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Abstract

We classify the full set of convex central configurations in the Newtonian four-body prob-
lem. Particular attention is given to configurations possessing some type of symmetry or
defining geometric property. Special cases considered include kite, trapezoidal, co-circular,
equidiagonal, orthodiagonal, and bisecting-diagonal configurations. Good coordinates for de-
scribing the set are established. We use them to prove that the set of four-body convex central
configurations with positive masses is three-dimensional, a graph over a domain D that is the
union of elementary regions in R+3

.
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1 Introduction

The study of central configurations in the Newtonian n-body problem is an active subfield of
celestial mechanics. A configuration is central if the gravitational force on each body is a common
scalar multiple of its position vector with respect to the center of mass. Perhaps the most well
known example is the equilateral triangle solution of Lagrange, discovered in 1772, consisting of
three bodies of arbitrary mass located at the vertices of an equilateral triangle [21]. Released from
rest, any central configuration will collapse homothetically toward its center of mass, ending in
total collision. In fact, any solution of the n-body problem containing a collision must have its
colliding bodies asymptotically approaching a central configuration [29]. On the other hand, given
the appropriate initial velocities, a central configuration can rotate rigidly about its center of mass,
generating a periodic solution known as a relative equilibrium. These are some of the only explicitly
known solutions in the n-body problem. For more background on central configurations and their
special properties, see [4, 24, 25, 27, 29, 32, 34] and the references therein.

In this paper we focus on four-body convex central configurations. A configuration is convex if
no body lies inside or on the convex hull of the other three bodies (e.g., a rhombus or a trapezoid);
otherwise, it is called concave. Most of the results on four-body central configurations are either for
a specific choice of masses or for a particular geometric type of configuration. For instance, Albouy
proved that all of the four-body equal mass central configurations possess a line of symmetry. This
in turn allows for a complete solution to the equal mass case [1, 2]. Albouy, Fu, and Sun showed
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that a convex central configuration with two equal masses opposite each other is symmetric, with
the equal masses equidistant from the line of symmetry [5]. Recently, Fernandes, Llibre, and Mello
proved that a convex central configuration with two pairs of adjacent masses must be an isosceles
trapezoid [15]. A numerical study for the number of central configurations in the four-body problem
with arbitrary masses was done by Simó in [33]. Other studies have focused on examples with one
infinitesimal mass, solutions of the planar restricted four-body problem [7, 8].

In terms of restricting the problem to a particular shape, Cors and Roberts classified the four-
body co-circular central configurations in [12] while Corbera et al. recently studied the trapezoidal
solutions [10] (see also [31]). Symmetric central configurations are often the easiest to analyze. The
regular n-gon (n ≥ 4) is a central configuration as long as the masses are all equal. A kite is a
symmetric quadrilateral with two bodies lying on the axis of symmetry and the other two bodies
positioned equidistant from it. A kite may either be convex or concave. In the convex case, the
diagonals are always perpendicular. A recent investigation of the kite central configurations (both
convex and concave) was carried out in [14].

One of the major results in the study of convex central configurations is that they exist. MacMil-
lan and Bartky showed that for any four masses and any ordering of the bodies, there exists a convex
central configuration [22]. This was proven again later in a simpler way by Xia [35]. It is an open
question as to whether this solution must be unique. This is problem 10 on a published list of open
questions in celestial mechanics [3]. Hampton showed that for any four choices of positive masses
there exists a concave central configuration [17]. Uniqueness does not hold in the concave setting
as the example of an equilateral triangle with an arbitrary mass at the center illustrates. Finally,
Hampton and Moeckel showed that given four positive masses, the number of equivalence classes
of central configurations under rotations, translations, and dilations is finite [18].

Here we study the full space of four-body convex central configurations, focusing on how various
geometrically-defined classes fit within the larger set. We introduce simple yet effective coordinates
to describe the space up to an isometry, rescaling, or relabeling of the bodies. Three radial coor-
dinates a, b, and c represent the distance from three of the bodies, respectively, to the intersection
of the diagonals. The remaining coordinate θ is the angle between the two diagonals. Positivity
of the masses imposes various constraints on the coordinates. We find a simply connected domain
D ⊂ R+3

, the union of four elementary regions, such that for any (a, b, c) ∈ D, there exists a unique
angle θ which makes the configuration central with positive masses. The angle θ = f(a, b, c) is
a differentiable function on the interior of D. Thus the set of convex central configurations with
positive masses is the graph of a function of three variables. We also prove that π/3 < θ ≤ π/2,
with θ = π/2 if and only if the configuration is a kite.

One of the surprising features of our coordinate system is the simple linear and quadratic equa-
tions that define various classes of quadrilaterals. The kite configurations lie on two orthogonal
planes that intersect in the family of rhombii solutions. These planes form a portion of the bound-
ary of D. The co-circular and trapezoidal configurations each lie on saddles in D, while the equidi-
agonal solutions are located on a plane. These three types of configurations intersect in a line
corresponding to the isosceles trapezoid family. Our work provides a unifying structure for the set
of convex central configurations and a clear picture of how the special sub-cases are situated within
the broader set.

The paper is organized as follows. In the next section we develop the equations for a four-body
central configuration using mutual distance coordinates. In Section 3 we introduce our coordinate
system and study the important domain D, proving that θ is a differentiable function on D. We
also verify the bounds on θ and show that it increases with c. Section 4 focuses on four special
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cases—kite, trapezoidal, co-circular, and equidiagonal configurations—and how they fit together
within D.

Figure 3 and all of the three-dimensional plots in this paper were created using Matlab [23]. All
other figures were made using the open-source software Sage [30].

2 Four-Body Planar Central Configurations

Let qi ∈ R2 and mi denote the position and mass, respectively, of the ith body. We will assume that
mi > 0 ∀i, while recognizing that the zero-mass case is important for defining certain boundaries of
our space. Let rij = ||qi−qj|| represent the distance between the ith and jth bodies. If M =

∑n
i=1mi

is the sum of the masses, then the center of mass is given by c = 1
M

∑n
i=1miqi. The motion of the

bodies is governed by the Newtonian potential function

U(q) =
n∑
i<j

mimj

rij
.

The moment of inertia with respect to the center of mass is given by

I(q) =
n∑
i=1

mi‖qi − c‖2 =
1

M

∑
i<j

mimjr
2
ij.

This can be interpreted as a measure of the relative size of the configuration.
There are several ways to describe a central configuration. We follow the topological approach.

Definition 2.1. A planar central configuration (q1, . . . , qn) ∈ R2n is a critical point of U subject to
the constraint I = I0, where I0 > 0 is a constant.

It is important to note that, due to the invariance of U and I under isometries, any rotation,
translation, or scaling of a central configuration still results in a central configuration.

2.1 Mutual distance coordinates

Our derivation of the equations for a four-body central configuration follows the nice exposition of
Schmidt [32]. In the case of four bodies, the six mutual distances r12, r13, r14, r23, r24, r34 turn out to
be excellent coordinates. They describe a configuration in the plane as long as the Cayley-Menger
determinant

V =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣
vanishes and the triangle inequality rij + rjk > rik holds for any choice of indices with i 6= j 6= k.
The constraint V = 0 is necessary for locating planar central configurations; without it, the only
critical points of U restricted to I = I0 are regular tetrahedra (a spatial central configuration for
any choice of masses). Therefore, we search for critical points of the function

U + λ(I − I0) + µV (1)

3



satisfying I = I0 and V = 0, where λ and µ are Lagrange multipliers.
A useful formula involving the Cayley-Menger determinant is

∂V

∂r2
ij

= −32AiAj , (2)

where Ai is the signed area of the triangle whose vertices contain all bodies except for the ith body.
Formula (2) holds only when restricting to planar configurations.

Differentiating (1) with respect to rij and applying formula (2) yields

mimj(sij − λ
′
) = σAiAj, (3)

where sij = r−3
ij , λ

′
= 2λ/M, and σ = −64µ. Arranging the six equations of (3) as

m1m2(s12 − λ′) = σA1A2, m3m4(s34 − λ′) = σA3A4,

m1m3(s13 − λ′) = σA1A3, m2m4(s24 − λ′) = σA2A4,

m1m4(s14 − λ′) = σA1A4, m2m3(s23 − λ′) = σA2A3,

(4)

and multiplying together pairwise yields the well-known Dziobek relation [13]

(s12 − λ
′
)(s34 − λ

′
) = (s13 − λ

′
)(s24 − λ

′
) = (s14 − λ

′
)(s23 − λ

′
). (5)

This assumes that the masses and areas are all non-zero. Eliminating λ
′

from (5) produces the
important equation

(r3
24 − r3

14)(r3
13 − r3

12)(r3
23 − r3

34) = (r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23). (6)

In some sense, equation (6) is the defining equation for a four-body central configuration. It
or some equivalent variation can be found in many papers and texts (e.g., see p. 278 of [34].)
Equation (6) is clearly necessary given the above derivation. However, it is also sufficient assuming
the six mutual distances describe an actual configuration in the plane. The only other restrictions
required on the rij are those that insure solutions to system (4) yield positive masses, as explained
in the next section.

2.2 Restrictions on the mutual distances

For the remainder of the paper we will restrict our attention to four-body convex central configura-
tions. We will assume the bodies are ordered consecutively in the counterclockwise direction. This
implies that the lengths of the diagonals are r13 and r24, while the four exterior side lengths are
r12, r23, r14, and r34. With this choice of labeling, we always have A1, A3 > 0 and A2, A4 < 0. We
will also assume, without loss of generality, that the largest exterior side length is r12.

First note that σ 6= 0. If this was not the case, then equation (3) and nonzero masses would
imply that all rij are equal, which is the regular tetrahedron solution. If σ < 0, then system (4)
and positive masses implies

r12, r14, r23, r34 <
1

3
√
λ′

< r13, r24 . (7)

This means the two diagonals are strictly longer than any of the exterior sides. On the other hand,
if we assume that σ > 0, then the inequalities in (7) would be reversed. But such a configuration is
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impossible since it violates geometric properties of convex quadrilaterals such as r13 +r24 > r12 +r34

(see Lemma 2.3 in [19]).
In addition to (7), further restrictions on the exterior side lengths follow from the Dziobek

equation
(s12 − λ

′
)(s34 − λ

′
) = (s14 − λ

′
)(s23 − λ

′
). (8)

Since r12 is the largest exterior side length, we have r12 ≥ r14 and s14− λ′ ≥ s12− λ′ > 0. It follows
that s34 − λ′ ≥ s23 − λ′, otherwise equation (8) is violated. We conclude that r23 ≥ r34. A similar
argument shows that r12 ≥ r23 implies that r14 ≥ r34. Hence, the shortest exterior side is always
opposite the longest one, with equality only in the case of a square. In sum, for our particular
arrangement of the four bodies, any convex central configuration with positive masses must satisfy

r13, r24 > r12 ≥ r14, r23 ≥ r34. (9)

According to the Dziobek equations (5),

λ′ =
s12s34 − s13s24

s12 + s34 − s13 − s24

=
s12s34 − s14s23

s12 + s34 − s14 − s23

=
s13s24 − s14s23

s13 + s24 − s14 − s23

.

These expressions generate nice formulas for the ratios between the masses. From system (4), a
short calculation gives

m2

m1

= −A2(s14 − s13)

A1(s23 − s24)
,

m3

m1

=
A3(s14 − s12)

A1(s34 − s23)
,

m4

m1

= −A4(s12 − s13)

A1(s34 − s24)
(10)

and
m3

m2

= −A3(s12 − s24)

A2(s34 − s13)
,

m4

m2

=
A4(s23 − s12)

A2(s34 − s14)
,

m4

m3

= −A4(s23 − s13)

A3(s14 − s24)
. (11)

Due to equation (6), these formulas are consistent with each other. They are all well-defined for
configurations satisfying the inequalities in (9) unless s34 = s23 (and thus s12 = s14), or s34 = s14

(and thus s12 = s23). For these special cases, which correspond to symmetric kite configurations,
we use the alternative formulas

m3

m1

=
A3(s12 − s13)(s14 − s24)

A1(s23 − s13)(s34 − s24)
and

m4

m2

=
A4(s23 − s13)(s12 − s24)

A2(s34 − s13)(s14 − s24)
. (12)

The formulas obtained for the mass ratios explain why equation (6) is also sufficient for obtaining
a central configuration. If the mutual distances rij satisfy both (9) and (6), then the mass ratios
(which are positive), are given uniquely by (10), (11), or (12). We can then work backwards and
check that system (4) is satisfied so that the configuration is indeed central.

3 The Set of Convex Central Configurations

We now describe the full set of convex central configurations with positive masses, showing it is
three-dimensional, the graph of a differentiable function of three variables.
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3.1 Good coordinates

We begin by defining simple, but extremely useful coordinates. Since the space of central configura-
tions is invariant under isometries, we may apply a rotation and translation to place bodies 1 and 3
on the horizontal axis, with the origin located at the intersection of the two diagonals. It is also
permissible to rescale the configuration so that q1 = (1, 0). This alters the value of the Lagrange
multipliers, but preserves the special trait of being central.

Define the remaining three bodies to have positions q2 = (a cos θ, a sin θ), q3 = (−b, 0), and
q4 = (−c cos θ,−c sin θ), where a, b, c are radial variables and θ ∈ (0, π) is an angular variable (see
Figure 1). If one or more of the three radial variables is negative, then the configuration becomes
concave or the ordering of the bodies changes. If one or more of the radial variables vanish, then
the configuration contains a subset that is collinear or some bodies coalesce (e.g., b = c = 0 implies
r34 = 0). Thus, we will assume throughout the paper that a > 0, b > 0, and c > 0. The coordinates
(a, b, c, θ) turn out to be remarkably well-suited for describing different classes of quadrilaterals that
are also central configurations (see Section 4).

m1

m2

m3

m4

(1, 0)

(a cos θ, a sin θ)

(−b, 0)

(−c cos θ, −c sin θ)

θ

(0, 0)

1

a

b

c

Figure 1: Coordinates for a convex configuration of four bodies: three radial variables a, b, c > 0
and an angular variable θ ∈ (0, π).

In our coordinates, the six mutual distances are given by

r2
12 = a2 − 2a cos θ + 1, r2

23 = a2 + 2ab cos θ + b2, r13 = b+ 1, (13)

r2
14 = c2 + 2c cos θ + 1, r2

34 = b2 − 2bc cos θ + c2, r24 = a+ c. (14)

Based on equation (6), define F to be the function

F (a, b, c, θ) = (r3
24 − r3

14)(r3
13 − r3

12)(r3
23 − r3

34)− (r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23),

where each mutual distance is treated as a function of the variables a, b, c, and θ.
The previous discussion justifies the following lemma.
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Lemma 3.1. Let C and E denote the sets

C = {(a, b, c, θ) ∈ R+3× (0, π) : r13, r24 > r12 ≥ r14, r23 ≥ r34},
E = {s = (a, b, c, θ) ∈ R+3× (0, π) : s ∈ C and F (s) = 0}.

Any point in E corresponds to a four-body convex central configuration with positive masses. More-
over, up to an isometry, rescaling, or relabeling of the bodies, E contains all such configurations.

3.2 Defining the domain D

We will find a set D ⊂ R+3
such that for each (a, b, c) ∈ D, there exists a unique angle θ which

makes the configuration central. Specifically, we prove that there exists a differentiable function
θ = f(a, b, c) with domain D, whose graph is equivalent to E. In order to define D, we use the
mutual distance inequalities in (9) to eliminate the angular variable θ.

Lemma 3.2. The inequalities in (9) imply the following conditions on the positive variables a, b, c:

r12 ≥ r14 and r23 ≥ r34 =⇒ a ≥ c, (15)

r12 ≥ r23 and r14 ≥ r34 =⇒ b ≤ 1, (16)

r13 > r12 ≥ r14 =⇒ c <
1

a
(b2 + 2b), (17)

r13 > r12 ≥ r23 and a > 1 =⇒ b >
1

2
(−1 +

√
4a2 − 3 ), (18)

r24 > r12 ≥ r14 and 0 < a < 1 =⇒ c >
1

2
(−a+

√
4− 3a2 ), (19)

r24 > r12 ≥ r23 =⇒ c > −a+
√
a2 + b . (20)

Proof: From equations (13) and (14) we compute that

r2
12 − r2

14 = (a+ c)(a− c− 2 cos θ), r2
12 − r2

23 = (1 + b)(1− b− 2a cos θ), (21)

r2
23 − r2

34 = (a+ c)(a− c+ 2b cos θ), r2
14 − r2

34 = (1 + b)(1− b+ 2c cos θ). (22)

Since a, b, and c are all positive, r12 ≥ r14 and r23 ≥ r34 together imply that

a− c ≥ max{2 cos θ,−2b cos θ} ≥ 0. (23)

Similarly, r12 ≥ r23 and r14 ≥ r34 imply

1− b ≥ max{2a cos θ,−2c cos θ} ≥ 0. (24)

This proves implications (15) and (16).
Next, equations (13) and (14) yield

r2
13 − r2

12 = b2 + 2b− a2 + 2a cos θ and r2
24 − r2

12 = c2 + 2ac− 1 + 2a cos θ. (25)
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Since r12 ≥ r14, the first equation in (21) gives a− 2 cos θ ≥ c or a2 − 2a cos θ ≥ ac. Then r13 > r12

implies that
b2 + 2b > a2 − 2a cos θ ≥ ac, (26)

which verifies (17).
Similarly, r12 ≥ r23 and the second equation in (21) yields −2a cos θ ≥ b − 1. Then r13 > r12

implies that
b2 + 2b− a2 > −2a cos θ ≥ b− 1, (27)

which yields
b2 + b+ 1− a2 > 0. (28)

Since b and a are both positive, inequality (28) clearly holds if a ≤ 1. However, for any fixed
choice of a > 1, the value of b must be chosen strictly greater than the largest root of the quadratic
Qa(b) = b2 + b+ 1− a2. This root is 1

2
(−1 +

√
4a2 − 3), which verifies implication (18).

Next, r24 > r12 ≥ r14 yields

c2 + 2ac− 1 + a2 > −2a cos θ + a2 ≥ ac, (29)

which in turn gives
c2 + ac+ a2 − 1 > 0. (30)

Since a and c are both positive, inequality (30) clearly holds if a ≥ 1. However, for any fixed choice
of a ∈ (0, 1), the value of c must be chosen strictly greater than the largest root of the quadratic
Qa(c) = c2 + ac+ a2 − 1. This root is 1

2
(−a+

√
4− 3a2), which proves (19).

Finally, r24 > r12 ≥ r23 implies that

c2 + 2ac− 1 > −2a cos θ ≥ b− 1, (31)

which gives
c2 + 2ac− b > 0. (32)

Since b > 0, c must be chosen greater than the largest root of the quadratic Qa,b(c) = c2 + 2ac− b.
This root is −a+

√
a2 + b, which verifies (20) and completes the proof. �

The combined inequalities between the radial variables a, b, and c given in (15) through (20),
along with a > 0, b > 0, and c > 0, define a bounded set D ⊂ R+3

. We will show that this set is
the domain of the function θ = f(a, b, c) and the projection of E into abc-space.

Definition 3.3. Let D = D1 ∪D2 denote the three-dimensional region, where

D1 =
{

(a, b, c) ∈ R+3

: 0 < c ≤ a, a ≤ 1, 0 < b ≤ 1,

1

2
(−a+

√
4− 3a2 ) < c <

1

a
(b2 + 2b), c > −a+

√
a2 + b

}
,

D2 =
{

(a, b, c) ∈ R+3

: 0 < c ≤ a, a > 1, 0 < b ≤ 1, c <
1

a
(b2 + 2b),

b >
1

2
(−1 +

√
4a2 − 3 ), c > −a+

√
a2 + b

}
.
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Figure 2: The faces and vertices of D (face III not shown to improve the perspective). Faces II
and V are vertical. For each point (a, b, c) ∈ D, there exists a unique angle θ that makes the
corresponding configuration central.

Note that D is simply connected. Using inequalities (28), (30), c ≤ a, and b ≤ 1, it is straight-
forward to check that D is contained within the box

1√
3
≤ a ≤

√
3, 0 ≤ b ≤ 1, 0 ≤ c ≤

√
3 .

Let D denote the closure of D. A plot of the boundary of D is shown in Figure 2. It contains
five vertices, six faces, and nine edges (six curved, three straight), in accordance with Poincaré’s
generalization of Euler’s formula V − E + F = 2. The vertices of D are

P1 = (1, 0, 0), P2 = ( 1√
3
, 2−

√
3√

3
, 1√

3
), P3 = ( 1√

3
, 1, 1√

3
),

P4 = (
√

3, 1,
√

3), and P5 = (
√

3, 1, 2−
√

3),

each of which corresponds to a symmetric central configuration with at least two zero masses. P3

and P4 are rhombii with one diagonal congruent to the common side length, while P2 and P5 are
kites with horizontal and vertical axes of symmetry, respectively. The point P1 corresponds to an
equilateral triangle with bodies 3 and 4 sharing a common vertex.

3.3 Configurations on the boundary of D

We now focus on points lying on the boundary of D. The next lemma shows that these points
correspond to configurations where two or more of the mutual distance inequalities in (9) become
equalities. Moreover, the only points for which this is true lie on the boundary of D.
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Lemma 3.4. Suppose that (a, b, c, θ) are chosen so that r13, r24 ≥ r12 ≥ r14, r23 ≥ r34 with a ≥ 1/
√

3,
b ≥ 0, and c ≥ 0. Then

r12 = r14 and r23 = r34 if and only if a = c, (33)

r12 = r23 and r14 = r34 if and only if b = 1, (34)

r13 = r12 = r14 if and only if c =
1

a
(b2 + 2b), (35)

r24 = r12 = r14 if and only if c =
1

2
(−a+

√
4− 3a2 ), (36)

r13 = r12 = r23 if and only if b =
1

2
(−1 +

√
4a2 − 3 ), (37)

r24 = r12 = r23 if and only if c = −a+
√
a2 + b . (38)

Proof: We first note that under the assumptions of the lemma, the inequalities on a, b, and c from
Lemma 3.2 are still valid, except that the inequalities are no longer strict.

If r12 = r14 and r23 = r34, then the left-hand equations in (21) and (22) imply a − c = 2 cos θ
and a− c = −2b cos θ, respectively. This yields (1 + b) cos θ = 0 from which it follows that cos θ = 0
and a = c. Conversely, if a = c, (23) implies that either cos θ = 0 or b = 0. In the former case,
θ = π/2 and then r12 = r14 and r23 = r34 follows quickly. In the latter case, inequality (17) and
a = c implies that a = c = 0, which contradicts a ≥ 1/

√
3. Thus b > 0 and r12 = r14 and r23 = r34,

proving (33).
If r12 = r23 and r14 = r34, then the right-hand equations in (21) and (22) imply 1− b = 2a cos θ

and 1 − b = −2c cos θ, respectively. Thus, (a + c) cos θ = 0. Since a ≥ 1/
√

3 and c ≥ 0, we must
have cos θ = 0 and hence b = 1. Conversely, if b = 1, (24) implies that either cos θ = 0, or cos θ < 0
and c = 0. In the former case, θ = π/2 and then r12 = r23 and r14 = r34 follows quickly. The latter
case is impossible, since c = 0 and b = 1 contradicts inequality (20). This proves (34).

If r13 = r12, then the left-hand equation in (25) gives a−2 cos θ = 1
a
(b2+2b). Likewise, if r12 = r14,

then a − 2 cos θ = c. Thus r13 = r12 = r14 implies c = 1
a
(b2 + 2b). Conversely, if ac = b2 + 2b,

then both inequalities in (26) become equalities. From this we deduce that r13 = r12 = r14, which
verifies (35).

If r24 = r12, then the right-hand equation in (25) gives a(c+ 2 cos θ) = 1− c2 − ac. Likewise, if
r12 = r14, then c + 2 cos θ = a. Thus r24 = r12 = r14 implies c2 + ac + a2 − 1 = 0. The quadratic
Qa(c) = c2 + ac + a2 − 1 has real roots for 1/

√
3 ≤ a ≤ 2/

√
3, but the smaller root is always

negative for these a-values. Thus c must be taken to be the larger root of Qa(c). Conversely, if
c = 1

2
(−a +

√
4− 3a2 ), then c2 + ac + a2 − 1 = 0 and both inequalities in (29) become equalities.

From this we deduce that r24 = r12 = r14, which verifies (36). The proof of (37) and (38) follows in
a similar fashion, using inequalities (27) and (31), respectively. �

Lemma 3.4 shows that the six faces on the boundary of D, labeled I through VI, are given by
the six equations (33) through (38), respectively. The first two faces are the only ones belonging
to D (positive masses) and contain all of the kite configurations, where θ = π/2. The remaining
four faces on the boundary of D correspond to cases with one or three zero masses (see Table 1).
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Face Equation Mutual Distances Masses Vertices

I c = a r12 = r14 and r23 = r34 m2 = m4 P2, P3, P4

II b = 1 r12 = r23 and r14 = r34 m1 = m3 P3, P4, P5

III c = 1
a
(b2 + 2b) r13 = r12 = r14 m2 = m3 = m4 = 0 P1, P2, P4

IV c = 1
2
(−a+

√
4− 3a2 ) r24 = r12 = r14 m3 = 0 P1, P2, P3

V b = 1
2
(−1 +

√
4a2 − 3 ) r13 = r12 = r23 m4 = 0 P1, P4, P5

VI c = −a+
√
a2 + b r24 = r12 = r23 m1 = m3 = m4 = 0 P1, P3, P5

Table 1: The six faces on the boundary of D along with their key attributes. Each point on the
boundary has a unique angle θ that makes the configuration central. On faces I and II, θ = π/2
(kites). On faces III and IV, θ = cos−1(a−c

2
), while on faces V and VI, θ = cos−1(1−b

2a
).

Points on these faces are interpreted as limiting solutions of a sequence of central configurations
with positive masses. The mass values shown in Table 1 follow from formulas (10), (11), and (12).
Here we assume that the limiting solution lies in the interior of the given face.

For example, suppose there is a sequence of points xε = (aε, bε, cε) in the interior of D converging
to a point x = (a, b, c) located on the interior of face V. This corresponds to a sequence of central
configurations, each with positive masses, that limits on a configuration with r13 = r12 = r23. Since
x does not lie on any of the other faces on the boundary of D, the other three limiting mutual
distances, r24, r14, and r34, must be distinct from r13 and each other. Moreover, the limiting values
of the areas Ai do not vanish because a, b, and c are all strictly positive. Using either (10) or (11),
it follows that the limiting mass value for m4 must vanish, while the other limiting mass values
are strictly positive. A similar argument applied to the other faces determines which masses must
vanish in the limit.

Configurations on face IV or V, respectively, correspond to equilibria of the planar, circular, re-
stricted four-body problem with infinitesimal mass m3 or m4, respectively [7, 8, 20]. Configurations
on face III or VI, respectively, correspond to relative equilibria of the (1 + 3)-body problem, where
a central mass (body 1 or 2, respectively) is equidistant from three infinitesimal masses [9, 16, 26].
Note that we have not made any assumptions on the relative size of the masses. Each of the six
faces satisfies either r12 = r14 or r12 = r23. Using identity (21), it follows that there is a unique
value of θ for each point on the boundary of D, θ = cos−1(a−c

2
) if r12 = r14 or θ = cos−1(1−b

2a
) if

r12 = r23.
The masses at the vertices of D are not well-defined because there are more options for the path

of a limiting sequence. For example, the point P4 represents a rhombus with one diagonal (r13)
congruent to all of the exterior sides. Approaching P4 along the line (a, 1, a) as a→

√
3 (a sequence

of rhombii central configurations) yields the limiting mass values m2 = m4 = 0 and m1 = m3 6= 0.
On the other hand, it is possible to construct a sequence of kite central configurations on face I
with masses m1 = 1,m2 = m4 = ε2, and m3 = ε that limits on P4 as ε→ 0. The first sequence has

11



two limiting mass values that vanish while the second sequence has three. The difference occurs
because the mass ratio m3/m1 at P4 is undefined in either formula (10) or (12).

Regardless of the particular limiting sequence, all five vertices of D will have at least two mass
values that vanish in the limit. For P1, this follows from Proposition 2 in [28]. For the other
four vertices, this fact is a consequence of formulas (10) and (11). In general, note that a limiting
sequence with precisely two zero masses can only occur at vertices P1, P3, or P4. This somewhat
surprising restriction is a consequence of Propositions 3 and 4 in [28] and the fact that the non-
collinear critical points of the restricted three-body problem must form an equilateral triangle with
the non-trivial masses.

3.4 The projection of D onto the ab-plane

The set D can be written as the union of four elementary regions in abc-space, where c is bounded
by functions of a and b. The projection of D onto the ab-plane is shown in Figure 3. It is determined
by 1√

3
≤ a ≤

√
3 and l(a) ≤ b ≤ 1, where l(a) is the piecewise function

l(a) =

{
l1(a) if 1√

3
≤ a ≤ 1

l2(a) if 1 ≤ a ≤
√

3 .

Here, l1(a) = −1 + 1
2
(a+

√
4− 3a2 ) is the projection of the intersection between faces III and IV,

and l2(a) = 1
2
(−1 +

√
4a2 − 3 ) is the projection of the vertical face V. The edge a = 1√

3
is the

projection of the intersection between faces I and IV, while the edge b = 1 is the projection of the
vertical face II.

0.40.60.811.21.41.61.8

a

0

0.2

0.4

0.6

0.8

1

b

i

ii

iii

iv

Figure 3: The projection of D into the ab-plane. The dashed red curves divide the region into four
sub-regions over which c is bounded by functions of a and b. The orientation of the a-axis has been
reversed to match Figure 2.
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The decreasing dashed curve in Figure 3 is the projection of the intersection of faces I and III,
given by b = −1 +

√
1 + a2 , 1√

3
≤ a ≤

√
3. The increasing dashed curve is the projection of the

intersection of faces IV and VI, given by b = 1− 3
2
a2 + a

2

√
4− 3a2 , 1√

3
≤ a ≤ 1. These curves divide

the projection into four sub-regions over which c is bounded by different functions of a and b, as
indicated below:

i −a+
√
a2 + b ≤ c ≤ a

ii 1
2
(−a+

√
4− 3a2 ) ≤ c ≤ a

iii 1
2
(−a+

√
4− 3a2 ) ≤ c ≤ 1

a
(b2 + 2b)

iv −a+
√
a2 + b ≤ c ≤ 1

a
(b2 + 2b) .

3.5 E is a graph θ = f(a, b, c) over D

We now prove our main result, showing that for each (a, b, c) ∈ D, there exists a unique angle θ
that makes the configuration central. In general, for any point (a, b, c) in the interior of D, there is
an interval of possible angles θ for which the mutual distance inequalities (9) hold. According to
the identities given in (21), (22), and (25), θ must be chosen to satisfy

max
{c− a

2b
,
b− 1

2c
,
a2 − b2 − 2b

2a
,

1− c2 − 2ac

2a

}
≤ cos θ ≤ min

{a− c
2

,
1− b

2a

}
(39)

in order for (9) to be true. The following lemma shows that condition (39) is not vacuous on the
interior of D.

Lemma 3.5. For any point (a, b, c) in the interior of D, define the constants k1 and k2 by

k1 = max
{c− a

2b
,
b− 1

2c
,
a2 − b2 − 2b

2a
,

1− c2 − 2ac

2a

}
,

k2 = min
{a− c

2
,

1− b
2a

}
.

Then −1 < k1 < k2 < 1.

Proof: On the interior of D the first two quantities in the definition of k1 are strictly negative while
the two quantities defining k2 are strictly positive. The inequality (a2 − b2 − 2b)/(2a) < (a − c)/2
follows from c < (b2 + 2b)/a. The inequality (a2 − b2 − 2b)/(2a) < (1 − b)/(2a) is equivalent
to b2 + b + 1 − a2 > 0, which is clearly valid for a ≤ 1. It also holds for a > 1 because b >
1
2
(−1 +

√
4a2 − 3 ). Likewise, (1− c2 − 2ac)/(2a) < (a− c)/2 is equivalent to c2 + ac+ a2 − 1 > 0,

which is clearly satisfied for a ≥ 1. It also holds for 0 < a < 1 since c > 1
2
(−a+

√
4− 3a2 ). Finally,

(1− c2− 2ac)/(2a) < (1− b)/(2a) is satisfied because c > −a+
√
a2 + b. This verifies that k1 < k2.

Since a <
√

3 < 2 + c and 1 < 2√
3
< 2a + b on the interior of D, we see that k2 < 1.

Finally, (1 − c2 − 2ac)/(2a) > −1 holds if c < 1. But if c ≥ 1, then b > 0 > 1 − 2c implies that
(b − 1)/(2c) > −1. Thus, at least one of the quantities in the definition for k1 is larger than −1.
This shows that k1 > −1. �

Lemma 3.5 shows that for any point (a, b, c) in the interior of D, there is an interval of θ-values
for which (9) holds. More specifically, if we let θl = cos−1(k2) and θu = cos−1(k1), with k1, k2 defined
as in Lemma 3.5, then for any θ ∈ (θl, θu), we have (a, b, c, θ) ∈ C.
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Recall that

F (a, b, c, θ) = (r3
24 − r3

14)(r3
13 − r3

12)(r3
23 − r3

34)− (r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23),

and that E = {s = (a, b, c, θ) ∈ R+3× (0, π) : s ∈ C and F (s) = 0} represents the set of convex
central configurations with positive masses.

Theorem 3.6. Suppose that (a, b, c) ∈ D. Then there exists a unique angle θ such that (a, b, c, θ)
determines a central configuration. More precisely, the set of four-body convex central configurations
with positive masses is the graph of a differentiable function θ = f(a, b, c). The domain of this
function is D, which is equivalent to the projection of E onto abc-space.

Proof: Fix a point (a, b, c) in the interior of D and treat F = F (θ) as a one-variable function. We
will show that F has a unique root θ satisfying the inequalities in (39).

(i) Existence: Suppose that θ is taken to be θl = cos−1(k2). This is the smallest possible value
for θ. If cos θ = (a− c)/2, then equation (21) gives r12 = r14 and thus

F = (r3
24 − r3

14)(r3
13 − r3

12)(r3
23 − r3

34) > 0,

since (a, b, c) is in the interior of D. (If any of the differences above also vanished, then (a, b, c) would
be on the boundary of D due to Lemma 3.4.) Similarly, if cos θ = (1− b)/(2a), then equation (21)
gives r12 = r23 and we compute that

F = (r3
13 − r3

12)
[
(r3

24 − r3
14)(r3

12 − r3
34)− (r3

12 − r3
14)(r3

24 − r3
34)
]

= (r3
13 − r3

12)
[
−r3

24r
3
34 − r3

14r
3
12 + r3

12r
3
34 + r3

14r
3
24

]
= (r3

13 − r3
12)(r3

24 − r3
12)(r3

14 − r3
34) > 0,

since (a, b, c) is in the interior of D. In either case, we see that F (a, b, c, θ = θl) > 0.
Next, suppose that θ is chosen to be θu = cos−1(k1). This is the largest possible value for θ. If

cos θ = (c− a)/(2b), then equation (22) gives r23 = r34 and thus

F = −(r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23) < 0.

If cos θ = (b− 1)/(2c), then equation (22) gives r14 = r34 and we find that

F = (r3
24 − r3

14)
[
(r3

13 − r3
12)(r3

23 − r3
14)− (r3

12 − r3
14)(r3

13 − r3
23)
]

= (r3
24 − r3

14)
[
r3

13r
3
23 + r3

12r
3
14 − r3

12r
3
13 − r3

14r
3
23

]
= (r3

24 − r3
14)(r3

13 − r3
14)(r3

23 − r3
12) < 0,

where the strict inequality follows once again from Lemma 3.4. If cos θ = (a2 − b2 − 2b)/(2a), then
equation (25) gives r13 = r12 and thus

F = −(r3
12 − r3

14)(r3
24 − r3

34)(r3
13 − r3

23) < 0.

Finally, if cos θ = (1− c2 − 2ac)/(2a), then equation (25) gives r24 = r12 and we find that

F = (r3
12 − r3

14)
[
(r3

13 − r3
12)(r3

23 − r3
34)− (r3

12 − r3
34)(r3

13 − r3
23)
]

= (r3
12 − r3

14)
[
r3

13r
3
23 + r3

12r
3
34 − r3

12r
3
13 − r3

34r
3
23

]
= (r3

12 − r3
14)(r3

13 − r3
34)(r3

23 − r3
12) < 0.
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In all four cases, we find that F (a, b, c, θ = θu) < 0. Since F is a continuous function with opposite
signs at θ = θl and θ = θu, the intermediate value theorem implies there exists an angle θ ∈ (θl, θu)
such that F (a, b, c, θ) = 0.

(ii) Uniqueness: To see that this solution is unique, we show that ∂F
∂θ
< 0 for any (a, b, c) in the

interior of D and any θ ∈ (θl, θu). From equations (13) and (14), we have

∂r12

∂θ
=
a sin θ

r12

,
∂r23

∂θ
=
−ab sin θ

r23

,
∂r14

∂θ
=
−c sin θ

r14

,
∂r34

∂θ
=
bc sin θ

r34

, and
∂r13

∂θ
=
∂r24

∂θ
= 0.

Then we compute

∂F

∂θ
= −3 sin θ (ar12 α1 + abr23 α2 + cr14 α3 + bcr34 α4) ,

where

α1 = (r3
24 − r3

14)(r3
23 − r3

34) + (r3
24 − r3

34)(r3
13 − r3

23),

α2 = (r3
24 − r3

14)(r3
13 − r3

12) + (r3
24 − r3

34)(r3
12 − r3

14),

α3 = (r3
24 − r3

34)(r3
13 − r3

23)− (r3
13 − r3

12)(r3
23 − r3

34), (40)

α4 = (r3
24 − r3

14)(r3
13 − r3

12)− (r3
12 − r3

14)(r3
13 − r3

23).

By (9) and Lemma 3.4, both α1 and α2 are strictly positive. After adding and subtracting r6
23 to α3,

we can rewrite that expression as

α3 = (r3
24 − r3

23)(r3
13 − r3

23) + (r3
12 − r3

23)(r3
23 − r3

34), (41)

which is also strictly positive on the interior of D. Finally, we find that

α1 + α4 = (r3
24 − r3

14)(r3
13 − r3

12 + r3
23 − r3

34) + (r3
13 − r3

23)(r3
24 − r3

12 + r3
14 − r3

34),

which is strictly positive by (9). The conditions a > c, 1 > b, and r12 > r34, which are valid on the
interior of D, combine to yield ar12 > bcr34. Then we have

ar12 α1 + bcr34 α4 > bcr34 α1 + bcr34 α4 = bcr34(α1 + α4) > 0.

This shows that ∂F
∂θ
< 0, which proves uniqueness.

By the implicit function theorem, there exists a differentiable function θ = f(a, b, c) on the
interior of D such that F (a, b, c, f(a, b, c)) = 0. The point (a, b, c, θ = f(a, b, c)) describes a convex
central configuration with positive masses. Since k2 − k1 approaches zero as (a, b, c) approaches
the boundary of D, we may extend the function f continuously to the boundary of D, where it is
defined as θ = θl = θu.

Finally, if (a, b, c) 6∈ D, then Lemma 3.2 shows that one of the mutual distance inequalities in (9)
will be violated. For example, if c > a, then either r12 < r14 or r23 < r34. Likewise, if c ≥ 1

a
(b2 +2b),

then either r12 < r14 or r13 ≤ r12. In any case, such a configuration, assuming it is central, will
contain a negative or zero mass. It follows that D is precisely the domain of the implicitly defined
function f and that the projection of E into abc-space equals D. �
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3.6 Properties of the angle between the diagonals

Next we focus on the possible values of the angle θ between the two diagonals, showing that it is
always between 60◦ and 90◦. Moreover, the value of θ increases as the radial variable c increases.

Lemma 3.7. Suppose that (a, b, c) ∈ D and θ = π/2. Then r3
12 + r3

34 ≥ r3
14 + r3

23.

Proof: When θ = π/2, the formulas in (13) and (14) reduce to r2
12 = a2+1, r2

14 = c2+1, r2
23 = a2+b2,

and r2
34 = b2 + c2. Define the function G(a, b, c) = r3

12 + r3
34− r3

14− r3
23. Note that G(a, b, c = a) = 0

since r12 = r14 and r23 = r34 when c = a (a kite configuration). We compute that

∂G

∂c
= 3r2

34

∂r34

∂c
− 3r2

14

∂r14

∂c
= 3c(r34 − r14) ≤ 0,

because b ≤ 1 on D. Since G(a, b, c = a) = 0, it follows that G(a, b, c < a) ≥ 0, as desired. �

Theorem 3.8. For a convex central configuration with positive masses, the angle θ between the two
diagonals satisfies π/3 < θ ≤ π/2. If θ = π/2, the configuration must be a kite.

Proof: We first show that θ ≤ π/2. For any point (a, b, c) ∈ D, we have r34 ≤ r14 and r23 ≤ r12.
If θ = π/2, we also have r3

23 − r3
34 ≤ r3

12 − r3
14 by Lemma 3.7. Thus, when θ = π/2, we have

(r3
24 − r3

14)(r3
13 − r3

12)(r3
23 − r3

34) ≤ (r3
24 − r3

34)(r3
13 − r3

23)(r3
12 − r3

14), (42)

since all factors in (42) are non-negative and each factor on the left-hand side of the inequality is
less than or equal to the corresponding factor on the right. This shows that F (a, b, c, θ = π/2) ≤ 0.
From the proof of Theorem 3.6, ∂F/∂θ < 0 on the interior of D × [θl, θu]. Thus, for a fixed point
(a, b, c) in the interior of D, the unique solution to F (a, b, c, θ) = 0 must satisfy θ ≤ π/2.

Next, from (39), we have that 2 cos θ ≤ a − c and 2a cos θ ≤ 1 − b. We have just shown that
cos θ ≥ 0, and since b > 0 and c > 0 on the interior of D, we conclude that

2 cos θ < 2 cos θ + c ≤ a ≤ 1− b
2 cos θ

<
1

2 cos θ
. (43)

It follows that cos2 θ < 1/4, which means θ > π/3.
Finally, inequality (42) is strict unless r14 = r34 and r12 = r23, or a factor on each side of the

inequality vanishes. By Lemma 3.4, this can only occur if (a, b, c) lies on the boundary of D. Thus,
F (a, b, c, θ = π/2) < 0 on the interior of D. Since θ = cos−1(a−c

2
) or θ = cos−1(1−b

2a
) on the boundary

of D, we see that a central configuration with θ = π/2 must satisfy either a = c or b = 1. By (33)
or (34), the configuration must be a kite. �

Remark 3.9. 1. The fact that a convex central configuration with perpendicular diagonals must
be a kite was proven earlier by the authors in [11].

2. If θ = π/3, then all inequalities in (43) must become equalities. This can only happen at the
point P1 = (1, 0, 0), a vertex of D corresponding to an equilateral triangle configuration with
bodies 3 and 4 coinciding (r34 = 0).

Next we show that the value of θ increases as we move upwards (increasing in c) through the
domain D. We will need the following lemma. Recall that E is the set of four-body convex central
configurations with positive masses in our particular coordinate system.
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Lemma 3.10. Consider the following three quantities:

β1 = (r3
13 − r3

12)(r3
23 − r3

34)− (r3
13 − r3

23)(r3
12 − r3

14),

β2 = (r3
13 − r3

23)(r3
24 − r3

34)− (r3
13 − r3

12)(r3
23 − r3

34),

β3 = (r3
13 − r3

23)(r3
12 − r3

14)− (r3
13 − r3

12)(r3
24 − r3

14).

Then, β1 ≥ 0, β2 > 0, β3 < 0, and β2 + β3 ≥ 0 for any configuration in E.

Proof: Since we are working in E, the equation F = 0 implies

(r3
13 − r3

23)(r3
12 − r3

14) =
(r3

24 − r3
14)(r3

13 − r3
12)(r3

23 − r3
34)

r3
24 − r3

34

. (44)

Then we have

β1 = (r3
13 − r3

12)(r3
23 − r3

34)

(
1− r3

24 − r3
14

r3
24 − r3

34

)
=

(r3
13 − r3

12)(r3
23 − r3

34)(r3
14 − r3

34)

r3
24 − r3

34

,

which is non-negative due to the inequalities in (9).
Note that the quantity β2 is identical to α3 used in the proof of Theorem 3.6 (equation (40)).

By equation (41), we see that β2 > 0 on E.
Next, using equation (44), we have

β3 = (r3
13 − r3

12)(r3
24 − r3

14)

(
r3

23 − r3
34

r3
24 − r3

34

− 1

)
= −(r3

13 − r3
12)(r3

24 − r3
14)(r3

24 − r3
23)

r3
24 − r3

34

,

which is strictly negative due to the inequalities in (9).
Finally, we compute that

β2 + β3 = (r3
13 − r3

23)(r3
12 + r3

24 − r3
14 − r3

34)− (r3
13 − r3

12)(r3
23 + r3

24 − r3
14 − r3

34)

= r3
13(r3

12 − r3
23)− r3

23(r3
24 − r3

14 − r3
34) + r3

12(r3
24 − r3

14 − r3
34)

= (r3
12 − r3

23)(r3
13 + r3

24 − r3
14 − r3

34),

which is non-negative on E. This completes the proof. �

Theorem 3.11. On the interior of D, the angle θ between the two diagonals increases with c. In
other words, ∂θ

∂c
> 0 on the interior of D.

Proof: Recall that the angle θ = f(a, b, c) is a differentiable function on the interior of D, deter-
mined by the solution to the equation F (a, b, c, f(a, b, c)) = 0. Using the implicit function theorem,
we have ∂θ

∂c
= −∂F

∂c
/∂F
∂θ
. From the proof of Theorem 3.6, ∂F

∂θ
< 0. Thus, it suffices to show that

∂F
∂c
> 0, where the partial derivative is evaluated at (a, b, c, θ = f(a, b, c)) ∈ E with (a, b, c) in the

interior of D.
Using equations (13) and (14), we have that

∂r14

∂c
=
c+ cos θ

r14

,
∂r34

∂c
=
c− b cos θ

r34

,
∂r24

∂c
= 1, and

∂r12

∂c
=
∂r13

∂c
=
∂r23

∂c
= 0.
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Then we compute

∂F

∂c
= 3r2

24β1 + 3r14(c+ cos θ)β2 + 3r34(c− b cos θ)β3 , (45)

where the βi are given as in Lemma 3.10. Since we are working in the interior of D, the central
configuration is not a kite and Theorem 3.8 implies that cos θ > 0. Hence, applying Lemma 3.10,
each term on the right-hand side of (45) is non-negative except for 3r34cβ3. However, since r14 ≥ r34

and β2 > 0, we have

3r14cβ2 + 3r34cβ3 = 3c(r14β2 + r34β3)

≥ 3c(r34β2 + r34β3)

= 3cr34(β2 + β3)

≥ 0

by Lemma 3.10. This shows that ∂F
∂c
> 0. The inequality is strict because the term 3r14β2 cos θ is

strictly positive on the interior of D. This completes the proof. �

Remark 3.12. 1. Regarding Figure 1, if we fix the values of a and b, then one interpretation
of Theorem 3.11 is that as the configuration widens in the vertical direction (c increasing),
the diagonals become closer and closer to perpendicular. If (a, b) is chosen from sub-region
i or ii (see Figure 3), then the angle θ increases monotonically to π/2 where c = a (a kite
configuration). On the other hand, if (a, b) belongs to sub-region iii or iv, then θ is bounded
above by cos−1(a−c̄

2
) < π/2 where c = 1

a
(b2 + 2b) < a.

2. For kite configurations lying on the vertical face II (b = 1, r12 = r23, and r14 = r34), it
is straight forward to check that ∂F

∂c
= 0. This in turn implies that ∂θ

∂c
= 0, which agrees

with the fact that θ is constant (θ = π/2) on all of face II. Thus, the strict inequality of
Theorem 3.11 only holds on the interior of D.

4 Special Classes of Central Configurations

In this section we use our coordinates in D to classify different types of quadrilaterals that are
also central configurations. The analysis and defining equations are remarkably simple in our
coordinate system, resulting in only linear or quadratic equations in a, b, and c. Certain cases can
be handled quickly due to the constraints on the mutual distances given by (9). For example, the
only parallelogram that can be a central configuration is a rhombus. Likewise, the only possible
rectangle is a square.

4.1 Kites

The kite configurations play a particularly important role in the overall classification of convex
central configurations, occupying two of the six boundary faces of D. Recall that a kite configuration
is a symmetric quadrilateral with two bodies lying on the axis of symmetry and two bodies located
equidistant from that axis. The diagonals are always perpendicular and the two bodies not lying
on the axis of symmetry must have equal mass.
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Based on our ordering of the bodies, there are two possible types of kite configurations. A kite
with bodies 1 and 3 on the axis of symmetry, denoted kite13, is symmetric with respect to the x-axis
and must satisfy c = a (left plot in Figure 4). These kites lie on face I and have m2 = m4, as can be
verified by the middle formula in (11). A kite with bodies 2 and 4 on the axis of symmetry, denoted
kite24, is symmetric with respect to the y-axis and must satisfy b = 1 (right plot in Figure 4). These
kites occupy face II and require m1 = m3, as can be checked using the middle formula in (10).

m1m3

m2

m4

a

c= a m1m3

m2

m4

1b=1

Figure 4: Two kite central configurations with different axes of symmetry. Kites with a horizontal
axis of symmetry (kite13) lie in the plane c = a, while those with a vertical axis of symmetry
(kite24) lie in the plane b = 1. All kites have θ = π/2; these are the only possible convex central
configurations with perpendicular diagonals.

It is important to note that due to statements (33) and (34) in Lemma 3.4, any point in D lying
on one of the two planes c = a or b = 1 must correspond to a kite central configuration. While
two pairs of mutual distances must be congruent in order to distinguish a kite configuration from
a general convex quadrilateral, only one equation is required to imply a kite when restricting to
the set of convex central configurations. An alternative interpretation of this fact is the following
theorem.

Theorem 4.1. A convex central configuration with one diagonal bisecting the other must be a kite.

Proof: In our coordinate system, if one of the diagonals bisects the other, then either a = c or
b = 1. By (33) and (34) in Lemma 3.4, either case must correspond to a kite configuration. �

Remark 4.2. Theorem 4.1 also follows directly from Conley’s Perpendicular Bisector Theorem [27].

The intersection of the planes c = a and b = 1 is a line that corresponds to the one-dimensional
family of rhombii central configurations. This line is an edge on the boundary of D between vertices
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P3 and P4. We regard a as a parameter describing this family, with 1/
√

3 < a <
√

3. From (10)
and (11), we have m1 = m3,m2 = m4, and

m2

m1

=
8a3 − a3(a2 + 1)3/2

8a3 − (a2 + 1)3/2
.

Note that m1 and m3 vanish as a→ 1/
√

3, while m2 and m4 approach 0 as a→
√

3 . The length of
the diagonal r24 increases with a, stretching the rhombus in the vertical direction. The point a = 1
corresponds to the equal mass square configuration with congruent diagonals (r13 = r24 = 2).

4.2 Trapezoids

Next we consider the two possible types of trapezoids. Let qiqj denote the side of the trapezoid
between vertices i and j. If exterior sides q1q2 and q3q4 are parallel, then we have

a sin θ

a cos θ − 1
=

c sin θ

c cos θ − b
,

which reduces to (ab− c) sin θ = 0. Since sin θ 6= 0, c = ab is both necessary and sufficient to have
a trapezoid of this kind (left plot in Figure 5). On the other hand, if q1q4 is parallel to q2q3, then
we quickly deduce that a = bc. However, since a ≥ c and 1 ≥ b on D, we have a ≥ bc always, with
equality only if both a = c and b = 1 are satisfied. It follows that the only trapezoid of this type is
necessarily a rhombus, a subset of the first type of trapezoids. This proves the following theorem.

Theorem 4.3. Suppose that s is a central configuration in E. Then s = (a, b, c, θ) is a trapezoid if
and only if c = ab. The exterior sides q1q2 and q3q4 are always parallel.

m1

m2

m3

m4

1

a

b

c= ab

m1

m2

m3

m4

1

a=1

b

c= b

Figure 5: Trapezoidal central configurations lie on the surface c = ab. The isosceles trapezoid family
(right figure) lies on the line formed by the intersection of the planes a = 1 and c = b.
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Figure 6: The trapezoidal central configurations (purple) lie on the surface c = ab within D. The
violet line shows the isosceles trapezoid central configurations, where a = 1 and c = b.

Remark 4.4. Theorems 3.6 and 4.3 together show that the set of trapezoidal central configurations
with positive masses is two-dimensional, a graph over the surface c = ab in D (a portion of a saddle).
This concurs with the recent results in [10].

Figure 6 demonstrates how the surface of trapezoidal central configurations lies within the full
space D. This surface intersects the boundary of D along the straight edge between vertices P3

and P4 corresponding to the rhombii family (the intersection of faces I and II). It also meets the
boundary of D in two curves of equilibria of the restricted four-body problem, one curve on face V
connecting vertices P1 and P4, the other on face IV joining vertices P1 and P3.

Next, suppose that s ∈ E is a trapezoid. If we substitute c = ab into equations (13) and (14),
we obtain

r2
23 − r2

14 = (a2 − 1)(1− b2) . (46)

If b = 1, then c = ab implies c = a and hence s is a rhombus. Assuming that b < 1, it follows
from equation (46) that r23 > r14 for a > 1, and r14 > r23 when a < 1. The border between these
two cases are the isosceles trapezoids, where r23 = r14 (right plot in Figure 5). In other words, the
isosceles trapezoid family of central configurations corresponds to a line formed by the intersection
of the planes a = 1 and c = b. This line slices through the interior of D, crossing from the degenerate
equilateral triangle at (1, 0, 0) to the square at (1, 1, 1) (violet line in Figure 6). By Theorem 3.11,
the angle between the diagonals monotonically increases from π/3 to π/2 as c increases from 0 to 1.
The family of isosceles trapezoids was studied in [12] and [36].

4.3 Co-circular configurations

Another interesting class of central configurations are those where the four bodies lie on a common
circle, a co-circular central configuration (see Figure 7). One of the main results in [12] is that the
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m1

m2

m3

m4

1

a

b= ac

c

Figure 7: A co-circular central configuration, where the bodies all lie on a common circle, must
satisfy b = ac.

set of four-body co-circular central configurations is a two-dimensional surface, a graph over two
of the exterior side-lengths. We reproduce that result here, showing that the co-circular central
configurations are a graph over the saddle b = ac in D.

Theorem 4.5. Suppose that s is a central configuration in E. Then s = (a, b, c, θ) is a co-circular
central configuration if and only if b = ac.

Proof: We make use of the cross ratio1 from complex analysis [6]. The cross ratio of four points
z1, z2, z3, z4 is defined as the image of z1 under the linear transformation that maps z2 to 1, z3 to 0,
and z4 to ∞. It is given by the expression

(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)
. (47)

One of the nice properties of the cross ratio is that it is real if and only if the four points lie on a circle
or a line. Regarding the position of each body as a point in C, we have z1 = 1, z2 = aeiθ, z3 = −b,
and z4 = −ceiθ. Substituting into (47), we find the cross ratio to be

(a+ c)(b+ 1)

aceiθ + be−iθ + a+ bc
,

which is real if and only if sin θ(ac− b) = 0. Since θ ∈ (π/3, π/2], we obtain b = ac as a necessary
and sufficient condition for the four bodies to be lying on a common circle. �

In Figure 8 we plot the surface of co-circular central configurations within D. This surface
intersects the boundary of D on four faces. On face I we have co-circular kite configurations (kite13)
defined by the parabola c = a, b = a2, 1/

√
3 < a ≤ 1. We also have co-circular kites on face II

with the opposite axis of symmetry (kite24), lying on the hyperbola b = 1, c = 1/a, 1 ≤ a <
√

3.

1Thanks to Richard Montgomery for suggesting this idea to the third author at the 2018 Joint Math Meetings.
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Figure 8: Co-circular central configurations lie on the surface b = ac (light red) in D. The violet
line corresponds to the isosceles trapezoid family, where a = 1 and b = c.

The surface b = ac also intersects faces IV and V, tracing out curves of equilibria solutions to the
restricted three-body problem.

Substituting b = ac into equations (13) and (14), we find that r23 = a r14 and r34 = c r12. The
line a = 1 (violet line in Figure 8) divides the surface b = ac into two pieces. As was the case for
the trapezoids, if 1 < a <

√
3, then we have co-circular central configurations with r23 > r14, while

if 1/
√

3 < a < 1, then r14 > r23. Configurations on the line a = 1 are isosceles trapezoids, where
r14 = r23. Since r12 ≥ r34, the equation r34 = c r12 implies that c ≤ 1 for any co-circular central
configuration. The maximum value of c occurs at the square a = b = c = 1.

4.4 Equidiagonal configurations

The final class of convex central configurations we choose to explore are equidiagonal quadrilaterals,
where the two diagonals are congruent (left plot in Figure 9). These configurations are character-
ized by the equation r13 = r24, which is the plane a − b + c = 1 in our coordinates. This plane
intersects the boundary of D in four places (right plot in Figure 9). On face I we find equidiagonal
kites (kite13) along the line c = a, b = 2a − 1, 1/

√
3 < a ≤ 1. Similarly, there is a line of equidi-

agonal kites (kite24) on face II parametrized by b = 1, c = 2−a, 1 ≤ a <
√

3. These two kite families
intersect at the square a = b = c = 1. The equidiagonal plane also meets the boundary of D along
two curved edges, one where faces III and IV intersect and the other where faces V and VI meet.
This follows directly from the equations given in Table 1.

As with the trapezoidal and co-circular cases, the isosceles trapezoid family (a = 1, b = c) divides
the equidiagonal plane into two regions distinguished by whether r23 > r14 (when 1 < a <

√
3) or

r14 > r23 (when 1/
√

3 < a < 1).
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m4

1

a

b

c

a+ c= b+1

Figure 9: Equidiagonal central configurations (left) are located on the plane a − b + c = 1 in D
(right). The violet line consists of the isosceles trapezoids (a = 1 and b = c).

4.5 Summary

Table 2 summarizes the different classes of configurations along with their defining equations in abc-
space or in the mutual distance variables rij. In addition to the simplicity of the defining equations,
perhaps one of the more striking features of Table 2 is that all of the configurations shown are
defined by linear or quadratic equations. Moreover, due to Theorem 3.6, the dimension of each
set is equivalent to the dimension of the corresponding geometric figure in abc-space. Each type of
configuration can be represented as the graph of a function over a one- or two-dimensional set in D,
where the function is θ = f(a, b, c) restricted to the given set.

Configuration Type Equation(s) Mutual Distances Figure in D

Kite13 c = a r12 = r14 and r23 = r34 plane

Kite24 b = 1 r12 = r23 and r14 = r34 plane

Rhombus a = c and b = 1 r12 = r14 = r23 = r34 line

Trapezoid c = ab q1q2 parallel to q3q4 saddle

Isosceles Trapezoid a = 1 and b = c r13 = r24 and r14 = r23 line

Co-circular b = ac r13r24 = r12r34 + r14r23 saddle

Equidiagonal a− b+ c = 1 r13 = r24 plane

Table 2: Some special classes of central configurations and their surprisingly simple defining equa-
tions in abc-space.
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Figure 10: The left figure shows how the trapezoidal (purple) and co-circular (red) central configu-
rations lie within D, while the right figure demonstrates how the co-circular (red) and equidiagonal
(brown) central configurations fit together in D. All three classes of central configurations intersect
at the isosceles trapezoid family (a = 1 and b = c).

Figure 10 illustrates how the surfaces corresponding to trapezoidal, co-circular, and equidiagonal
cnfigurations lie within D. All three intersect at the line corresponding to the isosceles trapezoid
configurations. For 1 < a <

√
3, the trapezoids are located above the co-circular configurations,

which in turn lie above the equidiagonal solutions. This is a consequence of comparing the c-values
on each surface. Since b ≤ 1 < a, we have

ab >
b

a
> 1− a+ b . (48)

On the other hand, for the portion of D with 1/
√

3 < a < 1, the inequalities in (48) are reversed and
the equidiagonal configurations lie above the co-circular solutions, which lie above the trapezoids.

The symmetric configurations play a particularly important role in the overall structure of D,
occupying two boundary faces (kites), a boundary edge (rhombii), or a line of intersection between
three classes of configurations (isosceles trapezoids). Two classes of convex quadrilaterals must
be kites in order to be central configurations. Configurations with either orthogonal or bisecting
diagonals must be kites by Theorem 3.8 and Theorem 4.1, respectively.

5 Conclusion and Future Work

We have established simple, yet effective coordinates for describing the space E of four-body convex
central configurations. Using these coordinates, we prove that E is a three-dimensional set, the
graph of a differentiable function over three radial variables. The domain D of this function has been
carefully defined, analyzed, and plotted in R+3

. Our coordinates provide elementary descriptions
of several important classes of central configurations, including kite, rhombus, trapezoidal, co-
circular, and equidiagonal configurations. The dimension and location of each of these classes
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within D has been explored in detail. We have also shown that the angle between the diagonals
of a four-body convex central configuration lies between 60◦ and 90◦. As the configuration widens,
the diagonals become closer and closer to orthogonal. The diagonals are perpendicular if and only
if the quadrilateral is a kite.

In future research we intend to investigate the values of the masses as a function over the
domain D. The mass ratios in (10) and (11) reduce fairly nicely in our coordinate system, although
the dependence on the angle θ = f(a, b, c) is complicated. Nevertheless, we hope to build on
our current work to show that the mass map from D into R+3

(suitably normalized) is injective.
Given a particular ordering of the bodies, this would prove that there is a unique convex central
configuration for any choice of four positive masses.
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