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Abstract

Hysteresis is a special type of behavior encountered in physical systems: in a hysteretic

system, when the input is periodic and varies slowly, the steady-state part of the

output-versus-input graph becomes a loop called hysteresis loop. In the presence of

perturbed inputs, this hysteresis loop presents small lobes called minor loops that are

located inside a larger curve called major loop. The study of minor loops is being

increasingly popular since it leads to a quantification of the loss of energy. The aim

of the present paper is to give an explicit analytic expression of the minor loops of

the LuGre and the Dahl models of dynamic dry friction.
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1. Introduction

Hysteresis is a nonlinear phenomenon observed in some physical systems under

low-frequency excitations. It appears in many areas as biology, electronics, ferroelas-

ticity, magnetism, mechanics or optics [3, 4, 14, 16, 22]. This phenomenon is currently

classified into two categories: rate independent (RI) and rate dependent (RD) hys-

teresis. For RI hysteresis, the output-versus-input graph of the hysteresis system does

not change with the frequency of the input signal. This is the case for example of

the Bouc-Wen or the Preisach models, see [13] and [17] respectively. For RD hys-

teresis, the output-versus-input graph of the hysteresis system may change with the

frequency, but it converges in some sense to a fixed loop called the hysteresis loop
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when the frequency goes to zero. This is the case for example of the LuGre model

and the semilinear Duhem model, see [19] and [12, 20] respectively. Research in the

field of hysteresis has focused mainly on the study of rate-independent hysteresis, and

it is only in the last 15 years that the importance of rate-dependent phenomena has

been acknowledged, and it constitutes a challenge by itself.

The recent years have witnessed a growing interest in a phenomenon that appears

in hysteretic systems under perturbed periodic signals: the hysteresis loop shows to

be composed of a big cycle called major loop, and one or several small lobes called

minor loops located inside the major loop. Figure 1 shows the hysteresis loop of a

magnetic system when the input is the one of Figure 2, see [10] for instance.
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Figure 1: Hysteresis loop of a magnetic system with the input of Figure 2. Black: major loop. Grey:

minor loop.
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Figure 2: A bimodal T–periodic input u(t) versus t.

This interest in the study of minors loops is due in part to the fact that minor
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loops are related to a loss of energy, see [24] for instance.

From a formal point of view, minor loops have been studied mainly in relation

with the Preisach model [17, p.19]. Apart from [12, Sections 10, 11.9] we are not

aware of any mathematical analysis of minor loops of hysteresis systems given by

differential equations.

The aim of the present paper is to fill this void by providing an explicit analytic

description of the minor loops of the Dahl and the LuGre models.

The Dahl model is an idealization of dynamic dry friction proposed by Dahl in

1976 [6]. This model relates an input displacement u to an output force y as

y(t) = Fcw(t),

ẇ(t) = ρ
(
u̇(t)− |u̇(t)|w(t)

)
,

− 1 ≤ w(0) ≤ 1,

where w is an internal state and ρ > 0, Fc > 0 are constants. A good introductory

text on the relationship between the Dahl model and the Coulomb model of dry

friction may be found in [8].

The LuGre model is a generalization of the Dahl model introduced in 1995 to

include the Stribeck effect, that is the decrease of friction at low velocities [5]. The

LuGre model is given by [2]:

ẋ (t) = −σ0
|u̇(t)|
g
(
u̇(t)

)x (t) + u̇(t),

x(0) = x0,

F (t) = σ0x(t) + σ1ẋ(t) + f
(
u̇(t)

)
,

(1)

where t ≥ 0 denotes time; the parameters σ0 > 0 and σ1 > 0 are respectively the

stiffness and the microscopic damping friction coefficients; the function g is continuous

with g (ϑ) > 0 for all ϑ ∈ R and it represents the macrodamping friction ; x(t) ∈ R
is the average deflection of the bristles; x0 ∈ R is the initial state; u(t) is the relative

displacement and is the input of the system; F (t) is the friction force and is the output

of the system; and f is continuous and such that f(0) = 0. When the function g is

constant, σ1 = 0 and f is the zero function, the system (1) reduces to the Dahl model.

Both the LuGre and the Dahl models have been used in various applications, see for

instance [1, 7, 9].

The main contribution of this paper is Theorem A which is stated in Section 3.1.
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This theorem provides the analytic description of the minor loop of the LuGre and

Dahl models when the input is bimodal like in Figure 2.

The paper is organized as follows: Section 2 provides the mathematical notation

used in the text. In Section 3 we present and prove the main result which is the

analytical description of the minor loop of the LuGre and Dahl models. Section 4

has a pedagogical interest: using numerical simulations we present examples that

illustrate the constructive process which leads to the hysteresis and minor loops.

Some of these examples are aimed for the reader who may not be familiar with the

technicalities that underline the methodology used here. The conclusions are provided

in Section 5.

2. Mathematical notation

We say that a subset of R is measurable when it is Lebesgue measurable. Consider

a function g : I ⊆ R → R where I is an interval. We say that g is measurable if

g−1(B) is a measurable set for any set B in the Borel algebra of R or, equivalently,

if {x ∈ I : g(x) > a} is a measurable set for all a ∈ R, [21, 23]. For a measurable

function g : I → R, ‖g‖ denotes the essential supremum of the function |g| where | · |
is the absolute value.

We recall that C0(R+,R) denotes the space of continuous functions defined from

R+ to R endowed with the norm ‖ · ‖. Also W 1;∞(R+,R) denotes the Sobolev space

of absolutely continuous functions u : R+ → R. For this class of functions, the

derivative u̇ is measurable, and we have ‖u‖ < ∞, ‖u̇‖ < ∞. Endowed with the

norm ‖u‖1,∞ = max (‖u‖, ‖u̇‖), W 1;∞(R+,R) is a Banach space [15, pp. 280–281].

Finally, L∞(I,R) denotes the Banach space of measurable functions u : I → R such

that ‖u‖ <∞, endowed with the norm ‖ · ‖. For T > 0 we define ΩT as the set of all

T–periodic functions u ∈ W 1;∞(R+,R).

3. Main result

3.1. Statement of the main result

We consider the LuGre model (1) with an input u ∈ W 1;∞(R+,R). In [19] it is

proved that for all x0 ∈ R, the differential equation (1) has a unique Carathéodory

solution x ∈ W 1;∞(R+,R) and that F ∈ L∞(R+,R).
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To present the main result of this work which is the analytic characterization of

the minor loop we define formally the set of bimodal inputs needed to generate this

minor loop.

Definition 1. Let umin,1, umin,2, umax,1, umax,2 ∈ R be such that umin,1 ≤ umin,2 <

umax,1 ≤ umax,2 and at least one of the following holds: umin,1 6= umin,2 or umax,1 6=
umax,2. Let t1, t2, t3, t4 ∈ R+ be such that 0 < t1 < t2 < t3 < t4. We define

Mumin,1,umin,2,umax,1,umax,2,t1,t2,t3,t4 as the set of all functions u ∈ Ωt4 such that u is

strictly increasing on the interval [0, t1], strictly decreasing on the interval [t1, t2],

strictly increasing on the interval [t2, t3], strictly decreasing on the interval [t3, t4];

and u(0) = umin,1, u(t1) = umax,1, u(t2) = umin,2, u(t3) = umax,2, u(t4) = u(0).

Theorem A. Let us consider the LuGre model given by Equations (1) with an input

u ∈Mumin,1,umin,2,umax,1,umax,2,t1,t2,t3,t4. Then the following statements hold:

(a) The hysteresis loop that corresponds to the input u is the set

G◦u =
{(
ψu(t), y

◦(t)
)
∈ R2, t ∈ [0, %4]

}
,

where y◦ is given by

y◦(t) = e−
σ0
g(0)

(t−%i)
(
y◦(%i)− g(0)

[
e
σ0
g(0)

(t−%i) − 1
])
, for t ∈ [%i, %i+1]

and i ∈ {0, 1, 2, 3}, and where

y◦(0) = g(0)
e−

σ0
g(0)

%4

1− e−
σ0
g(0)

%4

(
2e

σ0
g(0)

%1 − 2e
σ0
g(0)

%2 + 2e
σ0
g(0)

%3 − e
σ0
g(0)

%4 − 1
)

and

y◦(%i) = e−
σ0
g(0)

(%i−%i−1)
(
y◦(%i−1) + g(0)

[
e
σ0
g(0)

(%i−%i−1) − 1
])

for i ∈ {1, 2, 3, 4};

and ψu is given by

ψu(t) =



t+ umin,1 for t ∈ [0, %1],

−t+ %1 + umax,1 for t ∈ [%1, %2],

t− %2 + umin,2 for t ∈ [%2, %3],

−t+ %3 + umax,2 for t ∈ [%3, %4],

being %0 = 0, %1 = umax,1 − umin,1 > 0, %2 = %1 + umax,1 − umin,2 > %1,

%3 = %2 + umax,2 − umin,2 > %2, and %4 = %3 + umax,2 − umin,1 > %3.
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(b) The minor loop that corresponds to the input u is the set

Nu =
{(
ψu(t), y

◦(t)
)
, t ∈ [%1, %5]

}
,

where %5 = umax,1 − umin,2 + %2 ∈ (%2, %3].

Comment. Observe that the setsG◦u andNu are the geometric loci of parametrized

curves. Theorem A, thus, gives an explicit parametrization of these curves.

3.2. Proof of Theorem A

The proof of Theorem A is done is three steps:

Step 1: The hysteresis loop of the LuGre and the Dahl models are derived in Section

3.2.1.

Step 2: A normalized input is presented in Section 3.2.2.

Step 3: The determination of the equations of the minor loop is done in Section

3.2.3.

3.2.1. Hysteresis loop of the LuGre and the Dahl models

To prove Theorem A and therefore to derive the explicit expression of the hys-

teresis loop of the LuGre and the Dahl models, we follow the methodology presented

in [11, 19]. In this section we recall and adapt the main steps of this methodology.

The reader unfamiliar with this theoretical framework is first referred to Example 1

in Section 4.1.

Let u ∈ Mumin,1,umin,2,umax,1,umax,2,t1,t2,t3,t4 and take T = t4. Also, take γ ∈ (0,∞)

and consider the linear time-scale change sγ : R → R defined by sγ(t) = t/γ for all

t ∈ R. Then u ◦ sγ is γT–periodic.

The system (1) for which the input is u ◦ sγ can be written as

ẋγ (t) = −σ0

∣∣ ˙︷ ︷
u ◦ sγ(t)

∣∣
g
( ˙︷ ︷
u ◦ sγ(t)

)xγ (t) +
˙︷ ︷

u ◦ sγ (t) , for almost all t ∈ R+,

xγ(0) = x0,

Fγ (t) = σ0xγ (t) + σ1ẋγ(t) + f
( ˙︷ ︷
u ◦ sγ(t)

)
, for almost all t ∈ R+.

On the other hand,

˙︷ ︷
u ◦ sγ(t) = u̇

(
sγ(t)

)
· ṡγ(t) = u̇

(
t

γ

)
· 1

γ
,
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so that we get

ẋγ (t) = −σ0

∣∣∣ 1γ u̇( tγ)∣∣∣
g
(

1
γ
u̇
(
t
γ

))xγ (t) +
1

γ
u̇

(
t

γ

)
, for almost all t ∈ R+,

xγ(0) = x0,

Fγ (t) = σ0xγ (t) + σ1ẋγ(t) + f

(
1

γ
u̇

(
t

γ

))
, for almost all t ∈ R+.

Now, defining ν = t/γ we rewrite these relations in terms of ν obtaining

γẋγ (γν) = −σ0
|u̇(ν)|

g
(

1
γ
u̇(ν)

)xγ(γν) + u̇(ν), for almost all ν ∈ R+,

xγ(0) = x0,

Fγ(γν) = σ0xγ(γν) + σ1ẋγ(γν) + f

(
1

γ
u̇(ν)

)
, for almost all ν ∈ R+.

(2)

We define the function zγ by the relation zγ = xγ ◦ s1/γ so that

żγ(ν) = ẋγ
(
s1/γ(ν)

)
· ṡ1/γ(ν) = ẋγ(γν) · γ.

Substituting in (2) provides:

żγ (t) = −σ0
|u̇(t)|

g
(
u̇(t)
γ

)zγ(t) + u̇(t), for almost all t ∈ R+,

zγ(0) = x0,

yγ(t) = σ0zγ(t) +
σ1
γ
żγ(t) + f

(
u̇(t)

γ

)
, for almost all t ∈ R+,

(3)

where yγ = Fγ ◦ s1/γ.
For a given γ > 0, the corresponding output-versus-input graph is the set Gu◦sγ ={(
u ◦ sγ(t), Fγ(t)

)
, t ≥ 0

}
=
{(
u(t), Fγ ◦ s1/γ(t) = yγ(t)

)
, t ≥ 0

}
. The hysteresis

loop of system (3) is the output-versus-input graph obtained for very slow inputs

(that is when γ → ∞) in steady state. The next result, which is a straightforward

combination of [18, Proposition 5] and [19, Theorem 9], describes the result of this

convergence process.

Theorem 2 ([18, 19]). The following statements hold:
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(a) The sequence of functions (yγ)γ>0 converges in the space L∞(R+,R) as γ →∞.

Denote y?u = limγ→∞ yγ, then for all t ∈ R+ we have

y?u(t) = σ0e
− σ0
g(0)

ρu(t)

(
x0 +

∫ t

0

e
σ0
g(0)

ρu(τ)u̇(τ)dτ

)
, (4)

ρu(t) =

∫ t

0

|u̇(τ)|dτ. (5)

(b) For any k ∈ N define the function y?u,k ∈ L∞
(
[0, T ],R

)
by y?u,k(t) = y?u(t+ kT ),

for all t ∈ [0, T ]. The sequence of functions (y?u,k)k∈N converges in the space

L∞
(
[0, T ],R

)
as k →∞. Denote y◦u = limk→∞ y

?
u,k, then

y◦u(t) = σ0e
− σ0
g(0)

ρu(t)

(
y◦u(0)

σ0
+

∫ t

0

e
σ0
g(0)

ρu(τ)u̇(τ)dτ

)
for all t ∈ [0, T ]. (6)

Moreover, y◦u(T ) = y◦u(0).

Statement (a) implies that the graphs Gu◦sγ converge in a sense precised in [11,

Lemma 9] to the graph G?
u =

{(
u(t), y?u(t)

)
, t ≥ 0

}
as γ →∞. The hysteresis loop is

given by the “steady state” of the parametrized curve G?
u which by statement (b) is

the set

G◦u =
{(
u(t), y◦u(t)

)
, t ∈ [0, T ]

}
. (7)

Moreover, Theorem 2 (b) gives

y◦u(T ) = σ0e
− σ0
g(0)

ρu(T )

(
y◦u(0)

σ0
+

∫ T

0

e
σ0
g(0)

ρu(τ)u̇(τ)dτ

)
,

y◦u(T ) = y◦u(0),

which leads to

y◦u(0) =
σ0e
− σ0
g(0)

ρu(T )
∫ T
0

e
σ0
g(0)

ρu(τ)u̇(τ)dτ

1− e−
σ0
g(0)

ρu(T )
. (8)

Equations (6) and (8) provide the analytical expression of the hysteresis loop (7).

This expression includes both the major loop and the minor loop.

Observe that for the LuGre model neither σ1 nor f intervene in the equation of

the hysteresis loop, and only the value g(0) appears in this equation. Also note that

Equations (6)–(8) are also valid for the Dahl model since the latter is a particular

case of the LuGre model.

In Example 2 of Section 4.2 the reader can find a detailed illustration of the

concepts presented in this section.
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3.2.2. The normalized input

The hysteresis loop of the LuGre and the Dahl models is given in (7), and it is

characterized by the function y◦u of Theorem 2 (b). Note that we are considering gen-

eral input functions u ∈Mumin,1,umin,2,umax,1,umax,2,t1,t2,t3,t4 that may not allow an explicit

calculation of the integral present in Equation (6). To get an explicit calculation of

that integral we follow the approach of [11] and [19] that leads to the explicit expres-

sion of the hysteresis loop by using the so-called normalized input ψu associated to

u. The use of the normalized input will give another parametrization of the curve in

(7), an explicit one.

According to [11], the normalized input associated to u is a piecewise-linear func-

tion ψu ∈ W 1;∞(R+,R) that satisfies

ψu
(
ρu(t)

)
= u(t) for all t ∈ R+, (9)

where ρu(t) =
∫ t
0
|u̇(τ)|dτ is the variation function of u. Note that ρu is strictly

increasing so that it is invertible, and ρ−1u is also strictly increasing. From equation

(9) it comes that ψu = u ◦ ρ−1u so that ψu is strictly increasing on the interval [0, %1],

where %1 = ρu(t1). Thus ψ̇u(%) ≥ 0 when % ∈ (0, %1) and ψ̇u(%) exists. On the other

hand, by [11, Lemma 2], the set on which ψ̇u is not defined or is different from ±1

has measure zero. Thus ψ̇u(%) = 1 for almost all % ∈ (0, %1). Using the fact that ψu

is absolutely continuous we obtain from the Fundamental Theorem of Calculus that

ψu(%)− ψu(0) =

∫ %

0

ψ̇u(τ) dτ =

∫ %

0

dτ = %, for all % ∈ [0, %1].

Taking into account that ψu
(
ρu(0)

)
= u(0) it comes that ψu(0) = umin,1 so that

ψu(%) = %+ umin,1, for all % ∈ [0, %1].

The details for the intervals [%1, %2], [%2, %3], and [%3, %4] are given hereafter.

• By definition of u we have that u is strictly increasing on the interval [0, t1] so

that

%1 = ρu(t1) =

∫ t1

0

|u̇(t)|dt =

∫ t1

0

u̇(t)dt = u(t1)− u(0) = umax,1 − umin,1.

Also, from ψu(%) = %+ umin,1 for % ∈ [0, %1] we get

ψu(%1) = %1 + umin,1 = umax,1.
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Note that ρu is strictly increasing so that it is invertible, and ρ−1u is also strictly

increasing. From equation (9) it comes that ψu = u ◦ ρ−1u so that ψu is strictly

decreasing on the interval [%1, %2], where %2 = ρu(t2). Thus ψ̇u(%) ≤ 0 when

% ∈ (%1, %2) and ψ̇u(%) exists. On the other hand, by [11, Lemma 2], the set

on which ψ̇u is not defined or is different from ±1 has measure zero. Thus

ψ̇u(%) = −1 for almost all % ∈ (%1, %2). Using the fact that ψu is absolutely

continuous we obtain from the Fundamental Theorem of Calculus that

ψu(%)− ψu(%1) =

∫ %

%1

ψ̇u(τ) dτ =

∫ %

%1

−1 dτ = %1 − %, for all % ∈ [%1, %2],

which leads to

ψu(%) = ψu(%1) + %1 − % = umax,1 + %1 − %.

• By definition of u we have that u is strictly decreasing on the interval [t1, t2] so

that

%2 = ρu(t2) =

∫ t2

0

|u̇(t)|dt =

∫ t1

0

|u̇(t)|dt︸ ︷︷ ︸
%1

+

∫ t2

t1

−u̇(t)dt

= %1 + u(t1)− u(t2) = %1 + umax,1 − umin,2.

Also, from ψu(%) = umax,1 + %1 − % for % ∈ [%1, %2] we get

ψu(%2) = umax,1 + %1 − %2 = umin,2.

From equation (9) it comes that ψu = u◦ρ−1u so that ψu is strictly increasing on

the interval [%2, %3], where %3 = ρu(t3). Thus ψ̇u(%) ≥ 0 when % ∈ (%2, %3) and

ψ̇u(%) exists. On the other hand, by [11, Lemma 2], the set on which ψ̇u is not

defined or is different from ±1 has measure zero. Thus ψ̇u(%) = 1 for almost all

% ∈ (%2, %3). Using the fact that ψu is absolutely continuous we obtain from the

Fundamental Theorem of Calculus that

ψu(%)− ψu(%2) =

∫ %

%2

ψ̇u(τ) dτ =

∫ %

%2

dτ = %− %2, for all % ∈ [%2, %3],

which leads to

ψu(%) = ψu(%2) + %− %2 = umin,2 + %− %2.
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• By definition of u we have that u is strictly increasing on the interval [t2, t3] so

that

%3 = ρu(t3) =

∫ t3

0

|u̇(t)|dt =

∫ t2

0

|u̇(t)|dt︸ ︷︷ ︸
%2

+

∫ t3

t2

u̇(t)dt

= %2 + u(t3)− u(t2) = %2 + umax,2 − umin,2.

Also, from ψu(%) = umin,2 + %− %2 for % ∈ [%2, %3] we get

ψu(%3) = umin,2 + %3 − %2 = umax,2.

From equation (9) it comes that ψu = u◦ρ−1u so that ψu is strictly decreasing on

the interval [%3, %4], where %4 = ρu(t4). Thus ψ̇u(%) ≤ 0 when % ∈ (%3, %4) and

ψ̇u(%) exists. On the other hand, by [11, Lemma 2], the set on which ψ̇u is not

defined or is different from ±1 has measure zero. Thus ψ̇u(%) = −1 for almost

all % ∈ (%3, %4). Using the fact that ψu is absolutely continuous we obtain from

the Fundamental Theorem of Calculus that

ψu(%)− ψu(%3) =

∫ %

%3

ψ̇u(τ) dτ =

∫ %

%3

−1 dτ = %3 − %, for all % ∈ [%3, %4],

which leads to

ψu(%) = ψu(%3) + %3 − % = umax,2 + %3 − %.

As a summary, we have

ψu(%) =



%+ umin,1 for % ∈ [0, %1],

−%+ %1 + umax,1 for ρ ∈ [%1, %2],

%− %2 + umin,2 for % ∈ [%2, %3],

−%+ %3 + umax,2 for % ∈ [%3, %4],

(10)

where %1 = umax,1 − umin,1 > 0, %2 = %1 + umax,1 − umin,2 > %1, %3 = %2 + umax,2 −
umin,2 > %2, and %4 = %3 + umax,2 − umin,1 > %3. The function ψu is continuous and

%4–periodic. Its graph in the interval [0, %4] is displayed in Figure 3.
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Figure 3: ψu(%) versus %.

3.2.3. Analytic expression of the hysteresis and minor loops

Applying Theorem 2 (b) (Equation (6)) to the particular input ψu, and denoting

for simplicity y◦ := y◦ψu we obtain that

y◦(%) = σ0e
− σ0
g(0)

%

(
y◦(0)

σ0
+

∫ %

0

e
σ0
g(0)

τ ψ̇u(τ)dτ

)
for % ∈ [0, %4].

Since this expression can be explicitly integrated, we obtain

y◦(%) = e−
σ0
g(0)

%
(
y◦(0) + g(0)

[
e
σ0
g(0)

% − 1
])

for % ∈ [0, %1], with (11)

y◦(0) = g(0)
e−

σ0
g(0)

%4

1− e−
σ0
g(0)

%4

(
2e

σ0
g(0)

%1 − 2e
σ0
g(0)

%2 + 2e
σ0
g(0)

%3 − e
σ0
g(0)

%4 − 1
)

;

y◦(%) = e−
σ0
g(0)

(%−%1)
(
y◦(%1)− g(0)

[
e
σ0
g(0)

(%−%1) − 1
])

for % ∈ [%1, %2], with (12)

y◦(%1) = e−
σ0
g(0)

%1
(
y◦(0) + g(0)

[
e
σ0
g(0)

%1 − 1
])

;

y◦(%) = e−
σ0
g(0)

(%−%2)
(
y◦(%2) + g(0)

[
e
σ0
g(0)

(%−%2) − 1
])

for % ∈ [%2, %3], with (13)

y◦(%2) = e−
σ0
g(0)

(%2−%1)
(
y◦(%1)− g(0)

[
e
σ0
g(0)

(%2−%1) − 1
])

;

and

y◦(%) = e−
σ0
g(0)

(%−%3)
(
y◦(%3)− g(0)

[
e
σ0
g(0)

(%−%3) − 1
])

for % ∈ [%3, %4], with (14)

y◦(%3) = e−
σ0
g(0)

(%3−%2)
(
y◦(%2) + g(0)

[
e
σ0
g(0)

(%3−%2) − 1
])
.
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Finally, observe that the hysteresis loop of the LuGre model that corresponds to

the input ψu is the set

G◦ψu =
{(
ψu(%), y◦(%)

)
, % ∈ [0, %4]

}
. (15)

Taking into account the fact that y◦u = y◦ ◦ ρu and u = ψu ◦ ρu it comes from [11,

Lemma 8] that G◦ψu = G◦u =
{(
u(t), y◦u(t)

)
, t ∈ [0, T ]

}
, thus proving statement (a) of

Theorem A.

To prove statement (b) of Theorem A observe that the minor loop corresponding

to the input ψu is the part of the hysteresis loop (15) that corresponds to % ∈ [%1, %5],

where

%5 = ρu(t5) =

∫ t5

0

|u̇(t)|dt = %2 + umax,1 − umin,2 ∈ (%2, %3),

and where t2 < t5 < t3 is the time such that u(t5) = u(t1), see Figure 2. This set is the

union of the two arcs
{(
ψu(%), y◦(%)

)
, % ∈ [%1, %2]

}
and

{(
ψu(%), y◦(%)

)
, % ∈ [%2, %5]

}
.

With this argument, the proof of Theorem A is complete.

We remark that the explicit construction of the hysteretic loop, and therefore

the identification of the arcs corresponding to the minor loops given in the proof of

Theorem A can be generalized to multimodal input functions giving rise to hysteresis

loops with many minor loops. This can be done using the normalized input and

Equation (6).

4. Examples

4.1. Example 1: an approach to the concept of hysteresis loop

A hysteresis system is one for which the output-versus-input graph presents a

loop in the steady state for slow inputs [12]. The way to obtain the hysteresis loop

that corresponds to a given input is as follows. Consider a periodic input t → u(t).

Composing this input with the time-scale change t → t/γ provides a new input

uγ : t → u(t/γ). This new input gives rise to an output yγ(t) such that the corre-

sponding output-versus-input graph
{(
uγ(t), yγ(t)

)
, t ≥ 0

}
converges to a fixed curve

-the hysteresis loop- in steady state when γ → ∞. Our aim in this section is to

illustrate this process using an example.

13



Consider for instance the following system constructed using the Dahl model:

ẋγ(t) = u̇γ(t)− |u̇γ(t)|xγ(t),

ẏγ(t) =− yγ(t) + xγ(t),

xγ(0) = 0, yγ(0) = 0,

(16)

with input uγ(t) = sin(2πt/γ) and output yγ(t). Figure 4 provides the output-versus-

input graph
{(
uγ(t), yγ(t)

)
, t ≥ 0

}
of system (16) for increasing values of γ.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

uγ(t)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y
γ
(t
)

γ = 20

γ = 200

γ = 2000

Figure 4: Output of system (16), yγ versus uγ . Dotted: transient; solid: steady state for γ = 2000;

dashed: steady state for γ = 200; dash-dotted: steady state for γ = 20.

It can be seen that, as γ →∞, the steady-state part of the output-versus-input graph

converges to a fixed closed curve. This curve is the hysteresis loop of system (16).

14



-10 -5 0 5 10

ν

0

1

2

g
(ν
)

Figure 5: The macrodamping friction function g(ν) versus ν.

4.2. Example 2: the hysteresis loop of the LuGre model

The aim of this section is to illustrate the concepts presented in Section 3.2.1 by

means of numerical simulations.

Following [2], to approximate the Stribeck effect we set:

g(ν) = Fc + (Fs − Fc) e−|ν/vs|
β

for ν ∈ R,

where Fc > 0 is the Coulomb friction force, Fs > 0 is the stiction force, vs > 0 is the

Stribeck velocity, and β is a strictly positive constant. The function f is taken to be

zero. The values of the different constants are taken to be σ0 = 1, σ1 = 1, Fc = 1,

Fs = 2, vs = 1, β = 1, see Figure 5.

The input is the continuous 2-periodic piecewise-linear function defined by u(t) = t

for t ∈ [0, 1] and u(t) = 2− t for t ∈ [1, 2]; see Figure 6. Observe that ψu = u.
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0 2 4 6 8

t

0

0.5

1
u
(t
)

Figure 6: u(t) versus t.

We take x (0) = x0 = 0. With these values we obtain yγ by a numerical integration

of Equations (3) using Matlab solver ode23s.. Also, using Equations (4)–(5) we obtain

y?u. Figure 7 provides the plots yγ(t) versus t for γ = 1, 10, 100 along with the plot

y?u(t) versus t. It can be seen that as γ increases, yγ converges to y?u.

0 1 2 3 4 5 6 7 8
t

-1.5

-1

-0.5

0

0.5

1

1.5

y
γ
(t
),
y
∗ u
(t
)

 γ = 1
 γ = 10
 γ = 100

 y
u

*
(t)

Figure 7: yγ(t) versus t. Dashed γ = 1, dash-dotted γ = 10, dotted γ = 100; solid y?u(t) versus t.

The functions y?u,k are given by y?u,k(t) = y?u(t + kT ), t ∈ [0, T ], k ∈ N whilst y◦u is

calculated from Equations (6) and (8). Figure 8 provides the plots y?u,k(t) versus t for

increasing values of k. It can be seen that y?u,k converges to y◦u as k →∞.
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Figure 8: Convergence of the functions y?u,k to y◦u. Dashed y?u,k(t) versus t for k = 0, 1, 2, 3; solid

y◦u(t) versus t.
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Figure 9: Convergence of the output-versus-input graph G?u to the hysteresis loop G◦
u. Dotted G?u;

solid G◦
u.

As in Example 1, the hysteresis loop is the output-versus-input graph obtained

for very slow inputs (that is when γ → ∞) in steady state (that is when k → ∞).

For a given γ, the corresponding output-versus-input graph is the set Gu◦sγ =
{(
u ◦

sγ(t), Fγ(t)
)
, t ≥ 0

}
=
{(
u(t), Fγ ◦ s1/γ(t) = yγ(t)

)
, t ≥ 0

}
. Owing to Theorem 2 (a)

and to [11, Lemma 9] it comes that the graphs Gu◦sγ converge in a sense detailed

in [11] to the graph G?
u =

{(
u(t), y?u(t)

)
, t ≥ 0

}
as γ → ∞. Equations (6) and (8)

provide the analytic expression of the hysteresis loop (7). Finally, Figure 9 provides

the graph G?
u along with the hysteresis loop G◦u.

17



4.3. Example 3: process of convergence that leads to the hysteresis and minor loops

The aim of Sections 4.3 and 4.4 is to illustrate Theorem A by means of numerical

simulations. Section 4.3 focuses on the process of convergence that leads to the

hysteresis loop. Section 4.4 focuses on the variation of the minor loop with the

model’s parameters.

The function g that characterizes the Stribeck effect is the same as in Section 4.2.

Also, the function f is taken to be zero.

The input is the continuous ρ4-periodic piecewise-linear function defined by Equa-

tion (10) where umin,1 = 0, umin,2 = 0.2, umax,1 = 1, umax,2 = 1.5, %1 = 1, %2 = 1.8,

%3 = 3.1, %4 = 4.6, see Figure 10. Observe that ψu = u and that the normalized

variable % is equal to time t.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

t

0

0.5

1

1.5

u
(t
)

Figure 10: u(t) versus t.

We take x (0) = x0 = 0. With these values we obtain yγ by a numerical integration

of Equations (3) using Matlab solver ode23s. Also, using Equations (4)–(5) we obtain

y?u. Figure 11 provides the plots yγ(t) versus t for γ = 1, 10, 100 along with the plot

y?u(t) versus t. It can be seen that as γ increases, yγ converges to y?u.
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Figure 11: yγ(t) versus t. Dashed γ = 1, dash-dotted γ = 10, dotted γ = 100; solid y?u(t) versus t.

The functions y?u,k are given by y?u,k(t) = y?u(t+ k%4), t ∈ [0, %4], k ∈ N whilst y◦u is

calculated from Equations (6) and (8). Figure 12 provides the plots y?u,k(t) versus t

for increasing values of k. It can be seen that y?u,k converges to y◦u as k →∞.
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Figure 12: Convergence of the functions y?u,k to y◦u. Dashed y?u,k(t) versus t for k = 0, 1, 2; solid

y◦u(t) versus t.

Figure 13 provides the graphs
{(
u(t), y?u,k(t)

)
, t ∈ [0, %4]

}
for k = 0, 1, 2. It can be

seen that these graphs converge to the hysteresis loop
{(
u(t), y◦u(t)

)
, t ∈ [0, %4]

}
.
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Figure 13: Convergence of the graphs
{(
u(t), y?u,k(t)

)
, t ∈ [0, %4]

}
to the hysteresis loop{(

u(t), y◦u(t)
)
, t ∈ [0, %4]

}
.

4.4. Example 4: Variation of the minor loop with the model’s parameters

We consider the LuGre model of Section 4.2 with the value σ0 = 6. The input u is

the one given in (10) (thus a normalized one) with umin,1 = 0, umin,2 = 0.5, umax,1 = 1,

umax,2 = 1.5, with its corresponding values of %i = ti for i = 1, . . . , 5, see Figure 14.

The hysteresis loop which is given in Figure 15 is obtained using Equations (11)–

(14). Observe that the shape of the minor loop depends greatly on the parameters

σ0, Fs, and on the relative values umin,2 − umin,1, umax,1 − umin,1, and umax,2 − umin,1,

see Figures 16 and 17.
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Figure 14: u(t) versus t
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Figure 15: Hysteresis loop G◦
u. The marker open circle corresponds to the point

(
u(t1), y

◦(t1)
)

whilst the marker rectangle corresponds to the point
(
u(t5), y

◦(t5)
)
. The minor loop is plotted in

solid line.
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Figure 16: Hysteresis loop G◦
u for σ0 = 1 (minor loop in solid line).
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Figure 17: Hysteresis loop G◦
u for σ0 = 1 and umin,2 = 0.2 (minor loop in solid line).

5. Conclusions

Although the phenomenon of hysteresis has been studied since the second half

of the 19th century, the behavior of minor loops as a specific issue did not emerge

as a research subject until the second half of the 20th century. The present paper

is framed within the increasing interest in the study of the behavior of minor loops.

The originality of this work comes from being the first to provide an explicit analytic

expression of the minor loops of the LuGre and the Dahl models. Our construction

can be generalized to multimodal input functions giving rise to hysteresis loops with

many minor loops. The obtained analytic expressions have been illustrated by means

of numerical simulations.
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