 (—2283329836763 + 50(19201143493
—3672147700x1 )x1)) 4 324x4(—7998844869 + 3918560960x4 ) = 0.

(4-29)

In this case system (4-29) has three real solutions ¢’ = (x’i,xé,xé,xi), where ¢! = (2,
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1/2,2/5,5/3); ¢*> = (93/50, 63/100, 47/100, 479/300) and ¢* = (17/10, 0.785691..,
0.534387.., 1.532279..) which provide three crossing limit cycles of type 5 of the PWLC
(4-27). See these three crossing limit cycles in Figure 4.8.

This completes the proof of statement (iii) of Theorem H. U
Proof of statement (iv) of Theorem H. We consider the following PWLC

%= —0.678037..4+0.111302..x — 0.025436..y, y = —3.106005.. +x —0.111302..y;
%= —0.133244..+0.232759..x — 0.058573..y, y = —0.290609.. +x — 0.232759..y;
%=3.074032.. + 0.434135..x — 2.713559..y,  y = —3.035258..+x — 0.434135..y;

x=1.427543..4-0.059092..x — 0.651180..y, y = —1.450367.. +x—0.059092..y,
(4-30)

in the regions RL , RZ ,RY and RY |, respectively. The linear differential centers in
Xt DUNEL D Y P

Figure 4.9: Five crossing limit cycles of type 6 of the discontin-
uous PWLC (4-30). These limit cycles are traveled in
counterclockwise.

(4-30) have the first integrals

:x2 +x

) (—6.212010.. — 0.222604..y
) =x> 4+ x(—0.581218.. — 0.465518..y
) =x% +x(—6.070516.. — 0.868271..y
) (—

2 2.900734.. —0.118185..y

(1.356074.. +0.025436..y)y,
(0.266488.. +0.058573..y)y,
¥(—6.148064.. +2.713559..y),
(—2.855087.. 4 0.651180..y)y,

=x"4+x

TTT T

(x,y
Hy(x,y
Hy(x,y
Hs(x,y

respectively. In order to have a crossing limit cycle of type 61, which intersects the

discontinuity curve ;- in four different points py = (x1,x3), p2 = (x2,k), p3 = (x3,x3)
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and p4 = (x4,k), these points must satisfy system

(x4, k) =
(x1,x
(x2,
(x3,x3

—to
Il
$

4-31)

tay
\_/\_/\_/\_/

FEFE

Considering PWLC (4-30) and k = 4, system (4-31) becomes

—8.012495.. 4 x; (—2.324875.. + x1(5.065954.. + (—1.862075..
+0.234292..x1)x1)) + (9.773178.. — 3.999999..x; )x; = 0,

—1.001459.. + (—3.373476.. 4 x2)x2 +x3(2.900734... + x3(1.855087...

+(0.118185.. — 0.651180..x3)x3)) =0,
(4-32)
—75.298768.. + x3(—24.282066.. + x3(—20.592258..

+x3(—3.473086.. + 10.854237..x3))) + (38.174413.. — 4xy)xs = 0,

23.325149.. + x1 (24.848040.. + x1 (—9.424297.. + (0.890418..
—0.101747..x1)x1)) + x4(—28.409714.. + 4x4) = 0,

In this case system (4-32) has five real solutions ¢' = (x},x},x5,x}) that satisfy the
conditions —2 < x5 <2 < x| and —2 < x4 <2 < x. We have ¢! = (4, —2/5, —1/5,
7); ¢*> = (193/50, —31/100, —1/20, 683/100); ¢> = (7/2, —3/25, 9/50, 641/100);
q* = (159/50, 1/100, 3/10, 303/50) and ¢° = (4.149236.., —0.507154.., —0.449658..,
7.185104..), which provide five crossing limit cycles of type 61 of the PWLC (4-30). See
these crossing limit cycles in Figure 4.9.

Here we observe that there is a duality between the crossing limit cycles of type
61 that intersect the discontinuity curve £, and the crossing limit cycles of type 1 for the
family #y,_ that intersect the discontinuity curve Xy studied in statement (ii) of Theorem
G, where we also got five crossing limit cycles, see Figures 4.3 and 4.9.

This completes the proof of statement (iv) of Theorem H. UJ
Proof of statement (v) of Theorem H. We consider the following PWLC

__3+x 17 _21+ Y i R2
T T 16 Y=o T T g Ry
36
£=3.601959.. — x — 5.323060..y, y=—Se+x+y. mR4 R
11827667 91445 8433175 26369 91445

RS
(-3)

= 24434928 6205696 97739712°7 T 1108160 T 6205696
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The linear differential centers in (4-33) have the first integrals

2 17
Hy(x,y) = 2x(21 4 10x) = 2(12 4 x)y + Iyz,

72
Hi(x,y) = x> +x (—5 + Zy) +y(—7.203918.. +5.323060..y),

Hs(x,y) = 977397120x> + 63x(738332 -+ 457225y) + 10y(—94621336 + 8433175y),

respectively. In order to have a crossing limit cycle of type 7, which intersects the
discontinuity curve £+ in four different points py = (x1,k), p2 = (x2,k), p3 = (x3,x3)

and ps = (x4,x3), these points must satisfy system

H>(x1, k) H>(xp, k),
Hs(x2, k) H;s (X3,x§), (4-34)
H4(x3,x%) = H4(x4,x421),
H5(x4,xi) = H5()C1, k).

In this case considering k = 4, system (4-34) becomes

10

—2435545440 + 4032x, (40113 4 242410x,) — x3(46514916 + 5x3(6236752
+5x3(1152207 4 3373270x3)) ) = 0,

1
4(x; —x2) (— +x1 +X2> =0,

288
x5 ( — g +a3(-24.815674. +X3(8+21.292240..x3)))

288
x4 (_E +x4(24.815674.. + (—8 — 21.292240..x4)x4)> =0,

2435545440 — 4032x; (40113 +242410x; ) + x4(46514916 4 5x4(6236752
+5x4(1152207 4 3373270x4))) = 0.

(4-35)

System (4-35) has three real solutions ¢' = (x%,x5,x5,x}) that satisfy the conditions

—2 <xh <xj <2and —2 < x{ <x <2.Theyare q' =(17/10,-9/5,-8/5,3/2); ¢* =

(8/5,—17/10,—6/5,6/5) and ¢ = (89/50,—47/25,—1.788665..,1.667136..), which

provide three crossing limit cycles of type 7 of the PWLC (4-33). See these three crossing
limit cycles in Figure 4.10.

This completes the proof of statement (v) of Theorem H. O

Proof of statement (vi) of Theorem H. We consider the following PWLC formed by the
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=

Figure 4.10: Three crossing limit cycles of type 7 of the discontin-
uous PWLC (4-33). These limit cycles are traveled in

counterclockwise.

linear differential centers

x = —0.228658.. +0.153388..x — 0.043263..y, y=—1.233713..+x—0.153388..y;

52
x:?—l—x—Sy, y=2+x—y;
X = —0.208786.. —0.135584..x — 0.040106..y, y=1.549735+x+0.135584..y;
x 5 41 y
=D~ = s 2
g 2 4" TR
(4-36)
. . l 2 3 4 . . . . .
in the regions Rik+ , Riﬁ , Rik+ and Rik+ , respectively. The linear differential centers in

(4-36) have the first integrals

Hi(x,y) =15298879995x% + 5y(1399284923 + 132375500y) — 6:x(6291478429
+782226050y),

Hy(x,y) =4x(4+x) — 2(52 +5x)y + 20y,

Hi(x,y) =57070082030x> + 15y(1588730299 + 152593500y) + x(176887019081
+ 15475638300y),

82
Ha(x,y) =42 4 <—? +4y) y(—16+5y),

respectively. In order to have a crossing limit cycle of type 8, which intersects the

discontinuity curve £+ in four different points p; = (x1,k), p2 = (x2,x3), p3 = (x3,x3)
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Figure 4.11: Four crossing limit cycles of type 8 of the discontin-
uous PWLC (4-36). These limit cycles are traveled in
counterclockwise.

and p4 = (xa,k), these points must satisfy system

HZ(XUX%) - HZ(X2>X%)7
Hs (xz,x%) = H3(x3, k), (4-37)
H4(X3, k) = H4(X4, k),
Hy(xa, k) = Hi(x1,x3).

In this case considering k = 4, system (4-37) becomes

(x1 —XQ)(—I + 5x1 —|—SX2)(—20 +X1(—1 +5x1) —}-XQ(—I +SX2)) = O,

2
58535041015 (—131946257940 —}-XQ(1768870190818—25;1215611880207303
ittt IO
+60x, (51585461 + 7629675x3)))) 51046585 4x5 =0,
1 (4-38)
4(x3 —xa) (—— +x3 +X4> =0,
10
8
—(192 2 18874435287 — 222 461
15298879995( 9287869230 + x1 (18874435 f39625;c;(()64 953046
X4 2
10x;(—4 1 TR a2 =0,
+10x; (—46933563 + 6618775x1)))) 0946455 +4x5=0

System (4-38) has four real solutions g = (x’i,xé,x&xi) that satisfy the conditions
Xy < —2<2<xiand xh < -2 <2 <xi. They are ¢! = (5/2,-23/10,—13/5,27/10);
¢* = (29/10, —27/10, -3, 31/10); ¢* = (17/5, —16/5, —7/2,18/5) and ¢* =
(98/25, —93/25,—203/50,104/25) which provide four crossing limit cycles of type 8
of the PWLC (4-36). See these four crossing limit cycles in Figure 4.11.

Here we observe that there is a duality between the crossing limit cycles for
family fik* studied in statement (i) Theorem H, the crossing limit cycles of type 4 for
the family ¥ studied in statement (ii) of Theorem H and crossing limit cycles of type 8
for the family '(Fiw studied in statement (vi) of Theorem H. In these three cases we got
four crossing limit cycles. See Figures 4.6, 4.7 and 4.11.
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This completes the proof of statement (vi) of Theorem H. 0
Proof of statement (vii) of Theorem H. We consider the following PWLC

243469 1826 9088 ,_ 614289 1826 in &L

= _x —_— —_ — —

1620885 © 77185 324177 Y= T 154370 771857 " g
7 7
%= —0.229652..+ 2x—0.020472.., y = —1.718896..+x— <y, in RE .
k
9 53 1 9

=1 o _ _ _ R4

=1 s Y=yt i

(4-39)
The linear differential centers in (4-39) have the first integrals

Hy(x,y) =21x(—614289 + 77185x) — 2(243469 + 38346x)y + 454402,

14
Hy(x,y) =x> +x (—3.437793.. - ?y> +(0.459305.. +0.020472..y)y,

9 2
i) =4 (1= g ) 497 =44 )

respectively.

NVAuS

Figure 4.12: Three crossing limit cycles of type 9" of the discon-
tinuous PWLC (4-39). These limit cycles are traveled
in counterclockwise.

In order to have a crossing limit cycle of type 91, which intersects the discon-
tinuity curve £+ in four different points p; = (x1,x3), p2 = (x2,x3), p3 = (x3,k) and
P4 = (x4,k), these points must satisfy system

HZ(XUX%) = HZ(XZ’X%>7
H,; (xz,x%) = Hj(x3, k), (4-40)
Hy(x3, k) = Ha(xa, k),
Hy (x4, k) = Hj(x1,x3)
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Considering k = 4, system (4-40) becomes

23
X1 (—13.751172..+x1 (5.837222..+ (—g+0.081889..x1) x1>)
2
+x3 (13.751172.. +x; (—5.837222.. + (—% — 0.081889..x2) x2)> =0,

212900069 — x5(1133947 — 76692x; -+ 45440x2) ) — 3(406904 + 7(628897
—77185x3)x3) =0,

41
4()63 —X4) (—? +x3 +x4> =0,

x1(12900069 — x; (1133947 — 76692x] +45440x2)) — 3(406904 + 7(628897

—77185x4)x4) =0,
(4-41)

And we have that system (4-41) has three real solutions q = (x’1 ,xé,xé,xﬂ) that
satisfy the conditions 2 < x) < x and 2 < x4 < xi. They are ¢! = (4,3,16/5,5); ¢* =
(15/4,33/10,7/2,47/10) and ¢*> = (41/10,2.879320..,3.058075..,5.141924..) which
provide three crossing limit cycles of type 97 of the PWLC (4-39). See these three
crossing limit cycles in Figure 4.12.

Here we observe that there is a duality between the crossing limit cycles of type
3" for family J5, studied in statement (iv) of Theorem G, the crossing limit cycles
of type 5 for the family ,‘Fio studied in statement (iii) of Theorem H and crossing limit
cycles of type 97 for the family j:iw studied in statement (vii) of Theorem H. In these
three cases we got three crossing limit cycles. See Figures 4.5, 4.8 and 4.12.

This completes the proof of statement (vii) of Theorem H. U

4.5.3 Proof of Theorem /

Proof of statement (i) of Theorem I. We consider the following discontinuous PWLC
formed by the linear differential centers

% =0.244909.. — 0.132672..x — 0.724279..y, y = —0.471887..+x-+0.132672..y;
%= 0.668802.. —0.514522..x — 0.636209..y, y = —0.985653..+x+0.514522..y;
%= —0.081198.. — 0.207828..x — 0.061343..y, y = —0.124956.. +x+0.207828..y;

¥ =0.211524.. —0.634777..x — 0.705080..y, = —0.356652..+x+0.634777..y,
(4-42)

in the regions R{ki, R%r’ R%ki Rér’ respectively. The linear differential centers in
(4-42) have the first integrals
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Hy(x,y) =x +x( 0.943775..+0.265344..y) + (—0.489818.. +0.724279..y)y,
Ha(x,y) =x* + (—1.337605.. + 0.636209..y)y + x(—1.971307.. + 1.029044...y),
Hs(x,y) =x* +x(—0.249913.. + 0.415657..y) + (0.162397.. 4 0.061343..y)y,

Hi(x,y) =x* + (—0.423048.. +0.705080..y)y +x(—0.713304.. + 1.269555..y),

respectively. In order to have crossing limit cycles of types 1 and 2, simultaneously, such
that the crossing limit cycles of type 1 intersect the discontinuity curve X in four different
points p; = (0,y1), p2 = (x2,y2), p3 = (0,y3) and p4 = (x4,y4), with —1 <y; <1< y3
and x4 < 0 < x and py,ps € S!: and the crossing limit cycles of type 27 intersect the
discontinuity curve X in four different points ps = (xs,ys), pe = (0,v6), p7 = (0,y7) and
ps = (x8,y8), with —1 < y7 < y¢ < 1 and x5,xg3 > 0, with ps, pg € S!. These points must
satisfy systems (4-13) and (4-16), respectively. Considering the PWLC (4-42) systems
(4-13) and (4-16) become

x5 +x2(—0.943775.. +0.265344..y,) — 0.489818..y, +0.724279..y3
+0.489818..y; —0.724279..y7 =0,

4x5 —5.350421..y; +2.544838..y3 + x2(—7.885229.. +4.116178..y5)
+5.350421..y3 — 2.544838..y3 =0,

—0.162397..y3 — 0.061343..y3 + x4(—0.249913.. + 0.415657..y4)
+0.162397..y4 +0.061343..y2 = 0,

4x7 —1.692192..y4 +2.820321..y2 + x4(—2.853217.. + 5.078222..y4)
+1.692192..y; —2.820321..y7 =0,

4x% — 1.959275..y5 +2.897117..y% + x5(—3.775101.. + 1.061377..y5) (4
+1.959275..y6 — 2.897117..y% =0,
(v6 —y7)(—1.692192.. +2.820321..(ys +y7)) =0,
x3 +0.489818..y7 — 0.724279..y2 + x5(—0.943775.. + 0.265344..y5)
—0.489818..y5 +0.724279..y3) = 0,
x%2 —x} —1.337605..y5 +0.636209..y% + x5(—1.971307.. + 1.029044..y5)
+x5(1.971307.. — 1.029044..y3) + 1.337605..y5 — 0.636209..y3 = 0,
x%—ky% =1, xﬁ%—yi =1, x%—ky% =1, x%—ky% =1.
We have four real solutions ¢ = (y|,xh,y5,y%,x), yﬁ,xé, yé, yg, yo,xb,yk)  with

i =1,2,3,4, for system (4-43) that satisfy the above conditions, namely ¢' = (—1/3,
cos(—m/6), sin(—m/6), 3/2, cos(2m/3), sin(2w/3), cos(m/3), sin(w/3), 7/10,
—~1/10, 1, 0); ¢*> = (—0.654342.., cos(—=/3), sin(—=/3), 12/5, cos(797/100),
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zﬁgj

N

Figure 4.13: Four crossing limit cycles of type 1 and two crossing
limit cycles of type 2 (black and magenta) of the
discontinuous PWLC (4-42). These limit cycles are
traveled in counterclockwise.

sin (791/100), cos(11x/50), sin(117/50), 63/100, —3/100, 0.975733.., 0.216981..);
¢ = (—0.447098.., cos(—23%/100), sin(—23mw/100), 1.882264.., cos(18m/25),
sin (18w/25), —0.654342.., cos(11m/50), sin(117/50), 63/100, —3/100, 0.975733..,
0.216981..); ¢* = (—0.305568.., cos (—3m/20), sin (—31/20), 1.365012.., —0.441883..,
0.897073.., cos (11m/50), sin (117/50), 63 /100, —3 /100, 0.975733..,0.216981..), these
four solutions generated four crossing limit cycles of type 1 and two crossing limit cycles
of type 2. See these crossing limit cycles of the PWLC (4-42) in Figure 4.13.

Here we observed that we obtain a total of six crossing limit cycles between
limit cycles of type 1 and of type 2", moreover these six crossing limit cycles have the
configuration (4,2), this is, 4-crossing limit cycle of type 1 and 2-crossing limit cycles of
type 2". Clearly this lower bound for the maximum number of crossing limit cycles of
types 1 and 2" simultaneously, could be also obtained with the configurations (3,3) or
(2,4). But after several numeric computations we could not build a third limit cycle of
type 27, previously fixing two limit cycles of type 1, so we only get those lower bound
with the configuration (4,2).

This completes the proof of statement (i) of Theorem /. U
Proof of statement (ii) of Theorem I. We consider the discontinuous PWLC formed by

the following linear differential centers
x=0.078341..4+0.855624..x +1.571418..y, y= —0.065526.. —x —0.855624..y;
X =0.496667..40.078616..x —0.193136..y, y = —0.471461..4+x—0.078616..y;

X =15.276135..+0.212817..x — 1.851275..y, y = —5.383865.. +x—0.212817..y;

% =0.484115..+0.548314..x —0.303113..y, ¥ = 0.569064.. +x —0.548314..y,
(4-44)

in the regions Riki ) R%r ) R%/r and ng,’ respectively. The linear differential centers in
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(4-44) have the first integrals

2

Hy(x,y) =x> +(0.156682.. + 1.571418..y) + x(0.131053.. 4+ 1.711249..y),
Hy(x,y) =x +x(—0.942922.. — 0.157232..y) + (—0.993334.. + 0.193136..y)y,
Hs(x,y) =x* +x(—10.767731.. — 0.425635..y) 4+ y(—10.552270.. + 1.851275..y),
Ha(x,y) =x> +x(1.138128.. — 1.096628..y) + (—0.968231.. 4 0.303113..y)y,

respectively. In order to have crossing limit cycles of types 1 and 37, simultaneously, such
that the crossing limit cycles of type 1 intersect the discontinuity curve X in four different
points py = (0,y1), p2 = (x2,¥2), p3 = (0,y3) and ps = (x4,y4),with —1 <y; <1 < y3
and x4 < 0 < x and py,ps € S!: and the crossing limit cycles of type 37 intersect the
discontinuity curve ¥y in four different points ps = (xs,ys), pe = (0,v6), p7 = (0,y7)
and pg = (xg,yg), with 1 < y7 < yg, x5,x3 > 0 and ps, pg € S!, these points must satisfy
systems (4-13) and (4-19), respectively. Considering the PWLC (4-44) systems (4-13) and
(4-19) become

—0.524214..x, — 43 — 6.844999. .y, + (y1 — v2)(0.626729..
+6.285673..(y1 +y2)) =0,

—3.771690..x + 42 — 0.628929. .17, + (y2 — y3)(—3.973339..
+0.772547..(y2 +y3)) =0,

43.070926..x4 — 4x2 + 1702543244 + (3 — v4) (—42.209082..

+7.405102..(y3 +y4)) = 0,
4.552513..x4 + 4x3 — 4.386514..x4y4 — (y1 — y4)(—3.872927..
+1.212454..(y; +y4)) = 0,

—3.771690..x5 —|—4x§ —0.628929..x5y5 + (y5 — ¥6) (—3.973339..
+0.772547..(ys +5)) = 0,
(Y6 — y7)(—42.209082.. +7.405102..(ys +y7)) = 0
3.771690. x5 — 422 +0.628929..x5y5 + (y7 — v5) (—3.973339..
+0.772547..(y7+ys)) =0,
—4x2 + 402 + x5(—0.524214.. — 6.844999..y5) + (—0.626729.. — 6.285673..y5)ys
+y5(0.626729.. + 6.285673..y5) +x5(0.524214.. + 6.844999..yg) = 0,
x%+y% =1, xﬁ—kyﬁ =1, x%—i—y% =1, x§+y§ =1.
(4-45)
We have four real solutions ¢’ = (y’i,xé,yé,yé,xi,yﬁl,x§,y5,y6,y7,x8,yg) withi=1,2,3,4,
for system (4-45) that satisfy the above conditions, namely ¢' = (4/5, 1, 0, 26/5,
cos (3n/5), sin(3m/5), cos(m/5), sin(m/5), 43/10, 7/5, cos(2m/5), sin(2m/5));
g* = (53/100, cos (—1371/100), sin (—1371/100), 557/100, cos (17%/25), sin (171/25),

Y
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3

DA

Figure 4.14: Four crossing limit cycles of type 1 and one cross-
ing limit cycle of type 3" (black) of the discontinuous

PWLC (4-44). These limit cycles are traveled in coun-
terclockwise.

cos (m/5), sin(m/5), 43/10, 7/5, cos(2n/5), sin(2n/5)); ¢> = (1/2, cos(—3m/20),
sin(—3m/20), 5.611962.., cos(172391/25000), sin(172397/25000), cos(w/5),
sin(w/5), 43/10, 7/5, cos(2m/5), sin(2r/5)); ¢* = ( 0.993727.., cos(12w/125),
sin (121/125), 4.808026.., —0.066301.., 0.997799.., cos(n/5), sin(n/5), 43/10, 7/5,
cos (2m/5), sin(2m/5)), these four solutions generated four crossing limit cycles of type
1 and one crossing limit cycle of type 3". See these crossing limit cycles of the PWLC
(4-44) in Figure 4.14.

Here we observed that we obtain a total of five crossing limit cycles between
limit cycles of type 1 and of type 3", moreover these five crossing limit cycles have the
configuration (4, 1), this is, 4-crossing limit cycle of type 1 and 1-crossing limit cycles of
type 3. In order to obtain a result similar to the previous statement, this is, an example
with a configuration (4,2), we tried to build a second cycle of type 3" but when building
this second cycle we lost a cycle of type 1, so we only got a configuration (3,2).

If we consider the PWLC formed by the linear differential centers

x=—0.128852.. — 0.332114..x —0.791281..y, y = —0.143708.. +x40.332114..y;
X =0.597908.. +0.108856..x — 0.227688..y, y = —0.530777..+x—0.108856..y;
X =0.716356.. +0.457342..x — 0.251353..y, y = —0.189975.. +x—0.457342..y;

4 4
x =1.857676.. — 3~ 0.688147..y, y=—1.219907.. +x+ 5
(4-46)
in the regions Ré‘k*’ R%kf, R%k_ and ng*’ respectively.
It is possible verify that we obtain the configuration (3,2), see Figure 4.15. But
after several numeric computations we could not build a third limit cycle of type 3%,

previously fixing two limit cycles of type 1, so we only get those lower bound by the
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Figure 4.15: Three crossing limit cycles of type 1 and two crossing
limit cycle of type 3" (black and orange) of the dis-
continuous PWLC (4-46). These limit cycles are trav-
eled in counterclockwise.

maximum number of types 1 and 3%, simultaneously, with the configurations (4, 1) and
(3,2).

This completes the proof of statement (ii) of Theorem /. 0J
Proof of statement (iii) of Theorem 1. We consider the following PWLC formed by the

linear differential centers

&= 45.736851.. — g —7.515818..y, = —1146.321640..+x + %;
X =—0.320594.. — 0.199436..x — 0.051960..y, y =0.460058..+x+0.199436..y;
x:2+2x—0—%y, )3:—?4—)6—%;
x=—-0.457007..4+0.276952..x — 0.076768..y, y=—4.377702..+x—0.276952..y,
(4-47)
in the regions R}:O, R%O, R%O and R%O, respectively. The linear differential centers in

(4-47) have the first integrals

Hi(x,y) =x* +x(—2292.643280.. + y) + y(—91.473702.. + 7.515818..y),
Hy(x,y) =x* +x(0.920117.. +0.398872..y) + (0.641188.. +0.051960..y)yx*

+x(0.920117.. 40.398872..y) + (0.641188.. 4+-0.051960..y)y,

2 13
Hi (x,y) =2x(=23+2x) = S(40+x)y + 2%,
Hy(x,y) =x* +x(—8.755405.. — 0.553904..y) 4 (0.914014.. + 0.076768..y)y,

respectively. In order to have crossing limit cycles of type 4 and 5, simultaneously, such
that the crossing limit cycles of type 4 intersect the discontinuity curve ¥ in four different
points p| = (xl,x%), P2 = (xz,x%), p3 = (x3,0) and ps = (x4,0), with x; < 0 < x; and
x3 < 0 < x4, and the crossing limit cycles of type 5 intersect the discontinuity curve
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¥ in four different points ps = (x5,x§), D6 = (x6,x%), p7 = (x7,0) and pg = (x3,0),
with 0 < xg < x5 and 0 < x7 < xg, these points must satisfy systems (4-25) and (4-28),
respectively. Considering the PWLC (4-47) systems (4-25) and (4-28) become

x1(=9170.573120.. 4 x1 (—361.894811... + x(3.999999.. -+ 30.063275..x1)))
+x(9170.573120... 4 x,(361.894811.. + (—3.999999.. — 30.063275..x2)x2)) = O,

x2(3.680468.. + x5 (6.564754.. + (1.595489.. 4+ 0.207843..x3)x))
—3.680468. .x3 — 4x

3
(x3 —x4) (—23 4+ 2x3 4+ 2x4)
x1(35.021620.. 4 x1(—7.656056.. 4+ (2.215618.. — 0.307072..x1 )x1)
—35.021620..x4 + 4x7

x5(—9170.573120.. + x5(—361.894811.. + x5(3.999999.. + 30.063275. .x5)))

+x6(9170.573120.. + x6(361.894811.. 4 (—3.999999.. — 30.063275..x)x¢))

x6(—35.021620.. 4 x6(7.656056.. 4 (—2.215618.. 4+ 0.307072..x6 )x6) )
+35.021620..x7 — 4x3 = 0,
(x7 —xg) (—23 +2x7+2x3) =0,

x5(35.021620.. 4 x5(—7.656056.. + (2.215618.. — 0.307072..x5)x5))

—35.021620..x3 +4x3 = 0.
(4-48)
In this case system (4-48) has four real solutions g' = (x},x},x},x),x5,%6,%7,X3),

0,
0,

)

0,

0,

Figure 4.16: Four crossing limit cycles of type 4 and two crossing
limit cycles of type 5 (black and orange) of the discon-
tinuous PWLC (4-47). These limit cycles are traveled
in counterclockwise.

that satisfy the necessary conditions to have crossing limit cycles of types 4
and 5. Namely, ¢' = (8, —16/5, —3, 29/2, 6, 3, 16/5, 83/10); ¢*> = (823/100,
—413/100, —96/25, 767/50, 6, 3, 16/5, 83/10); ¢° = (841/100, —4.737905..,
—4.516438.., 16.016438.., 6.040228.., 2.934482.., 3.093430.., 8.406569..) and ¢* =
(429/50, —5.236369.., —5.170738.., 16.670738.., 6.040228.., 2.934482.., 3.093430..,
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8.406569..). These solutions provide four crossing limit cycles of type 4 and two crossing
limit cycles of type 5 of the PWLC (4-47). See these crossing limit cycles in Figure 4.16.

Here we observed that we obtain a total of six crossing limit cycles between
limit cycles of type 4 and of type 5, moreover these six crossing limit cycles have the
configuration (4,2), this is, 4-crossing limit cycle of type 4 and 2-crossing limit cycles of
type 5. We know that this lower bound for the maximum number of crossing limit cycles
of types 4 and 5 simultaneously, could be also obtained with the configuration (3,3). But
if we previously fixing two limit cycles of each type after several numeric computations
we could not build a third limit cycle of type 5, then we only get those lower bound with
the configuration (4,2).

This completes the proof of statement (iii) of Theorem /. UJ
Proof of statement (iv) of Theorem 1. We consider the following discontinuous PWLC

formed by the linear differential centers

X =0.751960.. —0.008805..x — 0.043938..y, y=—1.117055..4+x+0.008805..y;

4701043 122761 91946 L Amsws 122761
= — — X = - — X _— ;
7161144 156650025 ' 31330005 > 313300050 156650025°

X =0.041424.. — 0.228644..x — 0.115044..y, y=12.030027.. +x+0.228644..y;

X =16.094659.. — 0.970562..x — 1.475325..y, y=—4.066695+ x+0.970562..y;

i = —0.014046.. — 0.011408..x +0.000796..y, y = —0.900270.. —x+0.011408..,
(4-49)

in the regions RL , RZ , R} , RY and R , respectively. The linear differential
Yo+ Xt X+

I i
centers in (4-49) have the first integrals
(x,y) =x* +x(—2.234111..4+0.017610..y) + (—1.503920.. +0.043938..y)y,
Hy(x,y) =626600100x +x(170861132 —982088y) + Sy(— 164536505 + 367784y),
H;3(x,y) =x* +x(4.060055.. +0.457288..y) 4 (—0.082848.. + 0.115044..y)y,
Hy(x,y) =x(—5448004792428006890183 + 669831938277330213420x)
—160y(51029434834312436627 — 8126422570764957500x)
+988220002292252000000y?,
Hs(x,y) =17172023317192110696x° 4 x(30918934250652233287
—391817091205831000y) + 6y(—80400672913407451
+2279188834700000y),

respectively. In order to have simultaneously crossing limit cycles of types 67 and 67,
such that the crossing limit cycles of type 6 intersect the discontinuity curve ¥+ in

four different points p; = (xl,x%), p2 = (x2,k), p3 = (x3,x§) and ps = (x4,k), with
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—2 <xp<2<xand —2 < x3 < 2 < x4, and the crossing limit cycles of type 6~ intersect

the discontinuity curve £+ in four different points ps = (xs,x2), pe = (x6,k), p7 = (x7,x3)

and pg = (xg, k), with x5 < —2 < x7 < 2 and x5 < —2 < xg < 2, these points must satisfy

systems (4-31) and
H3 (xs,xg)
Hy(xe, k)
H;s (x7,x%)
H(xs, k)

(
( 4-50
( (4-50)
(

)C5,X§),

respectively. Considering the PWLC (4-49) and k = 4, systems (4-31) and (4-50) become

170861132x; — 196082425x2 — 9820883 + 1838920x* — 60(—54355123

+2782213x7 + 10443335)%) =0,

—1710814021790578824 +29351665885828909287x;
+171720233171921 10696x% —30918934250652233287x3
—1668961927971 1665990x§ +39181709120583 IOOOxg

—136751 33008200000)@l =0,

—5448004792428006890183x3 — 7494877635212659646900x%+
1300227611 322393200000)6% + 9882200()2292252000()00)531
+21(802253250346853687680 — 11766397482782575723x4

+31896758965587153020x3) = 0,

—21.250638.. 4+ 8.936444..x| +2.015680..x2 — 0.070440..

—0.175755..x7 — 8.654682..x4 +4x3 = 0,

—6.037269.. 4 16.240221..x5 + 3.668606..x2 + 1.829154..x3
+0.460177..xt — 23.556840..x6 — 4x2 =0,

16847318257283927441280 +247094347138434090183x¢
—66983193827733021 342()x% — 5448004792428006890183x7
—7494877635212659646900x% + 130022761 1322393200000)%

+988220002292252000000x‘7‘ =0,

30918934250652233287x7 + 1668961927971 1665990x%
—39181709120583 IOOOx% + 13675 133008200000)c‘71
—21(—81467334370979944 + 1397698375515662347xg

+817715396056767176x3) = 0,

—170861132x5 4 196082425x2 + 982088x3 — 1838920x
+60(—54355123 +2782213x5 + 10443335x2) = 0.

(4-51)

We have four real solutions ¢' = (x’l ,xé,xé,xi,xé,xé,x%,xé) with i = 1,2,3,4, for system
(4-51) that satisfy the above conditions namely ¢! = (5, 1/2, 9/50, 23/5, —18/5,
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HN

Figure 4.17: Four crossing limit cycles of type 6" in the right hand
side and four crossing limit cycles of type 6~ in the
left hand side, of the discontinuous PWLC (4-49).
These limit cycles are traveled in counterclockwise.

—9/2, —49/50, —1); ¢*> = (9/2, 19/20, 91/100, 7/5, —3, —17/5, —303/200, —3/2);
q° = (41/10, 1.208958.., 1.176604.., 2.657283.., —2.816357.., —31/10, —1.626433..,
—1.613770..), and ¢* = (51/10, 0.368157..,0.315951.., 4.829311.., —3.059352.., —7/2,
—1.475955.., —1.460360..), these four solutions generated four crossing limit cycles of
type 6 and four crossing limit cycles of type 6. See these crossing limit cycles of the
PWLC (4-49) in Figure 4.17.

Here we obtain a total of eight crossing limit cycles of types 67 and 6~
simultaneously, with a configuration (4,4). And observed that it is possible obtain this
lower bound with the configurations (5,3) or (3,5), but here we only present the example
with the configuration (4,4).

This completes the proof of statement (iv) of Theorem /. 0
Proof of statement (v) of Theorem I. We consider the following discontinuous PWLC

formed by the linear differential centers

%= 1.717686..+0.650612..x — 0.423688..y,  y = 0.850546.. +x —0.650612..y;
%=0.516832.. +0.082481..x — 0.038759..y, v =0.179926..+x — 0.082481..y;
%= 1.470269.. +0.406982..x — 3.640154..y,  y = —0.122065.. +x — 0.406982..y;

X =0.685228.. +0.043300..x — 0.293631..y, y=0.017396.. +x —0.043300..y,
(4-52)

in the regions Ré , R% , R‘it and RY |, respectively. The linear differential centers in
-+ kKt kKt Zk+
(4-52) have the first integrals
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2

Hi(x,y) =x* +x(1.701093.. — 1.301224..y) + (—3.435373.. 4 0.423688..y)y,
Ha(x,y) =x* +x(0.359853.. — 0.164963..y) + (—1.033664.. + 0.038759..y)y,
Hi(x,y) =x* +x(—0.244130.. — 0.813965..y) + y(—2.940538.. + 3.640154...y),
Hs(x,y) =x* +x(0.034792.. — 0.086601..y) + (—1.370456.. 4 0.293631..y)y,

respectively. In order to have simultaneously crossing limit cycles of types 67 and 7,
such that the crossing limit cycles of type 6 intersect the discontinuity curve ¥+ in
four different points p; = (x1,x3), p2 = (x2,k), p3 = (x3,%3) and ps = (x4,k), with
—2 <xp <2<x;and =2 <x3 <2 < x4, and the crossing limit cycles of type 7 intersect
the discontinuity curve £ in four different points ps = (xs,k), pe = (x6,k), p7 = (x7,%3)
and pg = (xg,xg), with —2 < xg < x5 <2 and —2 < x7 < xg < 2 these points must satisfy
systems (4-31) and (4-34), respectively. Considering the PWLC (4-52) and k = 4, systems
(4-31) and (4-34) become

14.058034.. 4 1.439414..x; — 0.134656..x7 — 0.659853..x; +0.155036..x]

6
+§x2 — 4x% =0,

—0.783728.. — 0.311613..x2 + x5 — 0.034792..x3 4 0.370456..x3 + 0.086601...x3
—0.293631..x3 =0,

—185.921253.. — 0.976522..x3 — 7.762153..x3 — 3.255860..x3 + 14.560616..x}
+13.999964..x4 — 4x2 = 0,

—27.849933.. — 6.804375..x1 +9.741494..x} + 5.204898..x3 — 1.694752..x{
—14.015217..x4 +4x3 = 0,
4(x5 — x6) (—i + x5 —l—x6) =0,
10
—0.783728.. —0.311613..x6 +x2 — 0.034792..x7 + 0.370456..x3
+0.086601..x3 —0.293631..x3 =0,

—0.976522..x7 — 7.762153..x5 — 3.255860..x3 + 14.560616..x3
+x3(0.976522.. 4 7.762153..x5 + 3.255860..x3 — 14.560616..x3) = 0,

—0.783728.. — 0.311613..x5 + 22 — 0.034792..x5 + 0.370456...3

+0.086601..x3 —0.293631..x§ = 0.
(4-53)
We have four real solutions ¢’ = (x’1 ,xé,xé,xﬁl,x5,x6,x%x8) with i = 1,2,3,4, for system
(4-53) that satisfy the above conditions. We have ¢! = (4, —9/5, —=19/10,7/2, 1, —7/10,
~9/10, 11/10); ¢ = (106/25, —39/20, —1.975633..,51/10, 1, —7/10, —9/10, 11/10);
¢ = (413/100, —469/250, —1.938820.., 4.420122.., 101/100, —71/100, —941/1000,
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Figure 4.18: Four crossing limit cycles of type 6 and two crossing
limit cycles of type T (black and orange) of the discon-
tinuous PWLC (4-52). These limit cycles are traveled
in counterclockwise.

1.132764..) and ¢* = (401/100, —1.805407.., —1.902798.., 3.579564.., 101/100,
—71/100, —941/1000, 1.132764..). These four real solutions generated four crossing
limit cycles of type 6™ and two crossing limit cycles of type 7. See these crossing limit
cycles of the PWLC (4-52) in Figure 4.18.

Here we observed that we obtain a total of six crossing limit cycles between
limit cycles of type 6 and of type 7, moreover these six crossing limit cycles have
the configuration (4,2). We observe that this lower bound for the maximum number of
crossing limit cycles of types 61 and 7 simultaneously, could be also obtained with the
configuration (3,3). But if we previously fixing two limit cycles of type 6™ after several
numeric computations we could not build a third limit cycle of type 7, then we only get
those lower bound with the configuration (4,2).

We can also observe that there is a duality between the case studied in statement
(i) of Theorem I, where we have studied simultaneously crossing limit cycles of types
1 and 2" and this case, where study the crossing limit cycles of types 67 and 7,
simultaneously. In these two cases we got the configuration (4,2). See Figures 4.13 and
4.18.

This completes the proof of statement (v) of Theorem 1. 0J
Proof of statement (vi) of Theorem 1. We consider the following discontinuous PWLC

formed by the linear differential centers



4.5 Proof of the main results of this chapter 144

%=0.212208.. —0.051128..x — 0.004724..y,  y = —3.713538..+x+0.051128..y;
%=0.592855.. — 0.098217..x — 0.044462..y, vy = —1.739750.. +x+0.098217..y;
%= —0.324307.. — 0.152006..x — 0.023227..y, y = 2.010345..+x+0.152006y;

% =5.173755.. —0.530837..x — 1.789344..y,  y = —2.823348..+x+0.530837..y;

9 9
X =0.905547.. + %x—i— 0.037591..y, y=—-2.213772.. —x — %y,
(4-54)
: : 1 2 3 4 5 . . . .
in the regions Rik+’ Rik+7 Rik+7 RikJr and Rik+’ respectively. The linear differential

centers in (4-54) have the first integrals

Hi(x,y) =92350000x° + 2y(—19597489 + 218145y) + x(—685890524 + 9443461y),
Hy(x,y) =x(—2350427721 + 675507095x) + 2(—400478067 4 66346510x)y + 30034700y,
Hi(x,y) =x> 4+ x(4.020691.. +0.304014..y) + (0.648615.. 4+ 0.023227..y)y,

Hy(x,y) =2.248715.. x 101%%* — 5x(2.539563.. x 101® —4.774807.. x 10'%y)

+y(—2.326860.. x 1017 +4.023727.. x 10'6y),
Hs(x,y) = —5.437818.. x 10%2x* 4 6x(—4.012698.. x 10?*> —3.262691.. x 10*!y)
+5(—1.969681.. x 10?2 — 4.088345.. x 10%y)y,

respectively. In order to have crossing limit cycles of types 67 and 8, simultaneously,

-100 -80 -60 -40 -20 20

Figure 4.19: Three crossing limit cycles of type 61 (purple, green
and black) and four crossing limit cycles of type 8 (or-
ange, blue, magenta and light blue) of the discontin-
uous PWLC (4-54). These limit cycles are traveled in
counterclockwise.

such that the crossing limit cycles of type 6 intersect the discontinuity curve ¥+ in
four different points p; = (x1,x7), p2 = (x2,k), p3 = (x3,x3) and ps = (x4,k), with
—2 <xp <2<x4and -2 < x3 <2 < xp, and the crossing limit cycles of type 8 intersect
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the discontinuity curve £; in four different points ps = (x5,x§), D6 = (Xﬁ,x%), p71 = (x7,k)
and pg = (xg,k), with x; < =2 <2 < xg and xg < —2 < 2 < x5, these points must satisfy
systems (4-31) and (4-37), respectively. Considering the PWLC (4-54) and k = 4, systems
(4-31) and (4-37) become

16.125777.. — 13.918004..x; — 0.742843..x7 +0.785738..x] +0.177849..x}
+10.775049..x; — 4x3 =0,

36
31.383400.. +23.470181..xp +4x3 — 17.710181..x3 — 11.244381..x3 — gxg

—0.150367..x5 =0,
51.042105.. —22.586789..x3 — 37.390043..x3 +4.246697..x5 + 7.157379..x%
+5.599999..x4 — 4x2 = 0,

—6.488327.. +29.708306..x; —2.302329..x7 — 0.409029..x; —0.018897..x}
—28.072189..x4 +4x3 =0,

—149799272 — 648116680x5 + 92350000xF 4 685890524x5 — 531550222
—9443461x3 — 436290x2 = 0,

—2350427721x5 — 125449039x2 + 132693020x3 4 30034700x2
+x6(2350427721 + 125449039x — 132693020x2 — 30034700x;) = 0,

—11.864396.. 4 16.082766..x¢ + 6.594461..)% + 1.216054..x2 + 0.092909..xé

—20.946982..x7 — 4x2 =0,

(xg —x7)(—7+5x3+5x7) = 0.
(4-55)
We have four real solutions ¢’ = (x’i,xé,xé,xi,xé,xé,x%,xé) with i = 1,2,3,4, for sys-
tem (4-55) that satisfy the above conditions. We have ¢' = (7/2, —6/5, 2/5, 19/5, 4,
-3, —16/5, 23/5); ¢* = (18/5, —7/5, 3/10, 199/50, 41/10, —37/10, —3351/1000,
4751/1000); ¢ = (71/20, —1.299400.., 7/20, 3.893976.., 4.132430.., —3.871790..,
—17/5, 24/5) and ¢* = (71/20, —1.299400.., 7/20, 3.893976.., 178349/20000,
108083/10000, —119/10, 133/10). These four real solutions generated three crossing
limit cycles of type 6 and four crossing limit cycle of type 8. See these crossing limit

cycles of the PWLC (4-54) in Figure 4.19.

Here we observed that we obtain a total of seven crossing limit cycles between
limit cycles of type 61 and of type 8, moreover in this example, the seven crossing limit
cycles have the configuration (3,4). We observe that this lower bound for the maximum
number of crossing limit cycles of types 67 and 8 simultaneously, could be also obtained
with the configurations (4,3). And we obtain a example with this configuration in the
proof of statement (xi) of Theorem 7 with PWLC (4-64), see Figure 4.24.

This completes the proof of statement (vi) of Theorem /. 0J

Proof of statement (vii) of Theorem I. We consider the following discontinuous PWLC
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formed by the linear differential centers

x = —0.478750.. +0.183274..x — 0.037189..y, y = —4.300673.. +x—0.183274..y;
x=0.122511..40.079715..x — 0.013506..y, y=—1.007263.. +x—0.079715..y;
x=—1.261810..40.053348..x —0.212413..y, y = —4.836606..4x —0.053348..y;

x=0.060157..40.062627..x — 0.047729..y, y= —0.739728.. +x —0.062627..y,
(4-56)

. . 1 2 4 5 ;
in the regions Ri R2k+ Rik+ and Rik+’ respectively.

Figure 4.20: Four crossing limit cycles of type 6 and two crossing
limit cycles of type 9" (black and orange) of the
discontinuous PWLC (4-56). These limit cycles are
traveled in counterclockwise.

The linear differential centers in (4-56) have the first integrals

—x2 +x

=x*4x

(x,y) (—8.601346.. — 0.366548..y) + (0.957501401147845 +0.037189..y)y,
Hy(x,) (—2.014527.. — 0.159430..y) + (—0.245022.. 4 0.013506..y)y,
Ha(x,y) =x* +x(—9.673213.. — 0.106696..y) + (2.523620.. +0.212413..y)y,

Hs(x,y) (—1.479456.. — 0.125255..y) + (—0.120314.. 4+ 0.047729..y)y,

Hi(x,

2

X,y) =x"+x

respectively. In order to have simultaneously crossing limit cycles of types 67 and 97,
such that the crossing limit cycles of type 67 intersect the discontinuity curve ¥ in
four different points p; = (x1,x7), p2 = (x2,k), p3 = (x3,x3) and ps = (x4,k), with
—2<xp <2<x4and —2 < x3 < 2 < x1, and the crossing limit cycles of type 97 intersect
the discontinuity curve £;+ in four different points ps = (x5,x2), pe = (x6,X2), p7 = (x7,k)
and pg = (xg,k), with 2 < xg < x5 and 2 < x7 < x3, these points must satisfy systems (4-
31) and (4-40), respectively. Considering the PWLC (4-56) and k = 4, systems (4-31) and
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(4-40) become

3.055923.. +x1 (—8.058108.. 4 x1(3.019909.. + (—0.637722..
40.054027..x1)x1)) + (10.608997.. — 4x;)x; = 0,

0.282412.. + (—1.980480... 4 x3)x2 4 x3(1.479456.. + x3(—0.879685..
+(0.125255.. — 0.047729..x3)x3)) =0,

—53.972411.. + x3(—38.692854... +x3(14.094480.. + (—0.426786..
+0.849655..x3)x3)) + (40.4000000.. — 3.999999. .x4)x4 = 0,

17.700131... + x; (34.405384.. + x; (—7.8300056.. + (1.466193..
—0.148756..x1)x1)) 4+ x4(—40.270159.. + 4x4) = 0,

—8.058108..x5 +3.019909..x3 — 0.637722..x3 + 0.054027..x5 + x6(8.058108..
—3.019909..x6 +0.637722..x2 — 0.054027..x]) = 0,

—17.700131.. — 34.405384..x6 + 7.830005..x2 — 1.466193..x3 +0.148756..x¢
+40.270159..x7 — 4x3 =0,

4()67 —xg)(—IO.IOOOOO.. —+Xx7 —l—X3) =0,

17.700131...+ 34.405384..x5 — 7.830005..x% + 1.466193..x3 — 0.148756..x%

—40.270159..x3 +4x3 = 0.
(4-57)
We have four real solutions ¢’ = (x’i,xé,xé,xﬁl,x5,x6,x7,x8) with i = 1,2,3,4, for system
(4-57) that satisfy the above conditions. We have ¢' = (6,1/2,4/10,8,5,14/5,3,71/10);
g* = (317/50, 19/100, 1/25, 423/50, 5, 14/5, 3, 71/10); ¢* = (291/50, 0.664193..,
3/5, 7.554404.., 487/100, 3.986608.., 3.058022.., 7.041977..) and ¢* = (61/10,
0.409425..,0.293958.., 8.128324.., 487/100, 3.986608.., 3.058022.., 7.041977..) These
four real solutions generated four crossing limit cycles of type 67 and two crossing limit
cycles of type 9. See these crossing limit cycles of the PWLC (4-56) in Figure 4.20.
Here we obtain a total of six crossing limit cycles between limit cycles of type 6
and of type 97, moreover these six crossing limit cycles have the configuration (4,2). We
observed that this lower bound for the maximum number of crossing limit cycles of types
61 and 9 simultaneously, could be also obtained with the configuration (3,3). But if we
build two crossing limit cycles of type 67 and two of type 9", simultaneously, we have
that all the parameters that appear in system (4-40) are determined, where this system is
such that generated limit cycles of type 97, then it is no possible to build a third crossing
limit cycle of type 97 and therefore we can not obtain the configuration (3,3).
This completes the proof of statement (vii) of Theorem /. U

Proof of statement (viii) of Theorem 1. We consider the following discontinuous PWLC
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formed by the linear differential centers

x=—0.147861.. +0.083875..x — 0.018000..y, y= —3.106437..+x—0.083875..y;

¢ 7769951 176465 204250 g 0997939 | 176465
9492348 ' 2373087 2373087 47461740 2373087
%= —0.284659.. — 0.174915..x — 0.046689..y, y = 1.660380..+x-+0.174915..y;
_ %L 3 4385 PO I
31913000 ' 10" 31913 20 10
%=0.206531..+0.150466..x — 0.054352..y,  y = 0.451143.. +x — 0.150466..,
(4-58)

St

in the regions Réﬁ, RZ | R%H’ R4ik+ and R%H’ respectively. The linear differential

®

J-.

Figure 4.21: Three crossing limit cycles of type 7 (purple, green
and black) and four crossing limit cycles of type 8
of the discontinuous PWLC (4-58). These limit cycles
are traveled in counterclockwise.

centers in (4-58) have the first integrals

Hi(x,y) =(58546435625x% + 4y(4328392296 + 263466775y) — 15x(24249448597
+ 654747306y),

Hy(x,y) =x(6997939 4 23730870x) — 5(7769951 + 705860x)y + 2042500y,

Hi(x,y) =1.054579.. x 10758(3.792980.. x 10°8x% +y(2.159417.. x 10®

+1.770939.. x 10°7y) 4+ x(1.259558..10°° + 1.326899.. x 10%y)),

3y(1290417 4 722500y)
3989125 ’
Hs(x,y) =16x(472818597 + 524021995x) — 75(46176919 + 33641680x)y

+ 455712500y,

2
Hy(x,y) =4x> + gx(19 —6y) +

respectively. In order to have crossing limit cycles of types 7 and 8, simultaneously,
such that the crossing limit cycles of type 7 intersect the discontinuity curve ¥+ in
four different points p; = (x1,k), p2 = (x2,k), p3 = (x3,%3) and ps = (x4,x3), with
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—2<x <x1<2and —2 < x3 < x4 < 2, and the crossing limit cycles of type 8 intersect
the discontinuity curve £, in four different points ps = (xs,xg), D6 = (x(,,x%), p7 = (x7,k)
and pg = (xg, k), with xg < —2 < 2 < x5 and x7 < —2 < 2 < xg, these points must satisfy
systems (4-34) and (4-37), respectively. Considering the PWLC (4-58) and k = 4, systems
(4-34) and (4-37) become

10
—6561675700 — 2527406448x, + 8384351920x3 — 7565097552x3
—4921082995x3 + 2523126000x3 — 455712500x5 = 0,

30317350x3 + 1982775153 — 9573900x3 + 2167500x}
—x4(30317350 + 1982775 Ly — 9573900x3 + 2167500x3) = 0,

6561675700 + 2527406448x; — 8384351920x% + 7565097552x4
+4921082995x7 — 2523126000x3 + 455712500x; = 0,

86116150336 — 403026567315x3 + 58546435625x3 + 363741728955x5
—75860004809x2 +9821209590x3 — 1053867100x2 = 0,

6997939xs5 — 15118885x2 — 3529300x3 + 2042500x2 + x6(—6997939
+15118885x6 -+ 3529300x% — 2042500x7) = 0,

—1.030050.. + 8(1.660379.. 4 0.284660..x6 )x6 + 4(1 +0.174915..x6)*x2
+0.064378..x¢ +8(—1.138640.. — 1.660379..x7) —4(0.699661.. 4 x7)* = 0,

3
4(x1 —x2) (—— +x1 —l—xz> =0,

(4-59)

1
—4(xg —x7) (—5 + g —|—X7> =0.

We have four real solutions ¢' = (x},xb, x5, x, xt, xk x4 xk) with i = 1,2,3,4, for system
(4-59) that satisfy the above conditions. We have ¢' = (1, —7/10, —9/10, —1/10,
37/10, —=5/2, —3,7/2); ¢* = (1,-7/10,—9/10,—1/10,4, —29/10, —33/10, 19/5) ;
q> = (11/10, —8/10, —26/25,1/10, 21/5, —157/100, —7/2,4) and ¢* = (1.194602..,
—0.894602.., —1.147986.., 0.273096.., 87 /20, —3.312719.., —3653 /1000, 4153 /1000).
These four real solutions generated three crossing limit cycles of type 7 and four crossing
limit cycle of type 8. See these crossing limit cycles of the PWLC (4-58) in Figure 4.21.

Here we obtain a total of seven crossing limit cycles between limit cycles of type
7 and of type 8, moreover these seven crossing limit cycles have the configuration (3,4).
By our numerical computations we observed that this lower bound for the maximum
number of crossing limit cycles of types 7 and 8 simultaneously, could not be obtained
with the configuration (4,3), because in the statement (v) of Theorem H we only got three
crossing limit cycle of type 7.

This completes the proof of statement (viii) of Theorem /. U
Proof of statement (ix) of Theorem 1. We consider the following discontinuous PWLC
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formed by the linear differential centers

%= —0.224106.. +0.256615..x —0.075244..y, y = —3.489877..+x —0.256615..y;

&= 33.031408.. — % —5.321982..y, j—= —816.418879.. +x + %;

£=—0.151463.. — 0.173662..x — 0.047290..y, y = 0.297861..+x-+0.173662..y:
x 13 111 y

L, X 13 oy

=210 2007 Y="%0 T o

(4-60)
; - 1 2 B3 4 : . . . ,
in the regions Ry , Ry Rik+ and Rik+7 respectively. The linear differential centers in
(4-60) have the first integrals

—x° +x(—6.979755.. — 0.513231..y) 4 (0.448213.. 4+ 0.075244..y)y,

Hl (x7y>

Ha(x,y) =x* + x(—1632.837759.. +y) + y(—66.062816.. +5.321982..y),

Hs(x,y) =x* +x(0.595723.. 4+ 0.347324..y) + (0.302926.. +0.047290..y)y,
(x,)

13 2
x,y) =4x* — 16y—|—%y2— gx(lll +y),

=

respectively.

Figure 4.22: Four crossing limit cycles of type 8 and two crossing
limit cycles of type 9" (black and orange) of the
discontinuous PWLC (4-60). These limit cycles are
traveled in counterclockwise.

In order to have simultaneously crossing limit cycles of types 8 and 9T, such that
the crossing limit cycles of type 8 intersect the discontinuity curve ¥;+ in four different
points p; = (x1,x3), pa = (x2,%3), p3 = (x3,k) and ps = (x4,k), with xp < -2 <2 < x|
and x3 < —2 < 2 < x4, and the crossing limit cycles of type 9" intersect the discontinuity
curve ¥ in four different points ps = (xs,xg), D6 = (xﬁ,x%), p7 = (x7,k) and pg = (x3,k),
with 2 < xg < x5 and 2 < x7 < xg, these points must satisfy systems (4-37) and (4-40),
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respectively. Considering the PWLC (4-60) and k = 4, systems (4-37) and (4-40) become

—6531.351039..x — 260.251264..x7 + 4x3 +21.287931..x] +x,(6531.351039..
+260.251264..x; — 4x3 —21.287931..x3) = 0,

—7.873414..+2.382895..x, +5.211706..x3 + 1.389297..x3 +0.189161..x5
—7.940084..x3 — 4x3 = 0,
23
4()63 —X4) <—7 —+ X3 —l—x4) =0,
11.987037.. +27.919023..x; — 5.792854..x% +2.052924..x3 — 0.300976..x}
—36.130722..x4 +4x3 =0
x5(—6531.351039.. + x5(—260.251264.. + x5(4 +21.287931..x5)))

+6(6531.351039.. 4 x6(260.251264.. + (—4 —21.287931..x6)x5)) = 0,

—11.987037.. + x6(—27.919023.. 4 x6(5.792854.. + (—2.052924..
+0.300976..x6)x6) ) + (36.130722.. — 4x7)x7 = 0,
4(X7 —xg) (—% + X7 +x8) =0,
11.987037.. 4 x5(27.919023.. + x5(—5.792854.. 4 (2.052924..
—0.300976..x5)x5)) +x3(—36.130722.. + 4x3) = 0,
(4-61)

We have four real solutions ¢' = (x},x},x%, x4, x5,x6,%7,x3) with i = 1,2,3,4, for
system (4-61) that satisfy the above conditions. We have ¢' = (8, —16/5, —3, 29/2, 6,
3, 16/5, 83/10); ¢*> = (823/100, —4.136449.., —3.840062.., 15.340062.., 6, 3, 16/5,
83/10); ¢° = ( 841/100, —4.748093.., —4.516514.., 16.016514.., 587/100, 3.203924..,
177/50, 199/25) and ¢* = (429/50, —5.249123.., —5.170790.., 16.670790.., 587/100,
3.203924.., 177/50, 199/25). These four real solutions generated four crossing limit
cycles of type 8 and two crossing limit cycles of type 9. See these crossing limit cycles
of the PWLC (4-60) in Figure 4.22.

Here we obtain a total of six crossing limit cycles between limit cycles of type 8
and of type 91, moreover these six crossing limit cycles have the configuration (4,2). We
observed that this lower bound for the maximum number of crossing limit cycles of types
8 and 9 simultaneously, could be also obtained with the configurations (3,3). But if we
build two crossing limit cycles of type 8 and two of type 97, simultaneously, we have that
all the parameters that appear in system (4-40) are determined, where this system is such
that generated limit cycles of type 97, then it is no possible to build a third crossing limit
cycle of type 91 and therefore we can not obtain the configurations (3, 3).

We can also observe that there is a duality between the case studied in statement
(iif) of Theorem I, where we have studied simultaneously crossing limit cycles of

types 4 and 5 and this case, where study the crossing limit cycles of types 8 and 97,
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simultaneously. In these two cases we got the configuration (4,2). See Figures 4.16 and
4.22.

This completes the proof of statement (ix) of Theorem /. 0J
Proof of statement (x) of Theorem I. We consider the following discontinuous PWLC

formed by the linear differential centers

x=—0.107128.. +0.268308..x — 0.095415..y, y = —2.390037..+x—0.268308..y;

X =0.492346.. +0.144928..x — 0.061289..y, y=0.429713.. +x—0.144928..y;

x = 1.394400.. +0.300769..x — 0.091362..y, y=2.707746..+x—0.300769..y;

x=0.976917..40.400189..x —4.241691..y, y=—0.349243.. +x—0.400189..y;

x = 0.685228..40.043300..x — 0.293631..y, vy =0.017396.. 4+ x—0.043300..y,

(4-62)
in the regions Rli K RZ R | RY and R% K respectively. The linear differential
k k

Zk+ ’ Zk"’ ):kJr
centers in (4-62) have the first integrals

(x,) =x% +x(—4.780074.. — 0.536616..y) + (0.214257.. +0.095415..y)y,
(x,y) =x* 4+ x(0.859427.. — 0.289856..y) + (—0.984693.. + 0.061289..y)y,
(x,y) =x> +x(5.415492.. — 0.601538..y) + (—2.788801.. +0.091362..y)y,
(x,) =x% 4+ x(—0.698486.. — 0.800378..y) + y(—1.953834.. + 4.241691..y),
(x,y) =x% +x(0.034792.. — 0.086601..y) + (—1.370456.. +0.293631..y)y,

respectively. In order to have crossing limit cycles of types 61, 7 and 8 simultaneously,
such that the crossing limit cycles of type 67 intersect the discontinuity curve £;+ in four
different points p; = (xl,x%), p2 = (x2,k), p3 = (x;;,x%) and pq = (x4,k), with =2 < x <
2 <xj and —2 < x3 <2 < x4, the crossing limit cycles of type 7 intersect the discontinuity
curve ¥ in four different points ps = (xs,k), pe = (x6,k), p7 = (x7,x3) and pg = (x3,x3),
with x5 < —2 < x7 < 2 and x¢ < —2 < xg < 2 and the crossing limit cycles of type 8
intersect the discontinuity curve £+ in four different points pg = (x9,x3), p1o = (xX10,%3,)s
p11 = (x11,k) and p1a = (x12,k), with xj90 < =2 < 2 < x9 and xj] < —2 < 2 < x1 these
points must satisfy systems (4-31), (4-34) and (4-37) respectively. Considering the PWLC
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(4-62) and k = 4, systems (4-31), (4-34) and (4-37) become

11.832571..43.437710..x; +0.061227..x3 — 1.159427..x3 4 0.245157..x*
+1.200000..x3 — 3.999999..x2 = 0,

—0.783728.. — 0.311613..x2 +x3 — 0.034792..x3 + 0.370456..x% + 0.086601..x3
—0.293631..x3 =0,

—240.206876.. — 2.793946..x3 — 3.815339..x3 — 3.201513..x3 + 16.966764..x}
+15.600000..x4 — 4x3 =0,

9.534728..+19.120296..x; — 4.857030..x7 +2.146465..x; — 0.381662..x}
—27.706159..x4 +4x3 = 0,

4(xs — x6)(—0.300000... + x5 +x6) = 0,

—0.783728.. — 0.311613..x6 +x2 — 0.034792..x7 + 0.370456..x3 + 0.086601..x3
—0.293631..x3 = 0,

—2.793946..x7 — 3.815339..x3 — 3.201513..x3 + 16.966764..x3 + x3(2.793946..
+3.815339..x5 +3.201513..x3 — 16.966764..x3) = 0,

—0.783728.. —0.311613..x5 + x5? — 0.034792..xg + 0.370456..x3
+0.086601..x3 —0.293631..x§ = 0,

—3.437710..x10 — 0.061227..x7, + 1.159427..x3, — 0.245157..x7,
+2x9(3.437710.. 4 0.061227..x9 — 1.159427..x5 +0.245157..x3) = 0,

38.773655.. +21.661968..x19 — 7.155207..x7, — 2.406152..x3, + 0.365448..x},
—12.037359..x11 — 4x3, =0,

4(xll _x12)(_3900000 +X11 +x12) = (),

2.383682.. —6.926539..x12 +x7, +4.780074..x9 — 1.214257..x5
+0.536616..x3 — 0.095415..x3 = 0.
(4-63)

i _ VA AT R AT A SR ST R R | i i .
= (x],X5,X5,x), X5, Xg, X5, Xg, Xg, X, X] |, X],)  With

We have four real solutions g
i=1,2,3,4, for system (4-63) that satisfy the above conditions, namely ¢! = (4, —9/5,
—-19/10, 7/2, 1, =7/10, —9/10, 11/10, 5, —27/10, —5/2, 32/5); ¢* = (2007/500,
—181/100, —1.905170.., 3.692535.., 101/100, —71/100, —941/1000, 1.132764..,
511/100, —2.805313.., —139/50, 167/25); ¢°> = (2007 /500, —181/100, —1.905170..,
3.692535.., 101/100, —71/100, —941/1000, 1.132764.., 26/5, —2.891869..,
—3.012824.., 6.912824..) and ¢* = (2007/500, —181/100, —1.905170.., 3.692535..,
101/100, —71/100, —941/1000, 1.132764.., 549/10, —52.535582.., —883.528310..,
887.428310..). These four real solutions generated two crossing limit cycles of type 67,
two crossing limit cycles of type 7 and four crossing limit cycles of type 8. See these
crossing limit cycles of the PWLC (4-62) in Figure 4.23.

Here we obtain a total of eight crossing limit cycles between limit cycles of
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Figure 4.23: Two crossing limit cycle of type 6* (magenta and
blue), two crossing limit cycles of type 7 (black and
orange) and four crossing limit cycles of type 8
(green, purple, brown and cyan) of the discontinuous
PWLC (4-62). These limit cycles are traveled in coun-
terclockwise.

types 67, 7 and 8, moreover these eight crossing limit cycles have the configuration
(2,2,4), this is 2-crossing limit cycles of type 61, 2-crossing limit cycles of type 7 and
4-crossing limit of type 8. We observed that this lower bound for the maximum number
of crossing limit cycles of types 67, 7 and 8 simultaneously, could be also obtained with
other configurations. But if we build two crossing limit cycles of each type we obtain that
all parameters of systems (4-31) and (4-34) are determined, and these systems are such
that generated the limit cycles of types 67 and 7, then we can not build more than two
crossing limit cycles of types 67 or 7 when we have previously fixed two crossing limit
cycles of each type. Then we only obtain the configuration obtained here, namely (2,2,4).

This completes the proof of statement (x) of Theorem 1. OJ
Proof of statement (xi) of Theorem I. We consider the following discontinuous PWLC

formed by the linear differential centers

X =—0.312756..40.105676..x —0.022483..y, y = —4.523476..4+x—0.105676..y;

x=—-0.158662.. +0.176712..x — 0.031977..y, y=—1.018470..+x—0.176712..y;

%=0.893671.. + f—o —0.055338..y, y=1.647781.. 4 x— -

10
%= —1.521810.. +0.129660..x —0.102089..y, ¥ = —4.531357..+x —0.129660..y;
X =2.392166..+0.863445..x — 1.210282..y,  y = 11.457801..+x — 0.863445..y,
(4-64)

. . 1 2 3 4 5 . . . .
in the regions Riﬁ’ Riﬁ’ Rik+’ Rik+ and Rik+’ respectively. The linear differential
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centers in (4-64) have the first integrals

H (x,
H(
Hs( 2
Hy(x,y)
Hs(x,y)
respectively.

y) =22 +x(—9.046952.. — 0.211353..y) + (0.625512.. 4+ 0.022483..y)y,
x,y) =x2 +x(—2.03694.. — 0.353424..y) + (0.317325.. +0.031977..y)y,
y)

x,y) =x*+x (3.295563.. - 5) +(—1.787342.. 4 0.055338..y)y,

=2+ x(—9.062715.. — 0.259321..y) + (3.043621.. 4+ 0.102089..y)y,
=2 +x(22.915603.. — 1.726890..y) + y(—4.784333.. 4+ 1.210282..y),

Figure 4.24: Four crossing limit cycles of type 61 (green, magenta,
cyan and purple), three crossing limit cycles of type 8
(vellow, brown and blue) and two crossing limit cy-
cles of type 9" (black and orange) of the discontinu-
ous PWLC (4-64). These limit cycles are traveled in

counterclockwise.

In order to have crossing limit cycles of types 67, 8 and 9" simultaneously,

such that the crossing limit cycles of type 67 intersect the discontinuity curve ¥; in

four different points p; = (x1,x7), p2 = (x2,k), p3 = (x3,x3) and ps = (x4,k), with

—2<xp <2< xpand -2 < x3 < 2 < x4, the crossing limit cycles of type 8 intersect the

discontinuity curve ¥+ in four different points ps = (xs,x2), pe = (x6,x2), p7 = (x7,k)

and pg = (xg,k), with x¢ < —2 <2 < x5 and x7 < —2 < 2 < xg and the crossing limit

cycles of type 97 intersect the discontinuity curve £; in four different points pg = (xg,x%),

P10 = (ﬂo,x%o), p11 = (x11,k) and p12 = (x12,k), with 2 < x19 < x9 and 2 < x1] < X2

these points must satisfy systems (4-31), (4-37) and (4-40) respectively. Considering the
PWLC (4-64) and k = 4, systems (4-31), (4-37) and (4-40) become
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—7.123782.. 4 x1 (—8.147767.. + x1(5.269300..
+(—1.413698.. 4+ 0.127911..x1 )x1)) + (13.802561.. — 4x3)x, = 0,

0.227189.. 4 x,(16.008041... + x7) + x3(—22.915603..
+x3(3.784333.. + (1.726890.. — 1.210282..x3)x3)) = 0,

—55.231640.. +x3(—36.250863.. + x3(16.174485..

202
+(—1.037284.. +0.408356..x3)x3)) + (? - 4x4> x4 =0,

11.447141.. + x1(36.187810.. + x1 (—6.502051.. 4 (0.845414.. — 0.089933. x| )x1 ))
+x4(—39.569467... + 4x4) = 0,
xs5(—8.147767.. + x5(5.269300.. + (—1.413698.. +0.127911..x5)x5))
)

+x6(8.147767.. + x6(—5.269300... + (1.413698.. — 0.127911..x6)x6)) = O,

4
25.055786.. 4 x6(13.182255.. + x6(—3.149369.. + (—5 +0.221355..x6> X))

+(—9.982255.. — 4x7)x7
101
4(x7 —x3) (—W +x7 +x8)
11.447141.. 4+ x5(36.187810.. +x5(—6.502051.. 4 (0.845414.. — 0.089933. .x5)x5) )
+x3(—39.569467.. + 4xg)

x10(8.147767.. 4+ x10(—5.269300.. + (1.413698.. — 0.127911..x10)x10))
Hxo(—8.147767... 4+ x9(5.269300.. + (—1.413698.. +-0.127911..x0)x9)) = 0,

—11.447141.. + x10(—36.187810.. + x19(6.502051.. + (—0.845414..
+0.089933..x10)x10)) + (39.569467.. — 4x11)x1; =0,
4(x11 —x12) (—% +x11 +X12) =0,

2.861785.. + (—9.892366.. + x12)x12 + x9(9.046952..
+x9(—1.625512.. + (0.211353.. — 0.022483..x9)x9)) = 0.
(4-65)
We have four real solutions ¢ = (x},xb,x5,xl,xk,xk xb xk xh,x)g,xh X))
with i = 1,2,3,4, for system (4-65) that satisfy the above conditions,
namely ¢' = (6,1/2,2/5,8,87/10,—-31/10,—-23/10,62/5,5,19/5,3,71/10); ¢* =
(317/50,0.042569..,1/25,8.417274..,861 /100, —3.007479..,—2.117234..,12.217234..,
5,19/5,3,71/10); ¢° = (1479/250, —0.610424.., —1/2, 7.904488.., 883/100,
—3.233408.., —2.568105.., 12.668105.., 51/10, 3.582979.., 2.936322.., 7.163677..),
and ¢* = (15/2, —1.752776.., —1.049779.., 10.157706.., 883/100, —3.233408..,
—2.568105.., 12.668105.., 51/10, 3.582979.., 2.936322.., 7.163677..) these four solu-

tions generated four crossing limit cycles of type 67, three crossing limit cycles of type

0,

0,

0,

8 and two crossing limit cycle of type 97. See these crossing limit cycles of the PWLC
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(4-64) in Figure 4.24.

Here we obtain a total of nine crossing limit cycles between limit cycles of types
61, 8 and 91, moreover these nine crossing limit cycles have the configuration (4,3,2).
We observed that this lower bound for the maximum number of crossing limit cycles
of types 61, 8 and 9" simultaneously, could be also obtained with other configurations.
When we build two crossing limit cycles of each type we obtain that system (4-40) has all
parameters determined, and therefore we can not build a third crossing limit cycle of type
9T, Systems (4-31), (4-37) which generated the limit cycles of types 8 and 91 would still
have free parameters and it is possible verify that we can have the configurations (4,3,2)
or (3,4,2). Here we have illustrated the configuration (4,3,2).

This completes the proof of statement (xi) of Theorem /. UJ

4.6 Discussions and conclusions

In this chapter we study on the numbers of crossing limit cycles with four points
on the discontinuity curve X, when X is a reducible cubic curve formed either by a circle
and a straight line, or by a parabola and a straight line, this is, the numbers N%k and 9\[4~k,
ke R.

First we study the crossing limit cycles for PWLC when the discontinuity curve is
formed by a circle and a straight line, X, here we have three types of crossing limit cycles
and we analyze the numbers N‘{k in each case. Similar to the case of PWLC separated
by conic (LV) which was studied in the Chapter 3 due to total of parameters, unknown
variables and the number the regions considered in these cases it is difficult to apply the
usual techniques such as Grobner basis, resultant theory or Bezout inequality. Therefore
in this chapter we only got provide lower bound for the maximum numbers of crossing
limit cycles in each family.

With regard to the family of PWLC which discontinuity curve is formed by a
parabola and a straight line, we observed that eight types of cycles arise and we study on
the maximum number for each type, nevertheless similarly to the above case in Theorem
H we only got provide lower bounds for the maximum numbers of crossing limit cycles
in each family and of each type.

Later on in Theorem I we analyze the possibility of having PWLC with two or
three types of crossing limit cycles simultaneously.

With the techniques used in this chapter we only got provide lower bounds for the
maximum numbers of crossing limit cycles in each family, nevertheless by the numerical
computations made for the families ¥5,, fik with £ € R and the illustrated examples of

Theorems G, H and I, we believe that the numbers N‘ék and N%k are the upper bounds
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for the maximum numbers of crossing limit cycles in each family which we aim study in

future works.
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