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On the Number of Limit Cycles in Generalized Abel Equations\ast 

Jianfeng Huang\dagger , Joan Torregrosa\ddagger , and Jordi Villadelprat\S 

Abstract. Given p, q \in \BbbZ \geq 2 with p \not = q, we study generalized Abel differential equations dx
d\theta 

= A(\theta )xp+B(\theta )xq,
where A and B are trigonometric polynomials of degrees n,m \geq 1, respectively, and we are interested
in the number of limit cycles (i.e., isolated periodic orbits) that they can have. More concretely, in
this context, an open problem is to prove the existence of an integer, depending only on p, q,m, and
n and that we denote by \scrH p,q(n,m), such that the above differential equation has at most \scrH p,q(n,m)
limit cycles. In the present paper, by means of a second order analysis using Melnikov functions, we
provide lower bounds of \scrH p,q(n,m) that, to the best of our knowledge, are larger than the previous
ones appearing in the literature. In particular, for classical Abel differential equations (i.e., p = 3
and q = 2), we prove that \scrH 3,2(n,m) \geq 2(n+m) - 1.
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1. Introduction and statements of main results. The study of the existence of periodic
orbits in ordinary differential equations has been an interesting problem for years in many
areas of mathematics, particularly in qualitative theory of differential equations. In this area of
interest, when we focus on planar polynomial vector fields, one of the most renowned classical
problems arises: to know the number and location of isolated periodic orbits, the so-called
limit cycles, in terms of its degree n. The study of this problem began at the end of the 19th
century with the seminal works by Poincar\'e, but takes its name after Hilbert because of his
famous list of unsolved problems published in 1900. From the original list of 23 problems, the
16th is still open, in particular, its second part. More precisely (see [26, 36] for details), the
``existential"" Hilbert's 16th problem is to prove that for any n \geq 2 there exists a finite number
\scrH (n) such that any polynomial vector field of degree \leq n has less than \scrH (n) limit cycles.
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